To see the other types of publications on this topic, follow the link: Local well-posedness.

Dissertations / Theses on the topic 'Local well-posedness'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 15 dissertations / theses for your research on the topic 'Local well-posedness.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Candy, Timothy Lars. "Local and global well-posedness for nonlinear Dirac type equations." Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/7962.

Full text
Abstract:
We investigate the local and global well-posedness of a variety of nonlinear Dirac type equations with null structure on R1+1. In particular, we prove global existence in L2 for a nonlinear Dirac equation known as the Thirring model. Local existence in Hs for s > 0, and global existence for s > 1/2 , has recently been proven by Selberg-Tesfahun where they used Xs,b spaces together with a type of null form estimate. In contrast, motivated by the recent work of Machihara-Nakanishi-Tsugawa, we prove local existence in the scale invariant class L2 by using null coordinates. Moreover, again using null coordinates, we prove almost optimal local wellposedness for the Chern-Simons-Dirac equation which extends recent work of Huh. To prove global well-posedness for the Thirring model, we introduce a decomposition which shows the solution is linear (up to gauge transforms in U(1)), with an error term that can be controlled in L∞. This decomposition is also applied to prove global existence for the Chern-Simons-Dirac equation. This thesis also contains a study of bilinear estimates in Xs,b± (R2) spaces. These estimates are often used in the theory of nonlinear Dirac equations on R1+1. We prove estimates that are optimal up to endpoints by using dyadic decomposition together with some simplifications due to Tao. As an application, by using the I-method of Colliander-Keel-Staffilani-Takaoka-Tao, we extend the work of Tesfahun on global existence below the charge class for the Dirac-Klein- Gordon equation on R1+1. The final result contained in this thesis concerns the space-time Monopole equation. Recent work of Czubak showed that the space-time Monopole equation is locally well-posed in the Coulomb gauge for small initial data in Hs(R2) for s > 1/4 . Here we show that the Monopole equation has null structure in Lorenz gauge, and use this to prove local well-posedness for large initial data in Hs(R2) with s > 1/4.
APA, Harvard, Vancouver, ISO, and other styles
2

Moşincat, Răzvan Octavian. "Well-posedness of the one-dimensional derivative nonlinear Schrödinger equation." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/33244.

Full text
Abstract:
This thesis is concerned with the well-posedness of the one-dimensional derivative non-linear Schrodinger equation (DNLS). In particular, we study the initial-value problem associated to DNLS with low-regularity initial data in two settings: (i) on the torus (namely with the periodic boundary condition) and (ii) on the real line. Our first main goal is to study the global-in-time behaviour of solutions to DNLS in the periodic setting, where global well-posedness is known to hold under a small mass assumption. In Chapter 2, we relax the smallness assumption on the mass and establish global well-posedness of DNLS for smooth initial data. In Chapter 3, we then extend this result for rougher initial data. In particular, we employ the I-method introduced by Colliander, Keel, Staffilani, Takaoka, and Tao and show the global well-posedness of the periodic DNLS at the end-point regularity. In the implementation of the I-method, we apply normal form reductions to construct higher order modified energy functionals. In Chapter 4, we turn our attention to the uniqueness of solutions to DNLS on the real line. By using an infinite iteration of normal form reductions introduced by Guo, Kwon, and Oh in the context of one-dimensional cubic NLS on the torus, we construct solutions to DNLS without using any auxiliary function space. As a result, we prove the unconditional uniqueness of solutions to DNLS on the real line in an almost end-point regularity.
APA, Harvard, Vancouver, ISO, and other styles
3

Kalantarova, Habiba [Verfasser]. "Local Smoothing and Well-Posedness Results for KP-II Type Equations / Habiba Kalantarova." Bonn : Universitäts- und Landesbibliothek Bonn, 2015. http://d-nb.info/107728957X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bürger, Steven. "About an autoconvolution problem arising in ultrashort laser pulse characterization." Universitätsbibliothek Chemnitz, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-154367.

Full text
Abstract:
We are investigating a kernel-based autoconvolution problem, which has its origin in the physics of ultra short laser pulses. The task in this problem is to reconstruct a complex-valued function $x$ on a finite interval from measurements of its absolute value and a kernel-based autoconvolution of the form [[F(x)](s)=int k(s,t)x(s-t)x(t)de t.] This problem has not been studied in the literature. One reason might be that one has more information than in the classical autoconvolution case, where only the right hand side is available. Nevertheless we show that ill posedness phenomena may occur. We also propose an algorithm to solve the problem numerically and demonstrate its performance with artificial data. Since the algorithm fails to produce good results with real data and we suspect that the data for $|F(x)|$ are not dependable we also consider the whole problem with only $arg(F(x))$ given instead of $F(x)$.
APA, Harvard, Vancouver, ISO, and other styles
5

Terzi, Marina. "LOCAL WELL POSEDNESS, REGULARITY, AND STABILITY FOR THE TIME-FRACTIONAL BURGERS PIDES ON THE WHOLE ONE, TWO, AND THREE DIMENSIONAL SPACES." Kent State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=kent1595780869268506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Montealegre, Scott Juan. "Initial value problem for a coupled system of Kadomtsev-Petviashvili II equations in Sobolev spaces of negative indices." Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/95255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sousa, Alexandre do Nascimento Oliveira. "Equações de Navier-Stokes: o problema de um milhão de dólares sob o ponto de vista da continuação de soluções." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-16112017-160410/.

Full text
Abstract:
Neste trabalho consideramos o problema de Navier-Stokes em RN
ut = Δu — ∇π + f (t) — (u .∇)u,   x∈ Ω
div(u) = 0,    x ∈ Ω
u = 0,    x ∈ ∂ Ω
u(0, x) = u0 (x), onde u0 ∈ LN (Ω)N e Ω é um subconjunto aberto, limitado e suave de RN. Provamos que o problema acima é localmente bem colocado e fornecemos condições para obter que estas soluções existem para todo t ≥ 0. Utilizamos técnicas de equações parabólicas semilineares considerando não linearidades com crescimento crítico desenvolvidas em (ARRIETA; CARVALHO, 1999).
In this work we we consider the Navier-Stokes problem on RN
ut = Δu — ∇π + f (t) — (u .∇)u,   x∈ Ω
div(u) = 0,    x ∈ Ω
u = 0,    x ∈ ∂ Ω
u(0, x) = u0 (x), where u0 ∈ LN (Ω)N and Ω is an open, bounded and smooth subset of RN. We prove that the above problem is locally well posed and give conditions to obtain that these solutions exist for all t ≥ 0. We used techniques of semilinear parabolic equations considering nonlinearities with critical grouth developed in (ARRIETA; CARVALHO, 1999).
APA, Harvard, Vancouver, ISO, and other styles
8

Bürger, Steven, and Bernd Hofmann. "About a deficit in low order convergence rates on the example of autoconvolution." Universitätsbibliothek Chemnitz, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-130630.

Full text
Abstract:
We revisit in L2-spaces the autoconvolution equation x ∗ x = y with solutions which are real-valued or complex-valued functions x(t) defined on a finite real interval, say t ∈ [0,1]. Such operator equations of quadratic type occur in physics of spectra, in optics and in stochastics, often as part of a more complex task. Because of their weak nonlinearity deautoconvolution problems are not seen as difficult and hence little attention is paid to them wrongly. In this paper, we will indicate on the example of autoconvolution a deficit in low order convergence rates for regularized solutions of nonlinear ill-posed operator equations F(x)=y with solutions x† in a Hilbert space setting. So for the real-valued version of the deautoconvolution problem, which is locally ill-posed everywhere, the classical convergence rate theory developed for the Tikhonov regularization of nonlinear ill-posed problems reaches its limits if standard source conditions using the range of F (x† )∗ fail. On the other hand, convergence rate results based on Hölder source conditions with small Hölder exponent and logarithmic source conditions or on the method of approximate source conditions are not applicable since qualified nonlinearity conditions are required which cannot be shown for the autoconvolution case according to current knowledge. We also discuss the complex-valued version of autoconvolution with full data on [0,2] and see that ill-posedness must be expected if unbounded amplitude functions are admissible. As a new detail, we present situations of local well-posedness if the domain of the autoconvolution operator is restricted to complex L2-functions with a fixed and uniformly bounded modulus function.
APA, Harvard, Vancouver, ISO, and other styles
9

Santos, Carlos Alberto Silva dos. "O problema de Cauchy para as equações KdV e mKdV." Universidade Federal de Alagoas, 2009. http://repositorio.ufal.br/handle/riufal/1040.

Full text
Abstract:
In this work we will demonstrate that the Cauchy problem associated with the Korteweg-de Vries equation, denoted by KdV, and Korteweg-de Vries modified equation, denoted by mKdV, with initial data in the space of Sobolev Hs(|R), is locally well-posed on Hs(|R), with s>3/4 for KdV and s≥1/4 for mKdV, where the notion of well-posedness includes existence, uniqueness, persistence property of solution and continuous dependence of solution with respect to the initial data. This result is based on the works of Kenig, Ponce and Vega. The technique used to obtain these results is based on fixed point Banach theorem combined with the regularizantes effects of the group associated with the linear part.
Fundação de Amparo a Pesquisa do Estado de Alagoas
Neste trabalho demonstraremos que o problema de Cauchy associado as equações de Korteweg-de Vries, denotada por KdV, e de Korteweg-de Vries modificada, denotada por mKdV, com dado inicial no espaço de Sobolev Hs(|R), é bem posto localmente em Hs(|R), com s>3/4 para a KdV e s≥1/4 para a mKdV, onde a noção de boa postura inclui a existência, unicidade, a propriedade de persistência da solução e dependência contínua da solução com relação ao dado inicial. Este resultado é baseado nos trabalhos de Kenig, Ponce e Vega. A técnica utilizada para obter tais resultados se baseia no Teorema do Ponto Fixo de Banach combinada com os efeitos regularizantes do grupo associado com a parte linear.
APA, Harvard, Vancouver, ISO, and other styles
10

Montealegre, Scott Juan. "Problema de Cauchy para un Sistema de Tipo Benjamin-Bona-Mahony." Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/95533.

Full text
Abstract:
It is proved that the initial value problem for a system of two Benjamin-Bona-Mahony equations coupled through both dispersive and nonlinear terms is locally and globally well posed in the Soboloev spaces Hs ×Hs with s ≥ 0
Dado el problema de valor inicial para un sistema de dos ecuaciones de Benjamin-Bona-Mahony (BBM) acopladas a través de los términos dispersivos y no lineales, se demuestra que está bien colocado localmente y globalmente en los espacios Hs × Hs con s≥0.
APA, Harvard, Vancouver, ISO, and other styles
11

Dinh, Van Duong. "Strichartz estimates and the nonlinear Schrödinger-type equations." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30247/document.

Full text
Abstract:
Cette thèse est consacrée à l'étude des aspects linéaires et non-linéaires des équations de type Schrödinger [ i partial_t u + |nabla|^sigma u = F, quad |nabla| = sqrt {-Delta}, quad sigma in (0, infty).] Quand $sigma = 2$, il s'agit de l'équation de Schrödinger bien connue dans de nombreux contextes physiques tels que la mécanique quantique, l'optique non-linéaire, la théorie des champs quantiques et la théorie de Hartree-Fock. Quand $sigma in (0,2) backslash {1}$, c'est l'équation Schrödinger fractionnaire, qui a été découverte par Laskin (voir par exemple cite{Laskin2000} et cite{Laskin2002}) en lien avec l'extension de l'intégrale de Feynman, des chemins quantiques de type brownien à ceux de Lévy. Cette équation apparaît également dans des modèles de vagues (voir par exemple cite{IonescuPusateri} et cite{Nguyen}). Quand $sigma = 1$, c'est l'équation des demi-ondes qui apparaît dans des modèles de vagues (voir cite{IonescuPusateri}) et dans l'effondrement gravitationnel (voir cite{ElgartSchlein}, cite{FrohlichLenzmann}). Quand $sigma = 4$, c'est l'équation Schrödinger du quatrième ordre ou biharmonique introduite par Karpman cite{Karpman} et par Karpman-Shagalov cite{KarpmanShagalov} pour prendre en compte le rôle de la dispersion du quatrième ordre dans la propagation d'un faisceau laser intense dans un milieu massif avec non-linéarité de Kerr. Cette thèse est divisée en deux parties. La première partie étudie les estimations de Strichartz pour des équations de type Schrödinger sur des variétés comprenant l'espace plat euclidien, les variétés compactes sans bord et les variétés asymptotiquement euclidiennes. Ces estimations de Strichartz sont utiles pour l'étude de l'équations dispersives non-linéaire à régularité basse. La seconde partie concerne l'étude des aspects non-linéaires tels que les caractères localement puis globalement bien posés sous l'espace d'énergie, ainsi que l'explosion de solutions peu régulières pour des équations non-linéaires de type Schrödinger. [...]
This dissertation is devoted to the study of linear and nonlinear aspects of the Schrödinger-type equations [ i partial_t u + |nabla|^sigma u = F, quad |nabla| = sqrt {-Delta}, quad sigma in (0, infty).] When $sigma = 2$, it is the well-known Schrödinger equation arising in many physical contexts such as quantum mechanics, nonlinear optics, quantum field theory and Hartree-Fock theory. When $sigma in (0,2) backslash {1}$, it is the fractional Schrödinger equation, which was discovered by Laskin (see e.g. cite{Laskin2000} and cite{Laskin2002}) owing to the extension of the Feynman path integral, from the Brownian-like to Lévy-like quantum mechanical paths. This equation also appears in the water waves model (see e.g. cite{IonescuPusateri} and cite{Nguyen}). When $sigma = 1$, it is the half-wave equation which arises in water waves model (see cite{IonescuPusateri}) and in gravitational collapse (see cite{ElgartSchlein}, cite{FrohlichLenzmann}). When $sigma =4$, it is the fourth-order or biharmonic Schrödinger equation introduced by Karpman cite {Karpman} and by Karpman-Shagalov cite{KarpmanShagalov} taking into account the role of small fourth-order dispersion term in the propagation of intense laser beam in a bulk medium with Kerr nonlinearity. This thesis is divided into two parts. The first part studies Strichartz estimates for Schrödinger-type equations on manifolds including the flat Euclidean space, compact manifolds without boundary and asymptotically Euclidean manifolds. These Strichartz estimates are known to be useful in the study of nonlinear dispersive equation at low regularity. The second part concerns the study of nonlinear aspects such as local well-posedness, global well-posedness below the energy space and blowup of rough solutions for nonlinear Schrödinger-type equations.[...]
APA, Harvard, Vancouver, ISO, and other styles
12

Nguyen, Quang Huy. "Analyse hautes fréquences pour les équations des ondes de surface." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS175.

Full text
Abstract:
Cette thèse est consacrée à l'analyse mathématique de l'équation d'Euler incompressible à surface libre. On se concentre sur la propriété dispersive et sur la théorie de Cauchy à faible régularité. Une grande part de la thèse est consacrée à l'étude de l'équation des ondes de gravité-capillarité. On établit des critères d'explosion et la persistance de régularité dans les espaces de Sobolev. En démontrant les estimations de Strichartz pour les solutions à faible régularité, on obtient des théories de Cauchy pour les données initiales dont la vitesse peut être non-lipschitzienne. Dans une autre part de la thèse, on étudie la propriété dispersive des équations des ondes de surface. Plus précisément, on s'intéresse aux estimations de Strichartz. On démontre que, pour les solutions raisonnablement régulières, les équations des ondes de surface non linéaires obéissent aux mêmes estimations de Strichartz comme dans le cas des équations linéarisées
This dissertation is devoted to the mathematical analysis of the water waves systems. We focus on the dispersive property and the Cauchy problem for rough initial data. One of the main objects of study is the gravity-capillary water waves system. We establish blow-up criteria and the persistence of Sobolev regularity. By proving Strichartz estimates for rough solutions, we obtain Cauchy theories for non-Lipschitz initial velocity. In another part of the dissertation, we study the dispersive property of the fully nonlinear water waves systems. More specifically, we are interested in Strichartz estimates. We prove for sufficiently smooth solutions that the nonlinear systems obey the same Strichartz estimates as their linearizations do
APA, Harvard, Vancouver, ISO, and other styles
13

Zhuo, Guan-Yu, and 卓冠宇. "Local well-posedness of the Wave equation." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/07434569044610623188.

Full text
Abstract:
碩士
國立清華大學
數學系
102
In this dissertation we discuss the Strichartz estimates on the Schrödinger equation, Wave equation and application of the Wave equation. First part we introduce some de…nitions, notations and basic theorems from real analysis. Second part we will prove the Strichartz estimates on the Schrödinger equation follows from Tao’s Nonlinear dispersive equations: local and global analysis and the Wave equation on R3. On the Wave equation, we will follow the proofs from Christopher D. Sogge, Lectures on nonlinear wave equations. The Littlewood-paley theorem plays a important role in this proof and we use many technique of scaling. Finally, we will use the Strichartz estimates on theWave equation of form u = juj2u;Dom(u) = R1+3 + with initial data u(0; ) = f; @tu(0; ) = g to solve the existence of (weak) solutions and use same idea to get the local well-posedness.
APA, Harvard, Vancouver, ISO, and other styles
14

Hadac, Martin [Verfasser]. "On the local well-posedness of the Kadomtsev-Petviashvili II equation / vorgelegt von Martin Hadac." 2007. http://d-nb.info/997616431/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Speck, Jared R. "On the questions of local and global well-posedness for the hyperbolic PDEs occurring in some relativistic theories of gravity and electromagnetism." 2008. http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.17393.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!