Academic literature on the topic 'Local texture descriptor'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Local texture descriptor.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Local texture descriptor"
Goyal, Aparna, and Reena Gunjan. "Bleeding Detection in Gastrointestinal Images using Texture Classification and Local Binary Pattern Technique: A Review." E3S Web of Conferences 170 (2020): 03007. http://dx.doi.org/10.1051/e3sconf/202017003007.
Full textSong, Ke Chen, and Yun Hui Yan. "Neighborhood Estimated Local Binary Patterns for Texture Classification." Applied Mechanics and Materials 513-517 (February 2014): 4401–6. http://dx.doi.org/10.4028/www.scientific.net/amm.513-517.4401.
Full textZeng, Hui, Rui Zhang, Mingming Huang, and Xiuqing Wang. "Compact Local Directional Texture Pattern for Local Image Description." Advances in Multimedia 2015 (2015): 1–10. http://dx.doi.org/10.1155/2015/360186.
Full textSuruliandi, A., G. Murugeswari, and P. Arockia Jansi Rani. "Empirical Evaluation of Generic Weighted Cubicle Pattern and LBP Derivatives for Abnormality Detection in Mammogram Images." International Journal of Image and Graphics 15, no. 01 (January 2015): 1550001. http://dx.doi.org/10.1142/s0219467815500011.
Full textRamírez Rivera, Adín, Jorge Rojas Castillo, and Oksam Chae. "Local Directional Texture Pattern image descriptor." Pattern Recognition Letters 51 (January 2015): 94–100. http://dx.doi.org/10.1016/j.patrec.2014.08.012.
Full textGünay, Asuman, and Vasif V. Nabiyev. "Facial Age Estimation Using Spatial Weber Local Descriptor." International Journal of Advances in Telecommunications, Electrotechnics, Signals and Systems 6, no. 3 (October 30, 2017): 108. http://dx.doi.org/10.11601/ijates.v6i3.218.
Full textSuruliandi, A., A. Sinduja, and S. P. Raja. "Texture classification using the rotational-invariant local symmetric tetra pattern." International Journal of Wavelets, Multiresolution and Information Processing 17, no. 04 (July 2019): 1950027. http://dx.doi.org/10.1142/s0219691319500279.
Full textArslan, Sibel, and Celal Ozturk. "Artificial Bee Colony Programming Descriptor for Multi-Class Texture Classification." Applied Sciences 9, no. 9 (May 10, 2019): 1930. http://dx.doi.org/10.3390/app9091930.
Full textYan, Shen Hai, Xian Tong Huang, and Yang Liu. "A Novel Texture Spectrum Descriptor." Applied Mechanics and Materials 397-400 (September 2013): 1494–99. http://dx.doi.org/10.4028/www.scientific.net/amm.397-400.1494.
Full textEl khadiri, I., A. Chahi, Y. El merabet, Y. Ruichek, and R. Touahni. "Local directional ternary pattern: A New texture descriptor for texture classification." Computer Vision and Image Understanding 169 (April 2018): 14–27. http://dx.doi.org/10.1016/j.cviu.2018.01.004.
Full textDissertations / Theses on the topic "Local texture descriptor"
Tania, Sheikh. "Efficient texture descriptors for image segmentation." Thesis, Federation University Australia, 2022. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/184087.
Full textDoctor of Philosophy
Langoni, Virgílio de Melo. "Novos descritores de texturas dinâmicas utilizando padrões locais e fusão de dados." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/18/18152/tde-07112017-112730/.
Full textIn the last decades, the dynamic textures or temporal textures, which are textures with movement, have become objects of intense interest on the part of researchers of the areas of digital image processing and computer vision. Several techniques have been developed, or perfected, for feature extraction based on dynamic textures. These techniques, in several cases, are the combination of two or more pre-existing methodologies that aim only the feature extraction and not the improvement of the quality of the extracted features. Moreover, in cases that the features are \"poor\" in quality, the final result of processing may present low performance. Thus, this work proposes descriptors that extract dynamic features of video sequences and perform the fusion of information seeking to increase the overall performance in the segmentation and/or recognition of textures or moving scenes. The results obtained using two video bases show that the proposed descriptors called D-LMP and D-SLMP were superior to the descriptor of the literature compared and denominated of LBP-TOP. In addition to presenting higher overall accuracy, precision and sensitivity rates, the proposed descriptors extract features at a shorter time than the LBP-TOP descriptor, which makes them more practical for most applications. The fusion of data from regions with different dynamic characteristics increased the performance of the descriptors, thus demonstrating that the technique can be applied not only to the classification of dynamic textures, but also to the classification of general scenes in videos.
Chierici, Carlos Eduardo de Oliveira. "Classificação de texturas com diferentes orientações baseada em descritores locais." Universidade de São Paulo, 2015. http://www.teses.usp.br/teses/disponiveis/18/18152/tde-27102015-103555/.
Full textSeveral approaches have been employed for describing textures, including the fuzzy sets theory and fuzzy logic. The Local Fuzzy Pattern is a texture descriptor different from other methods based on fuzzy systems, which use linguistic rules to codify a texture. Instead, fuzzy numbers are applied in order to encode a local grayscale pattern. Previous results indicated the LFP as an effective descriptor employed to characterize statically oriented and rotated textures samples. This paper proposes a more comprehensive analysis of its feasibility for use in each of these problems, besides proposing a modification to this descriptor, adapting it to capture patterns in multiresolution, the Sampled LFP. The LFP and Sampled LFP performance evaluation when applied to the problem of texture classification was conducted by applying a series of tests involving images samples, rotated or not, from image databases such as Outex, the Brodatz album and Vistex, where the sensitivity obtained by these descriptors were compared with a reference descriptor, the variant Local Binary Pattern (LBP) best suited to running the test. The results indicated the LFP as a descriptor not suitable for applications who work exclusively with non-rotated samples, since the LBP showed greater efficacy for this problem kind. As for rotated samples analysis, the Sampled LFP proved the best descriptor among those compared. However, it was determined that the Sampled LFP only overcomes the LBP when the analysis resolutions are greater or equal to 32x32 pixels, besides that, the first descriptor is more sensitive to the number of training samples than the latter, therefore, this descriptor is indicated for the problem of rotated samples classification, where it is possible to work with resolution from 32x32 pixels while maximizing the number of samples used for training.
Romero, Mier y. Teran Andrés. "Real-time multi-target tracking : a study on color-texture covariance matrices and descriptor/operator switching." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-01002065.
Full textNegri, Tamiris Trevisan. "Descritores locais de textura para classificação de imagens coloridas sob variação de iluminação." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/18/18152/tde-02032018-112555/.
Full textColor texture classification under varying illumination remains a challenge in the computer vision field, and it greatly relies on the efficiency at which the texture descriptors capture discriminant features, independent of the illumination condition. The aim of this thesis is to improve the classification of color texture acquired with varying illumination sources. We propose three new color texture descriptors, namely: the Opponent Color Local Mapped Pattern (OCLMP), which combines a local methodology (LMP) with the opponent colors theory, the Color Intensity Local Mapped Pattern (CILMP), which extracts color and texture information jointly, in a multi-resolution fashion, and the Extended Color Local Mapped Pattern (ECLMP), which applies two operators to extract color and texture information jointly as well. As the proposed methods are based on the LMP algorithm, they are parametric functions. Finding the optimal set of parameters for the descriptor can be a cumbersome task. Therefore, this work proposes the use of genetic algorithms to automatically adjust the parameters. The methods were assessed using two data sets of textures acquired using varying illumination sources: the RawFooT (Raw Food Texture Database), and the KTH-TIPS-2b (Textures under varying Illumination, Pose and Scale Database). The experimental results show that the proposed descriptors are more robust to variations to the illumination source than other methods found in the literature. The improvement on the accuracy was higher than 15% on the RawFoot data set, and higher than 4% on the KTH-TIPS-2b data set.
Ylioinas, J. (Juha). "Towards optimal local binary patterns in texture and face description." Doctoral thesis, Oulun yliopisto, 2016. http://urn.fi/urn:isbn:9789526214498.
Full textTiivistelmä Paikalliset binäärikuviot kuuluvat suosituimpiin menetelmiin kuville suoritettavassa piirteenirrotuksessa. Menetelmää on sovellettu moniin konenäön ongelmiin, kuten tekstuurien luokittelu, materiaalien luokittelu, kasvojen tunnistus ja kuvien segmentointi. Menetelmän suosiota kuvastaa hyvin siitä kehitettyjen erilaisten johdannaisten suuri lukumäärä ja se, että nykyään kyseinen menetelmien perhe on tunnustettu yhdeksi virstanpylvääksi kasvojentunnistuksen tutkimusalueella. Tämän tutkimuksen lähtökohtana on ymmärtää periaatteita, joihin tehokkaimpien paikallisten binäärikuvioiden suorituskyky perustuu. Tämän jälkeen tavoitteena on kehittää parannuksia menetelmän eri askelille, joita ovat kuvan esikäsittely, binäärikuvioiden näytteistys ja enkoodaus, sekä histogrammin koostaminen ja jälkikäsittely. Esiteltävien uusien menetelmien lähtökohtana on hyödyntää mahdollisimman paljon kohdesovelluksesta saatavaa tietoa automaattisesti. Ensimmäisenä menetelmänä esitellään kuvan ylösnäytteistykseen perustuva paikallisten binäärikuvioiden johdannainen. Ylösnäytteistyksen luonnollisena seurauksena saadaan näytteistettyä enemmän binäärikuvioita, jotka histogrammiin koottuna tekevät piirrevektorista alkuperäistä erottelevamman. Seuraavaksi esitellään kolme oppimiseen perustuvaa menetelmää paikallisten binäärikuvioiden laskemiseksi ja niiden enkoodaukseen. Lopuksi esitellään paikallisten binäärikuvioiden histogrammin jälkikäsittelyn yleistävä malli. Tähän malliin liittyen esitellään histogrammin silottamiseen tarkoitettu operaatio, jonka eräs tärkeimmistä motivaatioista on sama kuin kuvan ylösnäytteistämiseen perustuvalla johdannaisella. Erilaisten piirteenirrotusmenetelmien kehittäminen kasvojentunnistuksen osa-alueille on erittäin suosittu paikallisten binäärikuvioiden sovellusalue. Myös tässä työssä tutkittiin miten kehitetyt johdannaiset suoriutuvat näissä osa-ongelmissa. Tutkimuksen kokeellinen osuus ja siihen liittyvät numeeriset tulokset osoittavat, että esitellyt menetelmät ovat vertailukelpoisia kirjallisuudesta löytyvien parhaimpien paikallisten binäärikuvioiden johdannaisten kanssa
Doshi, Niraj P. "Multi-dimensional local binary pattern texture descriptors and their application for medical image analysis." Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/17332.
Full textSouza, Jones Mendonça de. "Reconhecimento de textura de íris sob variação do tamanho da pupila." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/18/18152/tde-30062017-091537/.
Full textThe texture of the human iris is one of the most reliable biometric traits, so the patterns that make up its structure are the only criteria and stable for long time. However, iris samples captured in a noncooperative environment as recognition of nature, for example, subject to contain variations in texture, due to behavioral changes of the iris membrane. Another problem is an algorithm complexity, which makes it impractical for practical or in real-time applications. The objective of this work is to evaluate some local texture descriptors for the biometric iris recognition, considering the effects of dilation and contraction of the pupil. In order to prove the hypothesis of this doctoral question, a database was used containing iris samples with a contracted and dilated pupil, thus simulating a natural acquisition in a noncooperative environment. In addition, two new descriptors, named Median-Local Standard Mapped (Median-LMP) and Modified Modified Local Standard Mapped (MM-LMP) were proposed, which were compared with the Daugman method, the Mapped Local Pattern (LMP), the Complete Local Binary Pattern Modeling (CLBP), the Median Binary Standard (MBP) and Weber Law Descriptor (WLD). The results of the performance evaluation show that the Daugman algorithm is the best for iris recognition when a study of iris samples with the students is performed. However, if a pupil is dilated, the proposed descriptors show the best performance, especially a sample of iris with a contracted pupil is compared to another iris with a dilated pupil. In addition, the proposed descriptors and the LMP obtained the shortest processing times, being more adequate than the others for predictive time applications with hardware implementation.
Guo, Y. (Yimo). "Image and video analysis by local descriptors and deformable image registration." Doctoral thesis, Oulun yliopisto, 2013. http://urn.fi/urn:isbn:9789526201412.
Full textTiivistelmä Kuvan deskriptiolla on tärkeä rooli staattisissa kuvissa esiintyvien luontaisten kokonaisuuksien ja näkymien kuvaamisessa. Viime vuosikymmeninä se on tullut perustavaa laatua olevaksi ongelmaksi monissa käytännön konenäön tehtävissä, kuten tekstuurien luokittelu, kasvojen tunnistaminen, materiaalien luokittelu ja lääketieteellisten kuvien analysointi. Staattisen kuva-analyysin tutkimusala voidaan myös laajentaa videoanalyysiin, kuten dynaamisten tekstuurien tunnistukseen, luokitteluun ja synteesiin. Tämä väitöskirjatutkimus myötävaikuttaa kuva- ja videoanalyysin tutkimukseen ja kehittymiseen kahdesta näkökulmasta. Työn ensimmäisessä osassa esitetään kaksi kuvan deskriptiomenetelmää erottelukykyisten esitystapojen luomiseksi kuvien luokitteluun. Ne suunnitellaan ohjaamattomiksi (eli tekstuurikuvien luokkien leimoja ei ole käytettävissä) tai ohjatuiksi (eli luokkien leimat ovat saatavilla). Aluksi kehitetään ohjattu malli oppimaan erottelukykyisiä paikallisia kuvioita, mikä formuloi kuvan deskriptiomenetelmän integroituna kolmikerroksisena mallina - tavoitteena estimoida optimaalinen kiinnostavien kuvioiden alijoukko ottamalla samanaikaisesti huomioon piirteiden robustisuus, erottelukyky ja esityskapasiteetti. Seuraavaksi, sellaisia tapauksia varten, joissa luokkaleimoja ei ole saatavilla, esitetään työssä lineaarinen konfiguraatiomalli kuvaamaan kuvan mikroskooppisia rakenteita ohjaamattomalla tavalla. Tätä käytetään sitten yhdessä paikallisen kuvaajan, eli local binary pattern (LBP) –operaattorin kanssa. Teoreettisella tarkastelulla osoitetaan kehitetyn kuvaajan olevan rotaatioinvariantti ja kykenevän tuottamaan erottelukykyistä, täydentävää informaatiota perinteiselle LBP-menetelmälle. Työn toisessa osassa tutkitaan videoanalyysiä, perustuen staattisen kuvan deskriptioon ja deformoituvaan kuvien rekisteröintiin – sovellusaloina dynaamisten tekstuurien kuvaaminen, synteesi ja tunnistaminen. Aluksi ehdotetaan sellainen malli dynaamisten tekstuurien synteesiin, joka luo jatkuvan ja äärettömän kuvien virran annetusta äärellisen mittaisesta videosta. Menetelmä liittää yhteen videon pätkiä aika-avaruudessa valitsemalla keskenään yhteensopivia kuvakehyksiä videosta ja järjestämällä ne loogiseen järjestykseen. Seuraavaksi työssä esitetään sellainen uusi menetelmä kasvojen ilmeiden tunnistukseen, joka formuloi dynaamisen kasvojen ilmeiden tunnistusongelman pitkittäissuuntaisten kartastojen rakentamisen ja ryhmäkohtaisen kuvien rekisteröinnin ongelmana
Ferraz, Carolina Toledo. "Novos descritores de textura para localização e identificação de objetos em imagens usando Bag-of-Features." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/18/18152/tde-28092016-141219/.
Full textLocal feature descriptors used in objects representation have become very popular in recent years. Such descriptors have the ability to characterize the image content in compact and discriminative data. The information extracted from descriptors is represented by feature vectors and is used in various applications such as face recognition, complex scenes and textures. In this work we explored the analysis and modeling of local descriptors to characterize invariant scale images, rotation, changes in illumination and viewpoint. This thesis presents three new local descriptors that contribute to the current research advancement in computer vision area, developing new models for the characterization of images and image recognition. The first contribution is the development of a descriptor based on the mapping of gray-level-differences, called Center-Symmetric Local Mapped Pattern (CS-LMP). The proposed descriptor showed to be invariant to scale change, rotation, illumination and partial changes of viewpoint and compared to the descriptors Center-Symmetric Local Binary Pattern (CS-LBP) and Scale-Invariant Feature Trans- form (SIFT). The second contribution is a modification of the CS-LMP descriptor, which we call Modified Center-Symmetric Local Mapped Pattern (MCS-LMP). The descriptor includes the central pixel in mathematical modeling to better characterize the image content. The proposed descriptor presented superior results to CS-LMP , SIFT and LIOP descriptors in evaluating recognition of complex scenes. The third proposal includes the development of an image descriptor called Mean-Local Mapped Pattern (M-LMP) capturing more accurately small transitions of pixels in the image, resulting in a greater number of \"matches\" correct than CS-LBP and SIFT descriptors. In addition, experiments for classifying objects have been achieved by using the images based Caltech and Pascal VOC2006, presenting better results compared to other descriptors in question. This descriptor was proposed with the observation that the LBP descriptor can gene- rate noise using only the comparison of the neighbors to the central pixel. The M-LMP descriptor inserts in their mathematical modeling the averaging of the pixels of the neighborhood, in order to avoid noise and leave the more robust features. The results of this thesis showed that the proposed descriptors were robust in the description of the images, quantifying the similarity between images using the Bag-of-Features approach (BoF), and thus, presenting relevant computational results for the research area.
Books on the topic "Local texture descriptor"
1946-, Pula James S., ed. New York Mills. Charleston, South Carolina: Arcadia Publishing, 2012.
Find full textBook chapters on the topic "Local texture descriptor"
Priya, K., S. Mohamed Mansoor Roomi, B. Sathyabama, and R. Neelavathy. "Texture Classification by Local Rajan Transform Based Descriptor." In Communications in Computer and Information Science, 619–28. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8697-2_58.
Full textDawood, Hassan, Hussain Dawood, and Ping Guo. "Texture Image Classification with Improved Weber Local Descriptor." In Artificial Intelligence and Soft Computing, 684–92. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-07173-2_58.
Full textAl Saidi, Ibtissam, Mohammed Rziza, and Johan Debayle. "A New Texture Descriptor: The Homogeneous Local Binary Pattern (HLBP)." In Lecture Notes in Computer Science, 308–16. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-51935-3_33.
Full textHao, You, Shirui Li, Hanlin Mo, and Hua Li. "Affine-Gradient Based Local Binary Pattern Descriptor for Texture Classification." In Lecture Notes in Computer Science, 199–210. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-71607-7_18.
Full textAhmed, Faisal, Padma Polash Paul, and Marina Gavrilova. "Music Genre Classification Using a Gradient-Based Local Texture Descriptor." In Intelligent Decision Technologies 2016, 455–64. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-39627-9_40.
Full textMadrid-Cuevas, Francisco J., R. Medina Carnicer, M. Prieto Villegas, N. L. Fernández García, and A. Carmona Poyato. "Simplified Texture Unit: A~New Descriptor of the Local Texture in Gray-Level Images." In Pattern Recognition and Image Analysis, 470–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-44871-6_55.
Full textDash, Prajna Parimita, Dipti Patra, and Sudhansu Kumar Mishra. "Local Binary Pattern as a Texture Feature Descriptor in Object Tracking Algorithm." In Intelligent Computing, Networking, and Informatics, 541–48. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1665-0_52.
Full textBanerjee, Arnab, Nibaran Das, and Mita Nasipuri. "Texture Classification Using Deep Neural Network Based on Rotation Invariant Weber Local Descriptor." In Communications in Computer and Information Science, 277–92. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4859-3_26.
Full textPurkait, Priya Sen, Hiranmoy Roy, and Debotosh Bhattacharjee. "Local Shearlet Energy Gammodian Pattern (LSEGP): A Scale Space Binary Shape Descriptor for Texture Classification." In Intelligence Enabled Research, 123–31. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2021-1_14.
Full textSajwan, Vijaylakshmi, and Rakesh Ranjan. "A Novel Feature Descriptor: Color Texture Description with Diagonal Local Binary Patterns Using New Distance Metric for Image Retrieval." In Lecture Notes on Data Engineering and Communications Technologies, 17–26. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-16-9113-3_2.
Full textConference papers on the topic "Local texture descriptor"
Janney, Pranam, and Zhenghua Yu. "Invariant Features of Local Texturesa rotation invariant local texture descriptor." In 2007 IEEE Conference on Computer Vision and Pattern Recognition. IEEE, 2007. http://dx.doi.org/10.1109/cvpr.2007.383367.
Full textSherstobitov, A. I., V. I. Marchuk, D. V. Timofeev, V. V. Voronin, K. O. Egiazarian, and Sos S. Agaian. "Texture descriptor based on local approximations." In SPIE Sensing Technology + Applications, edited by Sos S. Agaian, Sabah A. Jassim, and Eliza Y. Du. SPIE, 2014. http://dx.doi.org/10.1117/12.2063666.
Full textMedathati, N. V. Kartheek, and Jayanthi Sivaswamy. "Local descriptor based on texture of projections." In the Seventh Indian Conference. New York, New York, USA: ACM Press, 2010. http://dx.doi.org/10.1145/1924559.1924612.
Full textHamouchene, Izem, and Saliha Aouat. "Texture matching using local and global descriptor." In 2014 5th European Workshop on Visual Information Processing (EUVIP). IEEE, 2014. http://dx.doi.org/10.1109/euvip.2014.7018367.
Full textChu He, Timo Ahonen, and Matti Pietikainen. "A Bayesian Local Binary Pattern texture descriptor." In 2008 19th International Conference on Pattern Recognition (ICPR). IEEE, 2008. http://dx.doi.org/10.1109/icpr.2008.4761100.
Full textFerraz, Carolina Toledo, Marcelo Garcia Manzato, and Adilson Gonzaga. "Face Classification using a New Local Texture Descriptor." In Webmedia '17: Brazilian Symposium on Multimedia and the Web. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3126858.3131584.
Full textTania, Sheikh, Manzur Murshed, Shyh Wei Teng, and Gour Karmakar. "An Enhanced Local Texture Descriptor for Image Segmentation." In 2020 IEEE International Conference on Image Processing (ICIP). IEEE, 2020. http://dx.doi.org/10.1109/icip40778.2020.9190895.
Full textMuhammad, G. "Multi-scale local texture descriptor for image forgery detection." In 2013 IEEE International Conference on Industrial Technology (ICIT 2013). IEEE, 2013. http://dx.doi.org/10.1109/icit.2013.6505834.
Full textPark, Ki Tae, Jeong Ho Lee, and Young Shik Moon. "Image retrieval using local texture descriptor for CE applications." In 2009 Digest of Technical Papers International Conference on Consumer Electronics (ICCE). IEEE, 2009. http://dx.doi.org/10.1109/icce.2009.5012356.
Full text"Rotated Local Binary Pattern (RLBP) - Rotation Invariant Texture Descriptor." In International Conference on Pattern Recognition Applications and Methods. SciTePress - Science and and Technology Publications, 2013. http://dx.doi.org/10.5220/0004334304970502.
Full textReports on the topic "Local texture descriptor"
Wells, Aaron, Tracy Christopherson, Gerald Frost, Matthew Macander, Susan Ives, Robert McNown, and Erin Johnson. Ecological land survey and soils inventory for Katmai National Park and Preserve, 2016–2017. National Park Service, September 2021. http://dx.doi.org/10.36967/nrr-2287466.
Full text