Academic literature on the topic 'Local texture descriptor'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Local texture descriptor.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Local texture descriptor"

1

Goyal, Aparna, and Reena Gunjan. "Bleeding Detection in Gastrointestinal Images using Texture Classification and Local Binary Pattern Technique: A Review." E3S Web of Conferences 170 (2020): 03007. http://dx.doi.org/10.1051/e3sconf/202017003007.

Full text
Abstract:
Texture analysis has proven to be a breakthrough in many applications of computer image analysis. It has been used for classification or segmentation of images which requires an effective description of image texture. Due to high discriminative power and simplicity of computation, the local binary pattern descriptors have been used for distinguishing different textures and in extracting texture and color in medical images. This paper discusses performance of various texture classification techniques using Contourlet Transform, Discrete Fourier Transform, Local Binary Patterns and Lacunarity analysis. The study reveals that the incorporation of efficient image segmentation, enhancement and texture classification using local binary pattern descriptor detects bleeding region in human intestines precisely.
APA, Harvard, Vancouver, ISO, and other styles
2

Song, Ke Chen, and Yun Hui Yan. "Neighborhood Estimated Local Binary Patterns for Texture Classification." Applied Mechanics and Materials 513-517 (February 2014): 4401–6. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.4401.

Full text
Abstract:
A novel texture classification approach based on neighborhood estimated local binary patterns (NELBP) is proposed. In the proposed approach, the local surrounding values of neighborhood estimated are introduced to operate binary patterns. Moreover, two different and complementary descriptors (average-based descriptor and differences-based descriptor) are extracted from local patches. Contrast experiments on Outex database and CUReT database demonstrate that the proposed NELBP is more robust to Gaussian noise than the conventional LBP for texture classification. In addition, the results also show that the combined complementary descriptor playes an important role in texture classification.
APA, Harvard, Vancouver, ISO, and other styles
3

Zeng, Hui, Rui Zhang, Mingming Huang, and Xiuqing Wang. "Compact Local Directional Texture Pattern for Local Image Description." Advances in Multimedia 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/360186.

Full text
Abstract:
This paper presents an effective local image feature region descriptor, called CLDTP descriptor (Compact Local Directional Texture Pattern), and its application in image matching and object recognition. The CLDTP descriptor encodes the directional and contrast information in a local region, so it contains the gradient orientation information and the gradient magnitude information. As the dimension of the CLDTP histogram is much lower than the dimension of the LDTP histogram, the CLDTP descriptor has higher computational efficiency and it is suitable for image matching. Extensive experiments have validated the effectiveness of the designed CLDTP descriptor.
APA, Harvard, Vancouver, ISO, and other styles
4

Suruliandi, A., G. Murugeswari, and P. Arockia Jansi Rani. "Empirical Evaluation of Generic Weighted Cubicle Pattern and LBP Derivatives for Abnormality Detection in Mammogram Images." International Journal of Image and Graphics 15, no. 01 (January 2015): 1550001. http://dx.doi.org/10.1142/s0219467815500011.

Full text
Abstract:
Digital image processing techniques are very useful in abnormality detection in digital mammogram images. Nowadays, texture-based image segmentation of digital mammogram images is very popular due to its better accuracy and precision. Local binary pattern (LBP) descriptor has attracted many researchers working in the field of texture analysis of digital images. Because of its success, many texture descriptors have been introduced as variants of LBP. In this work, we propose a novel texture descriptor called generic weighted cubicle pattern (GWCP) and we analyzed the proposed operator for texture image classification. We also performed abnormality detection through mammogram image segmentation using k-Nearest Neighbors (KNN) algorithm and compared the performance of the proposed texture descriptor with LBP and other variants of LBP namely local ternary pattern (LTPT), extended local texture pattern (ELTP) and local texture pattern (LTPS). For evaluation, we used the performance metrics such as accuracy, error rate, sensitivity, specificity, under estimation fraction and over estimation fraction. The results prove that the proposed method outperforms other descriptors in terms of abnormality detection in mammogram images.
APA, Harvard, Vancouver, ISO, and other styles
5

Ramírez Rivera, Adín, Jorge Rojas Castillo, and Oksam Chae. "Local Directional Texture Pattern image descriptor." Pattern Recognition Letters 51 (January 2015): 94–100. http://dx.doi.org/10.1016/j.patrec.2014.08.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Günay, Asuman, and Vasif V. Nabiyev. "Facial Age Estimation Using Spatial Weber Local Descriptor." International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems 6, no. 3 (October 30, 2017): 108. http://dx.doi.org/10.11601/ijates.v6i3.218.

Full text
Abstract:
This paper introduces a novel age estimation method using a new texture descriptor Weber Local Descriptor (WLD). This texture descriptor is analyzed in depth for age estimation problem. In the study, the multi-scale versions of holistic and spatial WLD (SWLD) descriptors are used to extract the age related features from normalized facial images. After finding a lower dimensional feature subspace, age estimation is performed using multiple linear regression. In addition the age estimation accuracy of each of the distinct and intersection block used in spatial texture extraction are investigated. Experiments on FGNET, MORPH and PAL databases have shown that similar age estimation performances can be obtained by using more effective blocks in spatial histogram generation. This also provides us to reduce the number of features and computational cost.
APA, Harvard, Vancouver, ISO, and other styles
7

Suruliandi, A., A. Sinduja, and S. P. Raja. "Texture classification using the rotational-invariant local symmetric tetra pattern." International Journal of Wavelets, Multiresolution and Information Processing 17, no. 04 (July 2019): 1950027. http://dx.doi.org/10.1142/s0219691319500279.

Full text
Abstract:
Feature extraction plays a key role in pattern recognition problems. The texture feature is an important feature which helps to describe an image with textural information. A new texture descriptor, the Local Symmetric Tetra Pattern (LSTP), is proposed in this work. This descriptor is developed for the local description of an image. It considers not only the surrounding eight neighbors, but also the eight pixels at the next level to describe the texture efficiently. For every pixel, the maximum edge value, the number of negative sign bits and the number of positive sign bits for each degree of symmetry are computed. Image classification is experimented using the Original Brodatz, Outex and Kylberg Texture Dataset v.1.0 databases. The investigation results are compared with existing method which shows promising achievement of the proposed techniques in terms of their evaluation measures. It is also found that the proposed texture descriptor is rotationally invariant.
APA, Harvard, Vancouver, ISO, and other styles
8

Arslan, Sibel, and Celal Ozturk. "Artificial Bee Colony Programming Descriptor for Multi-Class Texture Classification." Applied Sciences 9, no. 9 (May 10, 2019): 1930. http://dx.doi.org/10.3390/app9091930.

Full text
Abstract:
Texture classification is one of the machine learning methods that attempts to classify textures by evaluating samples. Extracting related features from the samples is necessary to successfully classify textures. It is a very difficult task to extract successful models in the texture classification problem. The Artificial Bee Colony (ABC) algorithm is one of the most popular evolutionary algorithms inspired by the search behavior of honey bees. Artificial Bee Colony Programming (ABCP) is a recently introduced high-level automatic programming method for a Symbolic Regression (SR) problem based on the ABC algorithm. ABCP has applied in several fields to solve different problems up to date. In this paper, the Artificial Bee Colony Programming Descriptor (ABCP-Descriptor) is proposed to classify multi-class textures. The models of the descriptor are obtained with windows sliding on the textures. Each sample in the texture dataset is defined instance. For the classification of each texture, only two random selected instances are used in the training phase. The performance of the descriptor is compared standard Local Binary Pattern (LBP) and Genetic Programming-Descriptor (GP-descriptor) in two commonly used texture datasets. When the results are evaluated, the proposed method is found to be a useful method in image processing and has good performance compared to LBP and GP-descriptor.
APA, Harvard, Vancouver, ISO, and other styles
9

Yan, Shen Hai, Xian Tong Huang, and Yang Liu. "A Novel Texture Spectrum Descriptor." Applied Mechanics and Materials 397-400 (September 2013): 1494–99. http://dx.doi.org/10.4028/www.scientific.net/amm.397-400.1494.

Full text
Abstract:
A concept of equivalence classes of texture pattern is put forward according to the visual consistency between the rotation texture and the flip texture. An improved texture spectrum descriptor (iTS) is proposed based on the equivalence classes. The iTS depicts the grayscale variation pattern of the pixels in the image neighbour domain and denotes the texture content of an image with a histogram of texture spectrum. Compared with the basic texture spectrum descriptor (TS), local binary pattern (LBP) and Shis local binary pattern (sLBP), iTS has best precision in the image retrieval experiments. The iTS has stronger ability to describle the texture and more adapt to the image rotation transformation.
APA, Harvard, Vancouver, ISO, and other styles
10

El khadiri, I., A. Chahi, Y. El merabet, Y. Ruichek, and R. Touahni. "Local directional ternary pattern: A New texture descriptor for texture classification." Computer Vision and Image Understanding 169 (April 2018): 14–27. http://dx.doi.org/10.1016/j.cviu.2018.01.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Local texture descriptor"

1

Tania, Sheikh. "Efficient texture descriptors for image segmentation." Thesis, Federation University Australia, 2022. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/184087.

Full text
Abstract:
Colour and texture are the most common features used in image processing and computer vision applications. Unlike colour, a local texture descriptor needs to express the unique variation pattern in the intensity differences of pixels in the neighbourhood of the pixel-of-interest (POI) so that it can sufficiently discriminate different textures. Since the descriptor needs spatial manipulation of all pixels in the neighbourhood of the POI, approximation of texture impacts not only the computational cost but also the performance of the applications. In this thesis, we aim to develop novel texture descriptors, especially for hierarchical image segmentation techniques that have recently gained popularity for their wide range of applications in medical imaging, video surveillance, autonomous navigation, and computer vision in general. To pursue the aim, we focus in reducing the length of the texture feature and directly modelling the distribution of intensity-variation in the parametric space of a probability density function (pdf). In the first contributory chapter, we enhance the state-of-the-art Weber local descriptor (WLD) by considering the mean value of neighbouring pixel intensities along radial directions instead of sampling pixels at three scales. Consequently, the proposed descriptor, named Radial Mean WLD (RM-WLD), is three-fold shorter than WLD and it performs slightly better than WLD in hierarchical image segmentation. The statistical distributions of pixel intensities in different image regions are diverse by nature. In the second contributory chapter, we propose a novel texture feature, called ‘joint scale,’ by directly modelling the probability distribution of intensity differences. The Weibull distribution, one of the extreme value distributions, is selected for this purpose as it can represent a wide range of probability distributions with a couple of parameters. In addition, gradient orientation feature is calculated from all pixels in the neighbourhood with an extended Sobel operator, instead of using only the vertical and horizontal neighbours as considered in WLD. The length of the texture descriptor combining joint scale and gradiet orientation features remains the same as RM-WLD, but it exhibits significantly improved discrimination capability for better image segmentation. Initial regions in hierarchical segmentation play an important role in approximating texture features. Traditional arbitrary-shaped initial regions maintain the uniform colour property and thus may not retain the texture pattern of the segment they belong to. In the final contributory chapter, we introduce regular-shaped initial regions by enhancing the cuboidal partitioning technique, which has recently gained popularity in image/video coding research. Since the regions (cuboids) of cuboidal partitioning are of rectangular shape, they do not follow the colour-based boundary adherence of traditional initial regions. Consequently, the cuboids retain sufficient texture pattern cues to provide better texture approximation and discriminating capability. We have used benchmark segmentation datasets and metrics to evaluate the proposed texture descriptors. Experimental results on benchmark metrics and computational time are promising when the proposed texture features are used in the state-of-the-art iterative contraction and merging (ICM) image segmentation technique.
Doctor of Philosophy
APA, Harvard, Vancouver, ISO, and other styles
2

Langoni, Virgílio de Melo. "Novos descritores de texturas dinâmicas utilizando padrões locais e fusão de dados." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/18/18152/tde-07112017-112730/.

Full text
Abstract:
Nas últimas décadas, as texturas dinâmicas ou texturas temporais, que são texturas com movimento, tornaram-se objetos de intenso interesse por parte de pesquisadores das áreas de processamento digital de imagens e visão computacional. Várias técnicas vêm sendo desenvolvidas, ou aperfeiçoadas, para a extração de características baseada em texturas dinâmicas. Essas técnicas, em vários casos, são a combinação de duas ou mais metodologias pré-existentes que visam apenas a extração de características e não a melhora da qualidade das características extraídas. Além disso, para os casos em que as características são \"pobres\" em qualidade, o resultado final do processamento poderá apresentar queda de desempenho. Assim, este trabalho propõe descritores que extraiam características dinâmicas de sequências de vídeos e realize a fusão de informações buscando aumentar o desempenho geral na segmentação e/ou reconhecimento de texturas ou cenas em movimento. Os resultados obtidos utilizando-se duas bases de vídeos demonstram que os descritores propostos chamados de D-LMP e D-SLMP foram superiores ao descritor da literatura comparado e denominado de LBP-TOP. Além de apresentarem taxas globais de acurácia, precisão e sensibilidade superiores, os descritores propostos extraem características em um tempo inferior ao descritor LBP-TOP, o que os tornam mais práticos para a maioria das aplicações. A fusão de dados oriundos de regiões com diferentes características dinâmicas aumentou o desempenho dos descritores, demonstrando assim, que a técnica pode ser aplicada não somente para a classificação de texturas dinâmicas em sí, mas também para a classificação de cenas gerais em vídeos.
In the last decades, the dynamic textures or temporal textures, which are textures with movement, have become objects of intense interest on the part of researchers of the areas of digital image processing and computer vision. Several techniques have been developed, or perfected, for feature extraction based on dynamic textures. These techniques, in several cases, are the combination of two or more pre-existing methodologies that aim only the feature extraction and not the improvement of the quality of the extracted features. Moreover, in cases that the features are \"poor\" in quality, the final result of processing may present low performance. Thus, this work proposes descriptors that extract dynamic features of video sequences and perform the fusion of information seeking to increase the overall performance in the segmentation and/or recognition of textures or moving scenes. The results obtained using two video bases show that the proposed descriptors called D-LMP and D-SLMP were superior to the descriptor of the literature compared and denominated of LBP-TOP. In addition to presenting higher overall accuracy, precision and sensitivity rates, the proposed descriptors extract features at a shorter time than the LBP-TOP descriptor, which makes them more practical for most applications. The fusion of data from regions with different dynamic characteristics increased the performance of the descriptors, thus demonstrating that the technique can be applied not only to the classification of dynamic textures, but also to the classification of general scenes in videos.
APA, Harvard, Vancouver, ISO, and other styles
3

Chierici, Carlos Eduardo de Oliveira. "Classificação de texturas com diferentes orientações baseada em descritores locais." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/18/18152/tde-27102015-103555/.

Full text
Abstract:
Diversas abordagens vêm sendo empregadas para a descrição de texturas, entre elas a teoria dos conjuntos fuzzy e lógica fuzzy. O Local Fuzzy Pattern (LFP) é um descritor de texturas diferente dos demais métodos baseados em sistemas fuzzy, por não utilizar regras linguísticas e sim números fuzzy que são usados na codificação de um padrão local de escala de cinza. Resultados anteriores indicaram o LFP como um descritor eficaz para a classificação de texturas a partir de amostras rotacionadas ou não. Este trabalho propõe uma análise mais abrangente sobre sua viabilidade para aplicação em cada um desses problemas, além de propor uma modificação a este descritor, adaptando-o para a captura de padrões em multiresolução, o Sampled LFP. A avaliação da performance do LFP e do Sampled LFP para o problema de classificação de texturas foi feita através da aplicação de uma série de testes envolvendo amostras de imagens rotacionadas ou não das bases de imagens Outex, álbum de Brodatz e VisTex, onde a sensibilidade obtida por esses descritores foi comparada com um descritor de referência, a variante do Local Binary Pattern (LBP) melhor indicada para o teste em execução. Os resultados apontaram o LFP como um descritor não indicado para aplicações que trabalhem exclusivamente com amostras não rotacionadas, visto que o LBP mostrou maior eficácia para este tipo de problema. Já para a análise de amostras rotacionadas, o Sampled LFP se mostrou o melhor descritor entre os comparados. Todavia, foi verificado que o Sampled LFP somente supera o LBP para resoluções de análise maiores ou iguais a 32x32 pixels e que o primeiro descritor é mais sensível ao número de amostras usadas em seu treinamento do que o segundo, sendo, portanto, um descritor indicado para o problema de classificação de amostras rotacionadas, onde seja possível trabalhar com imagens a partir de 32x32 pixels e que o número de amostras utilizadas para treinamento seja maximizado.
Several approaches have been employed for describing textures, including the fuzzy sets theory and fuzzy logic. The Local Fuzzy Pattern is a texture descriptor different from other methods based on fuzzy systems, which use linguistic rules to codify a texture. Instead, fuzzy numbers are applied in order to encode a local grayscale pattern. Previous results indicated the LFP as an effective descriptor employed to characterize statically oriented and rotated textures samples. This paper proposes a more comprehensive analysis of its feasibility for use in each of these problems, besides proposing a modification to this descriptor, adapting it to capture patterns in multiresolution, the Sampled LFP. The LFP and Sampled LFP performance evaluation when applied to the problem of texture classification was conducted by applying a series of tests involving images samples, rotated or not, from image databases such as Outex, the Brodatz album and Vistex, where the sensitivity obtained by these descriptors were compared with a reference descriptor, the variant Local Binary Pattern (LBP) best suited to running the test. The results indicated the LFP as a descriptor not suitable for applications who work exclusively with non-rotated samples, since the LBP showed greater efficacy for this problem kind. As for rotated samples analysis, the Sampled LFP proved the best descriptor among those compared. However, it was determined that the Sampled LFP only overcomes the LBP when the analysis resolutions are greater or equal to 32x32 pixels, besides that, the first descriptor is more sensitive to the number of training samples than the latter, therefore, this descriptor is indicated for the problem of rotated samples classification, where it is possible to work with resolution from 32x32 pixels while maximizing the number of samples used for training.
APA, Harvard, Vancouver, ISO, and other styles
4

Romero, Mier y. Teran Andrés. "Real-time multi-target tracking : a study on color-texture covariance matrices and descriptor/operator switching." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-01002065.

Full text
Abstract:
Visual recognition is the problem of learning visual categories from a limited set of samples and identifying new instances of those categories, the problem is often separated into two types: the specific case and the generic category case. In the specific case the objective is to identify instances of a particular object, place or person. Whereas in the generic category case we seek to recognize different instances that belong to the same conceptual class: cars, pedestrians, road signs and mugs. Specific object recognition works by matching and geometric verification. In contrast, generic object categorization often includes a statistical model of their appearance and/or shape.This thesis proposes a computer vision system for detecting and tracking multiple targets in videos. A preliminary work of this thesis consists on the adaptation of color according to lighting variations and relevance of the color. Then, literature shows a wide variety of tracking methods, which have both advantages and limitations, depending on the object to track and the context. Here, a deterministic method is developed to automatically adapt the tracking method to the context through the cooperation of two complementary techniques. A first proposition combines covariance matching for modeling characteristics texture-color information with optical flow (KLT) of a set of points uniformly distributed on the object . A second technique associates covariance and Mean-Shift. In both cases, the cooperation allows a good robustness of the tracking whatever the nature of the target, while reducing the global execution times .The second contribution is the definition of descriptors both discriminative and compact to be included in the target representation. To improve the ability of visual recognition of descriptors two approaches are proposed. The first is an adaptation operators (LBP to Local Binary Patterns ) for inclusion in the covariance matrices . This method is called ELBCM for Enhanced Local Binary Covariance Matrices . The second approach is based on the analysis of different spaces and color invariants to obtain a descriptor which is discriminating and robust to illumination changes.The third contribution addresses the problem of multi-target tracking, the difficulties of which are the matching ambiguities, the occlusions, the merging and division of trajectories.Finally to speed algorithms and provide a usable quick solution in embedded applications this thesis proposes a series of optimizations to accelerate the matching using covariance matrices. Data layout transformations, vectorizing the calculations (using SIMD instructions) and some loop transformations had made possible the real-time execution of the algorithm not only on Intel classic but also on embedded platforms (ARM Cortex A9 and Intel U9300).
APA, Harvard, Vancouver, ISO, and other styles
5

Negri, Tamiris Trevisan. "Descritores locais de textura para classificação de imagens coloridas sob variação de iluminação." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/18/18152/tde-02032018-112555/.

Full text
Abstract:
A classificação de texturas coloridas sob diferentes condições de iluminação é um desafio na área de visão computacional, e depende da eficiência dos descritores de textura em capturar características que sejam discriminantes independentemente das propriedades da fonte de luz incidente sobre o objeto. Visando melhorar o processo de classificação de texturas coloridas iluminadas com diferentes fontes de luz, este trabalho propõe três novos descritores, nomeados Opponent Color Local Mapped Pattern (OCLMP), que combina o descritor de texturas por padrões locais mapeados (Local Mapped Pattern - LMP) com a teoria de cores oponentes; Color Intensity Local Mapped Pattern (CILMP), que extrai as informações de cor e textura de maneira integrada, levando em consideração a textura da cor, combinando estas informações com características da luminância da textura em uma análise multiresolução; e Extended Color Local Mapped Pattern (ECLMP), que utiliza dois operadores para extrair informações de cor e textura de forma integrada (textura da cor) combinadas com informações apenas de textura (sem cor) de uma imagem. Todos esses novos descritores propostos são paramétricos e, sendo o ajuste ótimo de seus parâmetros não trivial, o processo exige um tempo excessivo de computação. Portanto, foi proposto nesta tese a utilização de algoritmos genéticos para o ajuste automático dos parâmetros. A avaliação dos descritores propostos foi realizada em duas bases de dados de texturas coloridas com variação de iluminação: RawFooT (Raw Food Texture Database) e KTH-TIPS- 2b (Textures under varying Illumination, Pose and Scale Database), utilizando-se um classificador. Os resultados experimentais mostraram que os descritores propostos são mais robustos à variação de iluminação do que outros decritores de textura comumente utilizados na literatura. Os descritores propostos apresentaram um desempenho superior aos descritores comparados em 15% na base de dados RawFooT e 4% na base de dados KTH-TIPS-2b.
Color texture classification under varying illumination remains a challenge in the computer vision field, and it greatly relies on the efficiency at which the texture descriptors capture discriminant features, independent of the illumination condition. The aim of this thesis is to improve the classification of color texture acquired with varying illumination sources. We propose three new color texture descriptors, namely: the Opponent Color Local Mapped Pattern (OCLMP), which combines a local methodology (LMP) with the opponent colors theory, the Color Intensity Local Mapped Pattern (CILMP), which extracts color and texture information jointly, in a multi-resolution fashion, and the Extended Color Local Mapped Pattern (ECLMP), which applies two operators to extract color and texture information jointly as well. As the proposed methods are based on the LMP algorithm, they are parametric functions. Finding the optimal set of parameters for the descriptor can be a cumbersome task. Therefore, this work proposes the use of genetic algorithms to automatically adjust the parameters. The methods were assessed using two data sets of textures acquired using varying illumination sources: the RawFooT (Raw Food Texture Database), and the KTH-TIPS-2b (Textures under varying Illumination, Pose and Scale Database). The experimental results show that the proposed descriptors are more robust to variations to the illumination source than other methods found in the literature. The improvement on the accuracy was higher than 15% on the RawFoot data set, and higher than 4% on the KTH-TIPS-2b data set.
APA, Harvard, Vancouver, ISO, and other styles
6

Ylioinas, J. (Juha). "Towards optimal local binary patterns in texture and face description." Doctoral thesis, Oulun yliopisto, 2016. http://urn.fi/urn:isbn:9789526214498.

Full text
Abstract:
Abstract Local binary patterns (LBP) are among the most popular image description methods and have been successfully applied in a diverse set of computer vision problems, covering texture classification, material categorization, face recognition, and image segmentation, to name only a few. The popularity of the LBP methodology can be verified by inspecting the number of existing studies about its different variations and extensions. The number of those studies is vast. Currently, the methodology has been acknowledged as one of the milestones in face recognition research. The starting point of this research is to gain more understanding of which principles the original LBP descriptor is based on. After gaining some degree of insight, yet another try is made to improve some steps of the LBP pipeline, consisted of image pre-processing, pattern sampling, pattern encoding, binning, and further histogram post-processing. The main contribution of this thesis is a bunch of novel LBP extensions that partly try to unify some of the existing derivatives and extensions. The basis for the design of the new additional LBP methodology is to maximise data-driven premises, at the same time minimizing the need for tuning by hand. Prior to local binary pattern extraction, the thesis presents an image upsampling step dubbed as image pre-interpolation. As a natural consequence of upsampling, a greater number of patterns can be extracted and binned to a histogram improving the representational performance of the final descriptor. To improve the following two steps of the LBP pipeline, namely pattern sampling and encoding, three different learning-based methods are introduced. Finally, a unifying model is presented for the last step of the LBP pipeline, namely for local binary pattern histogram post-processing. As a special case of this, a novel histogram smoothing scheme is proposed, which shares the motivation and the effects with the image pre-interpolation for the most of its part. Deriving descriptors for such face recognition problems as face verification or age estimation has been and continues to be among the most popular domains where LBP has ever been applied. This study is not an exception in that regard as the main investigations and conclusions here are made on the basis of how the proposed LBP variations perform especially in the problems of face recognition. The experimental part of the study demonstrates that the proposed methods, experimentally validated using publicly available texture and face datasets, yield results comparable to the best performing LBP variants found in the literature, reported with the corresponding benchmarks
Tiivistelmä Paikalliset binäärikuviot kuuluvat suosituimpiin menetelmiin kuville suoritettavassa piirteenirrotuksessa. Menetelmää on sovellettu moniin konenäön ongelmiin, kuten tekstuurien luokittelu, materiaalien luokittelu, kasvojen tunnistus ja kuvien segmentointi. Menetelmän suosiota kuvastaa hyvin siitä kehitettyjen erilaisten johdannaisten suuri lukumäärä ja se, että nykyään kyseinen menetelmien perhe on tunnustettu yhdeksi virstanpylvääksi kasvojentunnistuksen tutkimusalueella. Tämän tutkimuksen lähtökohtana on ymmärtää periaatteita, joihin tehokkaimpien paikallisten binäärikuvioiden suorituskyky perustuu. Tämän jälkeen tavoitteena on kehittää parannuksia menetelmän eri askelille, joita ovat kuvan esikäsittely, binäärikuvioiden näytteistys ja enkoodaus, sekä histogrammin koostaminen ja jälkikäsittely. Esiteltävien uusien menetelmien lähtökohtana on hyödyntää mahdollisimman paljon kohdesovelluksesta saatavaa tietoa automaattisesti. Ensimmäisenä menetelmänä esitellään kuvan ylösnäytteistykseen perustuva paikallisten binäärikuvioiden johdannainen. Ylösnäytteistyksen luonnollisena seurauksena saadaan näytteistettyä enemmän binäärikuvioita, jotka histogrammiin koottuna tekevät piirrevektorista alkuperäistä erottelevamman. Seuraavaksi esitellään kolme oppimiseen perustuvaa menetelmää paikallisten binäärikuvioiden laskemiseksi ja niiden enkoodaukseen. Lopuksi esitellään paikallisten binäärikuvioiden histogrammin jälkikäsittelyn yleistävä malli. Tähän malliin liittyen esitellään histogrammin silottamiseen tarkoitettu operaatio, jonka eräs tärkeimmistä motivaatioista on sama kuin kuvan ylösnäytteistämiseen perustuvalla johdannaisella. Erilaisten piirteenirrotusmenetelmien kehittäminen kasvojentunnistuksen osa-alueille on erittäin suosittu paikallisten binäärikuvioiden sovellusalue. Myös tässä työssä tutkittiin miten kehitetyt johdannaiset suoriutuvat näissä osa-ongelmissa. Tutkimuksen kokeellinen osuus ja siihen liittyvät numeeriset tulokset osoittavat, että esitellyt menetelmät ovat vertailukelpoisia kirjallisuudesta löytyvien parhaimpien paikallisten binäärikuvioiden johdannaisten kanssa
APA, Harvard, Vancouver, ISO, and other styles
7

Doshi, Niraj P. "Multi-dimensional local binary pattern texture descriptors and their application for medical image analysis." Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/17332.

Full text
Abstract:
Texture can be broadly stated as spatial variation of image intensities. Texture analysis and classification is a well researched area for its importance to many computer vision applications. Consequently, much research has focussed on deriving powerful and efficient texture descriptors. Local binary patterns (LBP) and its variants are simple yet powerful texture descriptors. LBP features describe the texture neighbourhood of a pixel using simple comparison operators, and are often calculated based on varying neighbourhood radii to provide multi-resolution texture descriptions. A comprehensive evaluation of different LBP variants on a common benchmark dataset is missing in the literature. This thesis presents the performance for different LBP variants on texture classification and retrieval tasks. The results show that multi-scale local binary pattern variance (LBPV) gives the best performance over eight benchmarked datasets. Furthermore, improvements to the Dominant LBP (D-LBP) by ranking dominant patterns over complete training set and Compound LBP (CM-LBP) by considering 16 bits binary codes are suggested which are shown to outperform their original counterparts. The main contribution of the thesis is the introduction of multi-dimensional LBP features, which preserve the relationships between different scales by building a multi-dimensional histogram. The results on benchmarked classification and retrieval datasets clearly show that the multi-dimensional LBP (MD-LBP) improves the results compared to conventional multi-scale LBP. The same principle is applied to LBPV (MD-LBPV), again leading to improved performance. The proposed variants result in relatively large feature lengths which is addressed using three different feature length reduction techniques. Principle component analysis (PCA) is shown to give the best performance when the feature length is reduced to match that of conventional multi-scale LBP. The proposed multi-dimensional LBP variants are applied for medical image analysis application. The first application is nailfold capillary (NC) image classification. Performance of MD-LBPV on NC images is highest, whereas for second application, HEp-2 cell classification, performance of MD-LBP is highest. It is observed that the proposed texture descriptors gives improved texture classification accuracy.
APA, Harvard, Vancouver, ISO, and other styles
8

Souza, Jones Mendonça de. "Reconhecimento de textura de íris sob variação do tamanho da pupila." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/18/18152/tde-30062017-091537/.

Full text
Abstract:
A textura da íris humana é uma das peculiaridades biométricas mais confiáveis, pois os padrões que compõem sua estrutura são considerados únicos e estáveis por longos anos. No entanto, amostras de íris capturadas em ambiente não cooperativo como reconhecimento de íris a distância, por exemplo, estão sujeitas a conter variações na textura, devido a mudanças comportamentais da membrana da íris. Outro problema é a complexidade do algoritmo, que o torna inviável para aplicações práticas ou em tempo real. O objetivo deste trabalho foi avaliar alguns descritores de textura locais para o reconhecimento biométrico de íris, considerando os efeitos de dilatação e contração da pupila. Para a comprovação da hipótese desta tese de doutoramento, foi utilizada uma base de dados contendo amostras de íris com a pupila contraída e dilatada, simulando assim, a aquisição natural em ambiente não cooperativo. Além disso, foram propostos dois novos descritores, denominados como Median Local Mapped Pattern (Median-LMP) e Modified Median Local Mapped Pattern (MM-LMP), que foram comparados com o método de Daugman, o Local Mapped Pattern (LMP), o Completed Modeling of Local Binary Pattern (CLBP), o Median Binary Pattern (MBP) e o Weber Law Descriptor (WLD). Os resultados da avaliação de desempenho mostraram que o algoritmo de Daugman é o melhor para o reconhecimento de íris quando é realizada a comparação entre amostras de íris com pupilas contraídas. No entanto, se a pupila está dilatada, os descritores propostos apresentaram o melhor desempenho, principalmente se uma amostra de íris com uma pupila contraída é comparada com outra íris com a pupila dilatada. Além disso, os descritores propostos e o LMP obtiveram os menores tempos de processamento, sendo mais adequados do que os demais para aplicações em tempo preditivo com implementação em hardware.
The texture of the human iris is one of the most reliable biometric traits, so the patterns that make up its structure are the only criteria and stable for long time. However, iris samples captured in a noncooperative environment as recognition of nature, for example, subject to contain variations in texture, due to behavioral changes of the iris membrane. Another problem is an algorithm complexity, which makes it impractical for practical or in real-time applications. The objective of this work is to evaluate some local texture descriptors for the biometric iris recognition, considering the effects of dilation and contraction of the pupil. In order to prove the hypothesis of this doctoral question, a database was used containing iris samples with a contracted and dilated pupil, thus simulating a natural acquisition in a noncooperative environment. In addition, two new descriptors, named Median-Local Standard Mapped (Median-LMP) and Modified Modified Local Standard Mapped (MM-LMP) were proposed, which were compared with the Daugman method, the Mapped Local Pattern (LMP), the Complete Local Binary Pattern Modeling (CLBP), the Median Binary Standard (MBP) and Weber Law Descriptor (WLD). The results of the performance evaluation show that the Daugman algorithm is the best for iris recognition when a study of iris samples with the students is performed. However, if a pupil is dilated, the proposed descriptors show the best performance, especially a sample of iris with a contracted pupil is compared to another iris with a dilated pupil. In addition, the proposed descriptors and the LMP obtained the shortest processing times, being more adequate than the others for predictive time applications with hardware implementation.
APA, Harvard, Vancouver, ISO, and other styles
9

Guo, Y. (Yimo). "Image and video analysis by local descriptors and deformable image registration." Doctoral thesis, Oulun yliopisto, 2013. http://urn.fi/urn:isbn:9789526201412.

Full text
Abstract:
Abstract Image description plays an important role in representing inherent properties of entities and scenes in static images. Within the last few decades, it has become a fundamental issue of many practical vision tasks, such as texture classification, face recognition, material categorization, and medical image processing. The study of static image analysis can also be extended to video analysis, such as dynamic texture recognition, classification and synthesis. This thesis contributes to the research and development of image and video analysis from two aspects. In the first part of this work, two image description methods are presented to provide discriminative representations for image classification. They are designed in unsupervised (i.e., class labels of texture images are not available) and supervised (i.e., class labels of texture images are available) manner, respectively. First, a supervised model is developed to learn discriminative local patterns, which formulates the image description as an integrated three-layered model to estimate an optimal pattern subset of interest by simultaneously considering the robustness, discriminative power and representation capability of features. Second, in the case that class labels of training images are unavailable, a linear configuration model is presented to describe microscopic image structures in an unsupervised manner, which is subsequently combined together with a local descriptor: local binary pattern (LBP). This description is theoretically verified to be rotation invariant and is able to provide a discriminative complement to the conventional LBPs. In the second part of the thesis, based on static image description and deformable image registration, video analysis is studied for the applications of dynamic texture description, synthesis and recognition. First, a dynamic texture synthesis model is proposed to create a continuous and infinitely varying stream of images given a finite input video, which stitches video clips in the time domain by selecting proper matching frames and organizing them into a logical order. Second, a method for the application of facial expression recognition, which formulates the dynamic facial expression recognition problem as the construction of longitudinal atlases and groupwise image registration problem, is proposed
Tiivistelmä Kuvan deskriptiolla on tärkeä rooli staattisissa kuvissa esiintyvien luontaisten kokonaisuuksien ja näkymien kuvaamisessa. Viime vuosikymmeninä se on tullut perustavaa laatua olevaksi ongelmaksi monissa käytännön konenäön tehtävissä, kuten tekstuurien luokittelu, kasvojen tunnistaminen, materiaalien luokittelu ja lääketieteellisten kuvien analysointi. Staattisen kuva-analyysin tutkimusala voidaan myös laajentaa videoanalyysiin, kuten dynaamisten tekstuurien tunnistukseen, luokitteluun ja synteesiin. Tämä väitöskirjatutkimus myötävaikuttaa kuva- ja videoanalyysin tutkimukseen ja kehittymiseen kahdesta näkökulmasta. Työn ensimmäisessä osassa esitetään kaksi kuvan deskriptiomenetelmää erottelukykyisten esitystapojen luomiseksi kuvien luokitteluun. Ne suunnitellaan ohjaamattomiksi (eli tekstuurikuvien luokkien leimoja ei ole käytettävissä) tai ohjatuiksi (eli luokkien leimat ovat saatavilla). Aluksi kehitetään ohjattu malli oppimaan erottelukykyisiä paikallisia kuvioita, mikä formuloi kuvan deskriptiomenetelmän integroituna kolmikerroksisena mallina - tavoitteena estimoida optimaalinen kiinnostavien kuvioiden alijoukko ottamalla samanaikaisesti huomioon piirteiden robustisuus, erottelukyky ja esityskapasiteetti. Seuraavaksi, sellaisia tapauksia varten, joissa luokkaleimoja ei ole saatavilla, esitetään työssä lineaarinen konfiguraatiomalli kuvaamaan kuvan mikroskooppisia rakenteita ohjaamattomalla tavalla. Tätä käytetään sitten yhdessä paikallisen kuvaajan, eli local binary pattern (LBP) –operaattorin kanssa. Teoreettisella tarkastelulla osoitetaan kehitetyn kuvaajan olevan rotaatioinvariantti ja kykenevän tuottamaan erottelukykyistä, täydentävää informaatiota perinteiselle LBP-menetelmälle. Työn toisessa osassa tutkitaan videoanalyysiä, perustuen staattisen kuvan deskriptioon ja deformoituvaan kuvien rekisteröintiin – sovellusaloina dynaamisten tekstuurien kuvaaminen, synteesi ja tunnistaminen. Aluksi ehdotetaan sellainen malli dynaamisten tekstuurien synteesiin, joka luo jatkuvan ja äärettömän kuvien virran annetusta äärellisen mittaisesta videosta. Menetelmä liittää yhteen videon pätkiä aika-avaruudessa valitsemalla keskenään yhteensopivia kuvakehyksiä videosta ja järjestämällä ne loogiseen järjestykseen. Seuraavaksi työssä esitetään sellainen uusi menetelmä kasvojen ilmeiden tunnistukseen, joka formuloi dynaamisen kasvojen ilmeiden tunnistusongelman pitkittäissuuntaisten kartastojen rakentamisen ja ryhmäkohtaisen kuvien rekisteröinnin ongelmana
APA, Harvard, Vancouver, ISO, and other styles
10

Ferraz, Carolina Toledo. "Novos descritores de textura para localização e identificação de objetos em imagens usando Bag-of-Features." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/18/18152/tde-28092016-141219/.

Full text
Abstract:
Descritores de características locais de imagens utilizados na representação de objetos têm se tornado muito populares nos últimos anos. Tais descritores têm a capacidade de caracterizar o conteúdo da imagem em dados compactos e discriminativos. As informações extraídas dos descritores são representadas por meio de vetores de características e são utilizados em várias aplicações, tais como reconhecimento de faces, cenas complexas e texturas. Neste trabalho foi explorada a análise e modelagem de descritores locais para caracterização de imagens invariantes a escala, rotação, iluminação e mudanças de ponto de vista. Esta tese apresenta três novos descritores locais que contribuem com o avanço das pesquisas atuais na área de visão computacional, desenvolvendo novos modelos para a caracterização de imagens e reconhecimento de imagens. A primeira contribuição desta tese é referente ao desenvolvimento de um descritor de imagens baseado no mapeamento das diferenças de nível de cinza, chamado Center-Symmetric Local Mapped Pattern (CS-LMP). O descritor proposto mostrou-se robusto a mudanças de escala, rotação, iluminação e mudanças parciais de ponto de vista, e foi comparado aos descritores Center-Symmetric Local Binary Pattern (CS-LBP) e Scale-Invariant Feature Transform (SIFT). A segunda contribuição é uma modificação do descritor CS-LMP, e foi denominada Modified Center-Symmetric Local Mapped Pattern (MCS-LMP). O descritor inclui o cálculo do pixel central na modelagem matemática, caracterizando melhor o conteúdo da mesma. O descritor proposto apresentou resultados superiores aos descritores CS-LMP, SIFT e LIOP na avaliação de reconhecimento de cenas complexas. A terceira contribuição é o desenvolvimento de um descritor de imagens chamado Mean-Local Mapped Pattern (M-LMP) que captura de modo mais fiel pequenas transições dos pixels na imagem, resultando em um número maior de \"matches\" corretos do que os descritores CS-LBP e SIFT. Além disso, foram realizados experimentos para classificação de objetos usando as base de imagens Caltech e Pascal VOC2006, apresentando melhores resultados comparando aos outros descritores em questão. Tal descritor foi proposto com a observação de que o descritor LBP pode gerar ruídos utilizando apenas a comparação dos vizinhos com o pixel central. O descritor M-LMP insere em sua modelagem matemática o cálculo da média dos pixels da vizinhança, com o objetivo de evitar ruídos e deixar as características mais robustas. Os descritores foram desenvolvidos de tal forma que seja possível uma redução de dimensionalidade de maneira simples e sem a necessidade de aplicação de técnicas como o PCA. Os resultados desse trabalho mostraram que os descritores propostos foram robustos na descrição das imagens, quantificando a similaridade entre as imagens por meio da abordagem Bag-of-Features (BoF), e com isso, apresentando resultados computacionais relevantes para a área de pesquisa.
Local feature descriptors used in objects representation have become very popular in recent years. Such descriptors have the ability to characterize the image content in compact and discriminative data. The information extracted from descriptors is represented by feature vectors and is used in various applications such as face recognition, complex scenes and textures. In this work we explored the analysis and modeling of local descriptors to characterize invariant scale images, rotation, changes in illumination and viewpoint. This thesis presents three new local descriptors that contribute to the current research advancement in computer vision area, developing new models for the characterization of images and image recognition. The first contribution is the development of a descriptor based on the mapping of gray-level-differences, called Center-Symmetric Local Mapped Pattern (CS-LMP). The proposed descriptor showed to be invariant to scale change, rotation, illumination and partial changes of viewpoint and compared to the descriptors Center-Symmetric Local Binary Pattern (CS-LBP) and Scale-Invariant Feature Trans- form (SIFT). The second contribution is a modification of the CS-LMP descriptor, which we call Modified Center-Symmetric Local Mapped Pattern (MCS-LMP). The descriptor includes the central pixel in mathematical modeling to better characterize the image content. The proposed descriptor presented superior results to CS-LMP , SIFT and LIOP descriptors in evaluating recognition of complex scenes. The third proposal includes the development of an image descriptor called Mean-Local Mapped Pattern (M-LMP) capturing more accurately small transitions of pixels in the image, resulting in a greater number of \"matches\" correct than CS-LBP and SIFT descriptors. In addition, experiments for classifying objects have been achieved by using the images based Caltech and Pascal VOC2006, presenting better results compared to other descriptors in question. This descriptor was proposed with the observation that the LBP descriptor can gene- rate noise using only the comparison of the neighbors to the central pixel. The M-LMP descriptor inserts in their mathematical modeling the averaging of the pixels of the neighborhood, in order to avoid noise and leave the more robust features. The results of this thesis showed that the proposed descriptors were robust in the description of the images, quantifying the similarity between images using the Bag-of-Features approach (BoF), and thus, presenting relevant computational results for the research area.
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Local texture descriptor"

1

1946-, Pula James S., ed. New York Mills. Charleston, South Carolina: Arcadia Publishing, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hanʾguk chugŏsa. Sŏul: Minŭmsa, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dziedzic, Eugene E., and James S. Pula. New York Mills. Arcadia Publishing, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jews Of Paterson. Arcadia Publishing (SC), 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Local texture descriptor"

1

Priya, K., S. Mohamed Mansoor Roomi, B. Sathyabama, and R. Neelavathy. "Texture Classification by Local Rajan Transform Based Descriptor." In Communications in Computer and Information Science, 619–28. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8697-2_58.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Dawood, Hassan, Hussain Dawood, and Ping Guo. "Texture Image Classification with Improved Weber Local Descriptor." In Artificial Intelligence and Soft Computing, 684–92. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07173-2_58.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Al Saidi, Ibtissam, Mohammed Rziza, and Johan Debayle. "A New Texture Descriptor: The Homogeneous Local Binary Pattern (HLBP)." In Lecture Notes in Computer Science, 308–16. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51935-3_33.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hao, You, Shirui Li, Hanlin Mo, and Hua Li. "Affine-Gradient Based Local Binary Pattern Descriptor for Texture Classification." In Lecture Notes in Computer Science, 199–210. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71607-7_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ahmed, Faisal, Padma Polash Paul, and Marina Gavrilova. "Music Genre Classification Using a Gradient-Based Local Texture Descriptor." In Intelligent Decision Technologies 2016, 455–64. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39627-9_40.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Madrid-Cuevas, Francisco J., R. Medina Carnicer, M. Prieto Villegas, N. L. Fernández García, and A. Carmona Poyato. "Simplified Texture Unit: A~New Descriptor of the Local Texture in Gray-Level Images." In Pattern Recognition and Image Analysis, 470–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-44871-6_55.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dash, Prajna Parimita, Dipti Patra, and Sudhansu Kumar Mishra. "Local Binary Pattern as a Texture Feature Descriptor in Object Tracking Algorithm." In Intelligent Computing, Networking, and Informatics, 541–48. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1665-0_52.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Banerjee, Arnab, Nibaran Das, and Mita Nasipuri. "Texture Classification Using Deep Neural Network Based on Rotation Invariant Weber Local Descriptor." In Communications in Computer and Information Science, 277–92. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4859-3_26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Purkait, Priya Sen, Hiranmoy Roy, and Debotosh Bhattacharjee. "Local Shearlet Energy Gammodian Pattern (LSEGP): A Scale Space Binary Shape Descriptor for Texture Classification." In Intelligence Enabled Research, 123–31. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2021-1_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sajwan, Vijaylakshmi, and Rakesh Ranjan. "A Novel Feature Descriptor: Color Texture Description with Diagonal Local Binary Patterns Using New Distance Metric for Image Retrieval." In Lecture Notes on Data Engineering and Communications Technologies, 17–26. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9113-3_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Local texture descriptor"

1

Janney, Pranam, and Zhenghua Yu. "Invariant Features of Local Texturesa rotation invariant local texture descriptor." In 2007 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2007. http://dx.doi.org/10.1109/cvpr.2007.383367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Sherstobitov, A. I., V. I. Marchuk, D. V. Timofeev, V. V. Voronin, K. O. Egiazarian, and Sos S. Agaian. "Texture descriptor based on local approximations." In SPIE Sensing Technology + Applications, edited by Sos S. Agaian, Sabah A. Jassim, and Eliza Y. Du. SPIE, 2014. http://dx.doi.org/10.1117/12.2063666.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Medathati, N. V. Kartheek, and Jayanthi Sivaswamy. "Local descriptor based on texture of projections." In the Seventh Indian Conference. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1924559.1924612.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hamouchene, Izem, and Saliha Aouat. "Texture matching using local and global descriptor." In 2014 5th European Workshop on Visual Information Processing (EUVIP). IEEE, 2014. http://dx.doi.org/10.1109/euvip.2014.7018367.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Chu He, Timo Ahonen, and Matti Pietikainen. "A Bayesian Local Binary Pattern texture descriptor." In 2008 19th International Conference on Pattern Recognition (ICPR). IEEE, 2008. http://dx.doi.org/10.1109/icpr.2008.4761100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Ferraz, Carolina Toledo, Marcelo Garcia Manzato, and Adilson Gonzaga. "Face Classification using a New Local Texture Descriptor." In Webmedia '17: Brazilian Symposium on Multimedia and the Web. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3126858.3131584.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Tania, Sheikh, Manzur Murshed, Shyh Wei Teng, and Gour Karmakar. "An Enhanced Local Texture Descriptor for Image Segmentation." In 2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020. http://dx.doi.org/10.1109/icip40778.2020.9190895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Muhammad, G. "Multi-scale local texture descriptor for image forgery detection." In 2013 IEEE International Conference on Industrial Technology (ICIT 2013). IEEE, 2013. http://dx.doi.org/10.1109/icit.2013.6505834.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Park, Ki Tae, Jeong Ho Lee, and Young Shik Moon. "Image retrieval using local texture descriptor for CE applications." In 2009 Digest of Technical Papers International Conference on Consumer Electronics (ICCE). IEEE, 2009. http://dx.doi.org/10.1109/icce.2009.5012356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Rotated Local Binary Pattern (RLBP) - Rotation Invariant Texture Descriptor." In International Conference on Pattern Recognition Applications and Methods. SciTePress - Science and and Technology Publications, 2013. http://dx.doi.org/10.5220/0004334304970502.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Local texture descriptor"

1

Wells, Aaron, Tracy Christopherson, Gerald Frost, Matthew Macander, Susan Ives, Robert McNown, and Erin Johnson. Ecological land survey and soils inventory for Katmai National Park and Preserve, 2016–2017. National Park Service, September 2021. http://dx.doi.org/10.36967/nrr-2287466.

Full text
Abstract:
This study was conducted to inventory, classify, and map soils and vegetation within the ecosystems of Katmai National Park and Preserve (KATM) using an ecological land survey (ELS) approach. The ecosystem classes identified in the ELS effort were mapped across the park, using an archive of Geo-graphic Information System (GIS) and Remote Sensing (RS) datasets pertaining to land cover, topography, surficial geology, and glacial history. The description and mapping of the landform-vegetation-soil relationships identified in the ELS work provides tools to support the design and implementation of future field- and RS-based studies, facilitates further analysis and contextualization of existing data, and will help inform natural resource management decisions. We collected information on the geomorphic, topographic, hydrologic, pedologic, and vegetation characteristics of ecosystems using a dataset of 724 field plots, of which 407 were sampled by ABR, Inc.—Environmental Research and Services (ABR) staff in 2016–2017, and 317 were from existing, ancillary datasets. ABR field plots were located along transects that were selected using a gradient-direct sampling scheme (Austin and Heligers 1989) to collect data for the range of ecological conditions present within KATM, and to provide the data needed to interpret ecosystem and soils development. The field plot dataset encompassed all of the major environmental gradients and landscape histories present in KATM. Individual state-factors (e.g., soil pH, slope aspect) and other ecosystem components (e.g., geomorphic unit, vegetation species composition and structure) were measured or categorized using standard classification systems developed for Alaska. We described and analyzed the hierarchical relationships among the ecosystem components to classify 92 Plot Ecotypes (local-scale ecosystems) that best partitioned the variation in soils, vegetation, and disturbance properties observed at the field plots. From the 92 Plot Ecotypes, we developed classifications of Map Ecotypes and Disturbance Landscapes that could be mapped across the park. Additionally, using an existing surficial geology map for KATM, we developed a map of Generalized Soil Texture by aggregating similar surficial geology classes into a reduced set of classes representing the predominant soil textures in each. We then intersected the Ecotype map with the General-ized Soil Texture Map in a GIS and aggregated combinations of Map Ecotypes with similar soils to derive and map Soil Landscapes and Soil Great Groups. The classification of Great Groups captures information on the soil as a whole, as opposed to the subgroup classification which focuses on the properties of specific horizons (Soil Survey Staff 1999). Of the 724 plots included in the Ecotype analysis, sufficient soils data for classifying soil subgroups was available for 467 plots. Soils from 8 orders of soil taxonomy were encountered during the field sampling: Alfisols (<1% of the mapped area), Andisols (3%), Entisols (45%), Gelisols (<1%), Histosols (12%), Inceptisols (22%), Mollisols (<1%), and Spodosols (16%). Within these 8 Soil Orders, field plots corresponded to a total of 74 Soil Subgroups, the most common of which were Typic Cryaquents, Typic Cryorthents, Histic Cryaquepts, Vitrandic Cryorthents, and Typic Cryofluvents.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography