Dissertations / Theses on the topic 'Local well-posedness'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 15 dissertations / theses for your research on the topic 'Local well-posedness.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Candy, Timothy Lars. "Local and global well-posedness for nonlinear Dirac type equations." Thesis, University of Edinburgh, 2012. http://hdl.handle.net/1842/7962.
Full textMoşincat, Răzvan Octavian. "Well-posedness of the one-dimensional derivative nonlinear Schrödinger equation." Thesis, University of Edinburgh, 2018. http://hdl.handle.net/1842/33244.
Full textKalantarova, Habiba [Verfasser]. "Local Smoothing and Well-Posedness Results for KP-II Type Equations / Habiba Kalantarova." Bonn : Universitäts- und Landesbibliothek Bonn, 2015. http://d-nb.info/107728957X/34.
Full textBürger, Steven. "About an autoconvolution problem arising in ultrashort laser pulse characterization." Universitätsbibliothek Chemnitz, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-154367.
Full textTerzi, Marina. "LOCAL WELL POSEDNESS, REGULARITY, AND STABILITY FOR THE TIME-FRACTIONAL BURGERS PIDES ON THE WHOLE ONE, TWO, AND THREE DIMENSIONAL SPACES." Kent State University / OhioLINK, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=kent1595780869268506.
Full textMontealegre, Scott Juan. "Initial value problem for a coupled system of Kadomtsev-Petviashvili II equations in Sobolev spaces of negative indices." Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/95255.
Full textSousa, Alexandre do Nascimento Oliveira. "Equações de Navier-Stokes: o problema de um milhão de dólares sob o ponto de vista da continuação de soluções." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-16112017-160410/.
Full textdiv(u) = 0, x ∈ Ω
u = 0, x ∈ ∂ Ω
u(0, x) = u0 (x), onde u0 ∈ LN (Ω)N e Ω é um subconjunto aberto, limitado e suave de RN. Provamos que o problema acima é localmente bem colocado e fornecemos condições para obter que estas soluções existem para todo t ≥ 0. Utilizamos técnicas de equações parabólicas semilineares considerando não linearidades com crescimento crítico desenvolvidas em (ARRIETA; CARVALHO, 1999).
In this work we we consider the Navier-Stokes problem on RN
div(u) = 0, x ∈ Ω
u = 0, x ∈ ∂ Ω
u(0, x) = u0 (x), where u0 ∈ LN (Ω)N and Ω is an open, bounded and smooth subset of RN. We prove that the above problem is locally well posed and give conditions to obtain that these solutions exist for all t ≥ 0. We used techniques of semilinear parabolic equations considering nonlinearities with critical grouth developed in (ARRIETA; CARVALHO, 1999).
Bürger, Steven, and Bernd Hofmann. "About a deficit in low order convergence rates on the example of autoconvolution." Universitätsbibliothek Chemnitz, 2013. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-130630.
Full textSantos, Carlos Alberto Silva dos. "O problema de Cauchy para as equações KdV e mKdV." Universidade Federal de Alagoas, 2009. http://repositorio.ufal.br/handle/riufal/1040.
Full textFundação de Amparo a Pesquisa do Estado de Alagoas
Neste trabalho demonstraremos que o problema de Cauchy associado as equações de Korteweg-de Vries, denotada por KdV, e de Korteweg-de Vries modificada, denotada por mKdV, com dado inicial no espaço de Sobolev Hs(|R), é bem posto localmente em Hs(|R), com s>3/4 para a KdV e s≥1/4 para a mKdV, onde a noção de boa postura inclui a existência, unicidade, a propriedade de persistência da solução e dependência contínua da solução com relação ao dado inicial. Este resultado é baseado nos trabalhos de Kenig, Ponce e Vega. A técnica utilizada para obter tais resultados se baseia no Teorema do Ponto Fixo de Banach combinada com os efeitos regularizantes do grupo associado com a parte linear.
Montealegre, Scott Juan. "Problema de Cauchy para un Sistema de Tipo Benjamin-Bona-Mahony." Pontificia Universidad Católica del Perú, 2014. http://repositorio.pucp.edu.pe/index/handle/123456789/95533.
Full textDado el problema de valor inicial para un sistema de dos ecuaciones de Benjamin-Bona-Mahony (BBM) acopladas a través de los términos dispersivos y no lineales, se demuestra que está bien colocado localmente y globalmente en los espacios Hs × Hs con s≥0.
Dinh, Van Duong. "Strichartz estimates and the nonlinear Schrödinger-type equations." Thesis, Toulouse 3, 2018. http://www.theses.fr/2018TOU30247/document.
Full textThis dissertation is devoted to the study of linear and nonlinear aspects of the Schrödinger-type equations [ i partial_t u + |nabla|^sigma u = F, quad |nabla| = sqrt {-Delta}, quad sigma in (0, infty).] When $sigma = 2$, it is the well-known Schrödinger equation arising in many physical contexts such as quantum mechanics, nonlinear optics, quantum field theory and Hartree-Fock theory. When $sigma in (0,2) backslash {1}$, it is the fractional Schrödinger equation, which was discovered by Laskin (see e.g. cite{Laskin2000} and cite{Laskin2002}) owing to the extension of the Feynman path integral, from the Brownian-like to Lévy-like quantum mechanical paths. This equation also appears in the water waves model (see e.g. cite{IonescuPusateri} and cite{Nguyen}). When $sigma = 1$, it is the half-wave equation which arises in water waves model (see cite{IonescuPusateri}) and in gravitational collapse (see cite{ElgartSchlein}, cite{FrohlichLenzmann}). When $sigma =4$, it is the fourth-order or biharmonic Schrödinger equation introduced by Karpman cite {Karpman} and by Karpman-Shagalov cite{KarpmanShagalov} taking into account the role of small fourth-order dispersion term in the propagation of intense laser beam in a bulk medium with Kerr nonlinearity. This thesis is divided into two parts. The first part studies Strichartz estimates for Schrödinger-type equations on manifolds including the flat Euclidean space, compact manifolds without boundary and asymptotically Euclidean manifolds. These Strichartz estimates are known to be useful in the study of nonlinear dispersive equation at low regularity. The second part concerns the study of nonlinear aspects such as local well-posedness, global well-posedness below the energy space and blowup of rough solutions for nonlinear Schrödinger-type equations.[...]
Nguyen, Quang Huy. "Analyse hautes fréquences pour les équations des ondes de surface." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLS175.
Full textThis dissertation is devoted to the mathematical analysis of the water waves systems. We focus on the dispersive property and the Cauchy problem for rough initial data. One of the main objects of study is the gravity-capillary water waves system. We establish blow-up criteria and the persistence of Sobolev regularity. By proving Strichartz estimates for rough solutions, we obtain Cauchy theories for non-Lipschitz initial velocity. In another part of the dissertation, we study the dispersive property of the fully nonlinear water waves systems. More specifically, we are interested in Strichartz estimates. We prove for sufficiently smooth solutions that the nonlinear systems obey the same Strichartz estimates as their linearizations do
Zhuo, Guan-Yu, and 卓冠宇. "Local well-posedness of the Wave equation." Thesis, 2014. http://ndltd.ncl.edu.tw/handle/07434569044610623188.
Full text國立清華大學
數學系
102
In this dissertation we discuss the Strichartz estimates on the Schrödinger equation, Wave equation and application of the Wave equation. First part we introduce some de nitions, notations and basic theorems from real analysis. Second part we will prove the Strichartz estimates on the Schrödinger equation follows from Taos Nonlinear dispersive equations: local and global analysis and the Wave equation on R3. On the Wave equation, we will follow the proofs from Christopher D. Sogge, Lectures on nonlinear wave equations. The Littlewood-paley theorem plays a important role in this proof and we use many technique of scaling. Finally, we will use the Strichartz estimates on theWave equation of form u = juj2u;Dom(u) = R1+3 + with initial data u(0; ) = f; @tu(0; ) = g to solve the existence of (weak) solutions and use same idea to get the local well-posedness.
Hadac, Martin [Verfasser]. "On the local well-posedness of the Kadomtsev-Petviashvili II equation / vorgelegt von Martin Hadac." 2007. http://d-nb.info/997616431/34.
Full textSpeck, Jared R. "On the questions of local and global well-posedness for the hyperbolic PDEs occurring in some relativistic theories of gravity and electromagnetism." 2008. http://hdl.rutgers.edu/1782.2/rucore10001600001.ETD.17393.
Full text