Academic literature on the topic 'Local well-posedness'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Local well-posedness.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Local well-posedness"
Willison, Steven. "Local well-posedness in Lovelock gravity." Classical and Quantum Gravity 32, no. 2 (December 19, 2014): 022001. http://dx.doi.org/10.1088/0264-9381/32/2/022001.
Full textIsaza, Pedro, and Jorge Mejía. "Local well-posedness and quantitative ill-posedness for the Ostrovsky equation." Nonlinear Analysis: Theory, Methods & Applications 70, no. 6 (March 2009): 2306–16. http://dx.doi.org/10.1016/j.na.2008.03.010.
Full textCHEN, Zeqian. "Local Well-posedness for Gross-Pitaevskii Hierarchies." Acta Analysis Functionalis Applicata 15, no. 4 (2013): 291. http://dx.doi.org/10.3724/sp.j.1160.2013.00291.
Full textKishimoto, Nobu. "Unconditional local well-posedness for periodic NLS." Journal of Differential Equations 274 (February 2021): 766–87. http://dx.doi.org/10.1016/j.jde.2020.10.025.
Full textHille, Sander C. "Local Well-posedness of Kinetic Chemotaxis Models." Journal of Evolution Equations 8, no. 3 (May 20, 2008): 423–48. http://dx.doi.org/10.1007/s00028-008-0358-7.
Full textShatah, Jalal, and Chongchun Zeng. "Local Well-Posedness for Fluid Interface Problems." Archive for Rational Mechanics and Analysis 199, no. 2 (June 30, 2010): 653–705. http://dx.doi.org/10.1007/s00205-010-0335-5.
Full textRacke, Reinhard, and Jürgen Saal. "Hyperbolic Navier-Stokes equations I: Local well-posedness." Evolution Equations and Control Theory 1, no. 1 (March 2012): 195–215. http://dx.doi.org/10.3934/eect.2012.1.195.
Full textLiu, Yongqin, and Weike Wang. "Local well-posedness of a new integrable equation." Nonlinear Analysis: Theory, Methods & Applications 64, no. 11 (June 2006): 2516–26. http://dx.doi.org/10.1016/j.na.2005.08.030.
Full textZhong, Xin, Xing-Ping Wu, and Chun-Lei Tang. "Local well-posedness for the homogeneous Euler equations." Nonlinear Analysis: Theory, Methods & Applications 74, no. 11 (July 2011): 3829–48. http://dx.doi.org/10.1016/j.na.2011.03.037.
Full textDörfler, Willy, Hannes Gerner, and Roland Schnaubelt. "Local well-posedness of a quasilinear wave equation." Applicable Analysis 95, no. 9 (September 23, 2015): 2110–23. http://dx.doi.org/10.1080/00036811.2015.1089236.
Full textDissertations / Theses on the topic "Local well-posedness"
Candy, Timothy Lars. "Local and global well-posedness for nonlinear Dirac type equations." Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/7962.
Full textMoşincat, Răzvan Octavian. "Well-posedness of the one-dimensional derivative nonlinear Schrödinger equation." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/33244.
Full textKalantarova, Habiba [Verfasser]. "Local Smoothing and Well-Posedness Results for KP-II Type Equations / Habiba Kalantarova." Bonn : Universitäts- und Landesbibliothek Bonn, 2015. http://d-nb.info/107728957X/34.
Full textBürger, Steven. "About an autoconvolution problem arising in ultrashort laser pulse characterization." Universitätsbibliothek Chemnitz, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-154367.
Full textTerzi, Marina. "LOCAL WELL POSEDNESS, REGULARITY, AND STABILITY FOR THE TIME-FRACTIONAL BURGERS PIDES ON THE WHOLE ONE, TWO, AND THREE DIMENSIONAL SPACES." Kent State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=kent1595780869268506.
Full textMontealegre, Scott Juan. "Initial value problem for a coupled system of Kadomtsev-Petviashvili II equations in Sobolev spaces of negative indices." Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/95255.
Full textSousa, Alexandre do Nascimento Oliveira. "Equações de Navier-Stokes: o problema de um milhão de dólares sob o ponto de vista da continuação de soluções." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-16112017-160410/.
Full textdiv(u) = 0, x ∈ Ω
u = 0, x ∈ ∂ Ω
u(0, x) = u0 (x), onde u0 ∈ LN (Ω)N e Ω é um subconjunto aberto, limitado e suave de RN. Provamos que o problema acima é localmente bem colocado e fornecemos condições para obter que estas soluções existem para todo t ≥ 0. Utilizamos técnicas de equações parabólicas semilineares considerando não linearidades com crescimento crítico desenvolvidas em (ARRIETA; CARVALHO, 1999).
In this work we we consider the Navier-Stokes problem on RN
div(u) = 0, x ∈ Ω
u = 0, x ∈ ∂ Ω
u(0, x) = u0 (x), where u0 ∈ LN (Ω)N and Ω is an open, bounded and smooth subset of RN. We prove that the above problem is locally well posed and give conditions to obtain that these solutions exist for all t ≥ 0. We used techniques of semilinear parabolic equations considering nonlinearities with critical grouth developed in (ARRIETA; CARVALHO, 1999).
Bürger, Steven, and Bernd Hofmann. "About a deficit in low order convergence rates on the example of autoconvolution." Universitätsbibliothek Chemnitz, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-130630.
Full textSantos, Carlos Alberto Silva dos. "O problema de Cauchy para as equações KdV e mKdV." Universidade Federal de Alagoas, 2009. http://repositorio.ufal.br/handle/riufal/1040.
Full textFundação de Amparo a Pesquisa do Estado de Alagoas
Neste trabalho demonstraremos que o problema de Cauchy associado as equações de Korteweg-de Vries, denotada por KdV, e de Korteweg-de Vries modificada, denotada por mKdV, com dado inicial no espaço de Sobolev Hs(|R), é bem posto localmente em Hs(|R), com s>3/4 para a KdV e s≥1/4 para a mKdV, onde a noção de boa postura inclui a existência, unicidade, a propriedade de persistência da solução e dependência contínua da solução com relação ao dado inicial. Este resultado é baseado nos trabalhos de Kenig, Ponce e Vega. A técnica utilizada para obter tais resultados se baseia no Teorema do Ponto Fixo de Banach combinada com os efeitos regularizantes do grupo associado com a parte linear.
Montealegre, Scott Juan. "Problema de Cauchy para un Sistema de Tipo Benjamin-Bona-Mahony." Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/95533.
Full textDado el problema de valor inicial para un sistema de dos ecuaciones de Benjamin-Bona-Mahony (BBM) acopladas a través de los términos dispersivos y no lineales, se demuestra que está bien colocado localmente y globalmente en los espacios Hs × Hs con s≥0.
Book chapters on the topic "Local well-posedness"
Prüss, Jan, and Gieri Simonett. "Local Well-Posedness and Regularity." In Moving Interfaces and Quasilinear Parabolic Evolution Equations, 419–50. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-27698-4_9.
Full textShvydkoy, Roman. "Local Well-Posedness and Continuation Criteria." In Nečas Center Series, 121–41. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-68147-0_7.
Full textBellettini, Giovanni. "Local well-posedness: the approach of Evans and Spruck." In Lecture Notes on Mean Curvature Flow, Barriers and Singular Perturbations, 103–26. Pisa: Scuola Normale Superiore, 2013. http://dx.doi.org/10.1007/978-88-7642-429-8_7.
Full textEhrnström, Mats, Joachim Escher, and Long Pei. "A Note on the Local Well-Posedness for the Whitham Equation." In Elliptic and Parabolic Equations, 63–75. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-12547-3_3.
Full textCarvajal, Xavier, and Mahendra Panthee. "A Note on Local Well-Posedness of Generalized KdV Type Equations with Dissipative Perturbations." In Springer Proceedings in Mathematics & Statistics, 85–100. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66839-0_4.
Full textOgawa, Takayoshi, and Yuuki Yamane. "Local Well-Posedness for the Cauchy Problem to Nonlinear Heat Equations of Fujita Type in Nearly Critical Besov Space." In Springer Proceedings in Mathematics & Statistics, 215–39. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-66764-5_10.
Full textChaichenets, Leonid, Dirk Hundertmark, Peer Christian Kunstmann, and Nikolaos Pattakos. "Local Well-Posedness for the Nonlinear Schrödinger Equation in the Intersection of Modulation Spaces $$M_{p, q}^s({\mathbb {R}}^d) \cap M_{\infty , 1}({\mathbb {R}}^d)$$." In Trends in Mathematics, 89–107. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47174-3_6.
Full textChaichenets, Leonid, Dirk Hundertmark, Peer Christian Kunstmann, and Nikolaos Pattakos. "Correction to: Local Well-Posedness for the Nonlinear Schrödinger Equation in the Intersection of Modulation Spaces $$M_{p, q}^s({\mathbb {R}}^d) \cap M_{\infty , 1}({\mathbb {R}}^d)$$." In Trends in Mathematics, C1. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47174-3_20.
Full text"5. Local well-posedness." In Stochastically Forced Compressible Fluid Flows, 187–216. De Gruyter, 2018. http://dx.doi.org/10.1515/9783110492552-005.
Full text"The local well-posedness theory." In Series in Applied and Computational Mathematics, 141–44. WORLD SCIENTIFIC, 2014. http://dx.doi.org/10.1142/9789814641630_0011.
Full textConference papers on the topic "Local well-posedness"
ZHANG, HUA, and HONG-FENG WU. "LOCAL WELL-POSEDNESS FOR THE FOURTH ORDER SCHRÖDINGER EQUATION." In Proceedings of the Third International Conference. WORLD SCIENTIFIC, 2010. http://dx.doi.org/10.1142/9789814327862_0008.
Full textFerreira, Lucas C. F., and Juliana C. Precioso. "Local well-posedness for 3D micropolar uid system in Besov-Morrey spaces." In XXXV CNMAC - Congresso Nacional de Matemática Aplicada e Computacional. SBMAC, 2015. http://dx.doi.org/10.5540/03.2015.003.01.0006.
Full textDündar, Nurhan, and Necat Polat. "On the local well-posedness of a generalized two-component Camassa-Holm system." In ADVANCEMENTS IN MATHEMATICAL SCIENCES: Proceedings of the International Conference on Advancements in Mathematical Sciences. AIP Publishing LLC, 2015. http://dx.doi.org/10.1063/1.4930523.
Full textShuo, Wang, Ding Yunhua, and Xu Runzhang. "Local well-posedness for nonlinear Klein-Gordon equation with weak and strong damping terms." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2012: International Conference of Numerical Analysis and Applied Mathematics. AIP, 2012. http://dx.doi.org/10.1063/1.4756618.
Full textBlokhin, A. M., and D. L. Tkachev. "Local well-posedness in the problem of ow about in nite plane wedge with inviscous non-heat-conducting gas." In 2017 Days on Diffraction (DD). IEEE, 2017. http://dx.doi.org/10.1109/dd.2017.8167997.
Full textRobens, Sebastian, Peter Jeschke, Christian Frey, Edmund Kügeler, Arianna Bosco, and Thomas Breuer. "Adaption of Giles Non-Local Non-Reflecting Boundary Conditions for a Cell-Centered Solver for Turbomachinery Applications." In ASME Turbo Expo 2013: Turbine Technical Conference and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gt2013-94957.
Full textVaidheeswaran, Avinash, William D. Fullmer, Krishna Chetty, Raul G. Marino, and Martin Lopez de Bertodano. "Stability Analysis of Chaotic Wavy Stratified Fluid-Fluid Flow With the 1D Fixed-Flux Two-Fluid Model." In ASME 2016 Fluids Engineering Division Summer Meeting collocated with the ASME 2016 Heat Transfer Summer Conference and the ASME 2016 14th International Conference on Nanochannels, Microchannels, and Minichannels. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/fedsm2016-1058.
Full text