Academic literature on the topic 'Locality preserving projection'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Locality preserving projection.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Locality preserving projection"
Wong, W. K., and H. T. Zhao. "Supervised optimal locality preserving projection." Pattern Recognition 45, no. 1 (January 2012): 186–97. http://dx.doi.org/10.1016/j.patcog.2011.05.014.
Full textYin, Jun, and Shiliang Sun. "Multiview Uncorrelated Locality Preserving Projection." IEEE Transactions on Neural Networks and Learning Systems 31, no. 9 (September 2020): 3442–55. http://dx.doi.org/10.1109/tnnls.2019.2944664.
Full textXu, Yong, Binglei Xie, and Jingyu Yang. "Theoretical analysis of locality preserving projection and a fast orthogonal locality preserving projection algorithm." Journal of Electronic Imaging 21, no. 3 (September 14, 2012): 033024–1. http://dx.doi.org/10.1117/1.jei.21.3.033024.
Full textZhang, Qi Rong, and Zhong Shi He. "Two-Dimensional Locality Discriminant Preserving Projections for Face Recognition." Advanced Materials Research 121-122 (June 2010): 391–98. http://dx.doi.org/10.4028/www.scientific.net/amr.121-122.391.
Full textSun, Chuang, Zhousuo Zhang, Zhengjia He, Zhongjie Shen, Binqiang Chen, and Wenrong Xiao. "Novel method for bearing performance degradation assessment – A kernel locality preserving projection-based approach." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 228, no. 3 (April 24, 2013): 548–60. http://dx.doi.org/10.1177/0954406213486735.
Full textLi, Jun-Bao, Jeng-Shyang Pan, and Shu-Chuan Chu. "Kernel class-wise locality preserving projection." Information Sciences 178, no. 7 (April 2008): 1825–35. http://dx.doi.org/10.1016/j.ins.2007.12.001.
Full textGuo Jinyu, 郭金玉, and 苑玮琦 Yuan Weiqi. "Palmprint Recognition Based on Locality Preserving Projection." Acta Optica Sinica 28, no. 10 (2008): 1920–24. http://dx.doi.org/10.3788/aos20082810.1920.
Full textLiang, Chunyan, Wei Cao, and Shuxin Cao. "Locality Preserving Discriminant Projection for Speaker Verification." Journal of Computer and Communications 08, no. 11 (2020): 14–22. http://dx.doi.org/10.4236/jcc.2020.811002.
Full textLong, Tianhang, Yanfeng Sun, Junbin Gao, Yongli Hu, and Baocai Yin. "Locality preserving projection based on Euler representation." Journal of Visual Communication and Image Representation 70 (July 2020): 102796. http://dx.doi.org/10.1016/j.jvcir.2020.102796.
Full textShikkenawis, Gitam, and Suman K. Mitra. "On some variants of locality preserving projection." Neurocomputing 173 (January 2016): 196–211. http://dx.doi.org/10.1016/j.neucom.2015.01.100.
Full textDissertations / Theses on the topic "Locality preserving projection"
Wu, Che-Ming, and 吳哲明. "A Block-Based Orthogonal Locality Preserving Projection Method for Face Super-Resolution." Thesis, 2010. http://ndltd.ncl.edu.tw/handle/87139611163568193184.
Full text淡江大學
資訊工程學系碩士班
98
Due to cost consideration, the quality of images captured from surveillance systems usually is poor. It makes the face recognition difficult in these low-resolution images. Here we propose a block-based algorithm called Orthogonal Locality Preserving Projections (OLPP) for super-resolution of face images. The purpose is to discover the local structure of the manifold and produce orthogonal basis functions for face images. To train the system, we divide the high-resolution images and the corresponding low-resolution images into 4 blocks (forehead, eyes, nose, and mouth). For each block, we use the low-resolution ones to find an OLPP transformation matrix. Then, use the obtained coefficients from the OLPP (input) and the corresponding high-resolution one (target) to train a GRNN (General Regression Neural Network). For an unseen low-resolution face image, it is divided into 4 blocks similarly and the corresponding coefficients for each block are obtained by the trained OLPP transformation matrix. Finally, an improved super-resolution block is obtained by feeding the coefficients of OLPP into GRNN. And a super-resolution face image is achieved by combining all blocks. Comparing to existing methods, the proposed method has shown an improved and promising results.
Chu, Kun-Long, and 褚坤龍. "Face Detection and Face Recognition Based on Gabor Wavelets and Locality Preserving Projection." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/evjyc7.
Full text國立交通大學
電機學院電機產業專班
96
Face recognition has been a popular research topic for a long time because it can be widely used in many different fields, such as identity identification, content-based image retrieval, computer vision and human computer interaction. However, face detection, which serves as the preprocessing procedure, is equally important since it has to be done first before face recognition is taken. This thesis, therefore, proposes a method which takes the advantages of Gabor transformation and locality preserving projection to implement face recognition and face detection on a digital picture. The first step adopts face detection to find candidate face region. Second, Gabor wavelets transformation is adopted to extract face features of human face, and locality preserving projection is applied to project features of human face into lower dimension space. Afterwards, neural network is trained to decide whether candidate region is human face or not. Then, database is constructed manually according to the result of face detection. Finally, a neural network is trained by the faces is stored in the database. When a test picture is input the proposed method is able to identify the faces of the chosen people. According to the result of identification, pictures of the same person can be chosen from database and implement the identify-based image retrieval. The main contribution of this thesis is to employ the specialty of Gabor wavelets transformation, which is to maintain sufficient recognition rate in both time domain and frequency domain, to obtain face feature; moreover apply the strength of locality preserving projection, which preserves the local structure of the multidimensional structure, the immense feature vectors of Gabor wavelets transformation is lowered to minimum. The experiment results show the proposed method has good performance in both face detection and face recognition.
Liu, Jun-Zuo, and 劉俊佐. "Improved Facial Expression Recognition System Based on Symmetric Features and New Locality Preserving Projection." Thesis, 2012. http://ndltd.ncl.edu.tw/handle/20435046153450765910.
Full text國立臺灣大學
電信工程學研究所
100
Based on the increasing of accessible data and the fast development of the computational technology, machine learning attracted lots of attention in the last ten year because of the great demand of automation in human life. Now in the disciplines of pattern recognition, robotics, artificial intelligences, computer vision, and even economics, machine learning has been an indispensible part to extract and discover the valuable information from data. On the other hand, human face related topics such as face detection and recognition became important research fields in pattern recognition and computer vision during the last few decades. This is due to the needs of automatic recognition and surveillance system, the interest in the human visual system on human face perception, and the design of human-computer interface, etc. In this thesis, we focus on using machine learning techniques for facial expression recognition. A facial expression recognition framework is proposed, which includes four steps: feature extraction, denoising mechanism, dimensionality reduction, and facial expression determination. The widely-used local binary pattern feature (LBP) is modified and combined with a new feature extraction method, local phase quantization (LPQ) to represent the facial expression. Since the extracted features are noisy and contain unrelated information for expression recognition task, a denoising mechanism is proposed. Due to the denoising mechanism, the denoised features are more representative for facial expression. Different from the existing dimensionality reduction algorithms, an expression-specific dimensionality reduction algorithm is proposed based on the special properties of facial expression. Finally, the reduced features with more meaning for facial expression are fed into the widely-used Support Vector Machine (SVM) and K-nearest neighbor classifier. From the experimental results, the proposed framework and algorithms achieve the highest recognition rate against the existing methods based on the JAFFE database.
Teng, Luyao. "Research on Joint Sparse Representation Learning Approaches." Thesis, 2019. https://vuir.vu.edu.au/40024/.
Full textBook chapters on the topic "Locality preserving projection"
Bhatt, Pranjal, Sujata, and Suman K. Mitra. "Kernel Variants of Extended Locality Preserving Projection." In Communications in Computer and Information Science, 130–42. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4018-9_12.
Full textShikkenawis, Gitam, and Suman K. Mitra. "A New Proposal for Locality Preserving Projection." In Perception and Machine Intelligence, 298–305. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-27387-2_37.
Full textHu, Dewen, and Ling-Li Zeng. "Locality Preserving Projection of Functional Connectivity for Regression." In Pattern Analysis of the Human Connectome, 123–47. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-32-9523-0_7.
Full textShikkenawis, Gitam, Suman K. Mitra, and Ajit Rajwade. "A New Orthogonalization of Locality Preserving Projection and Applications." In Lecture Notes in Computer Science, 277–83. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-45062-4_38.
Full textHuo, Guang, Qi Zhang, Huan Guo, Wenyu Li, and Yangrui Zhang. "Multi-source Heterogeneous Iris Recognition Using Locality Preserving Projection." In Biometric Recognition, 304–11. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-31456-9_34.
Full textZheng, Zhonglong, Jianmin Zhao, and Jie Yang. "Gabor Feature Based Face Recognition Using Supervised Locality Preserving Projection." In Advanced Concepts for Intelligent Vision Systems, 644–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11864349_59.
Full textWang, Xianliang, Jinchao Yang, Chunyan Liang, Ruohua Zhou, and Yonghong Yan. "Locality Preserving Discriminant Projection for Total-Variability-Based Language Recognition." In Advances in Intelligent Systems and Computing, 451–59. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-37835-5_39.
Full textLu, Chong, Xiaodong Liu, and Wanquan Liu. "Face Recognition via Two Dimensional Locality Preserving Projection in Frequency Domain." In Lecture Notes in Computer Science, 271–81. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15615-1_33.
Full textKumar, Santosh, Sanjay Kumar Singh, Rishav Singh, and Amit Kumar Singh. "Real-Time Recognition of Cattle Using Fisher Locality Preserving Projection Method." In Animal Biometrics, 197–221. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-7956-6_7.
Full textJin, Xin, Yi Liu, Jie Ren, Anbang Xu, and Rongfang Bie. "Locality Preserving Projection on Source Code Metrics for Improved Software Maintainability." In Lecture Notes in Computer Science, 877–86. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11941439_92.
Full textConference papers on the topic "Locality preserving projection"
Shikkenawis, Gitam, and Suman K. Mitra. "Locality Preserving Discriminant Projection." In IEEE International Conference on Identity, Security and Behavior Analysis (ISBA 2015). IEEE, 2015. http://dx.doi.org/10.1109/isba.2015.7126365.
Full textZhao, Haitao, and Shaoyuan Sun. "Optimal Locality Preserving Projection." In 2010 17th IEEE International Conference on Image Processing (ICIP 2010). IEEE, 2010. http://dx.doi.org/10.1109/icip.2010.5653271.
Full textSun, Shaoyuan, Haitao Zhao, and Huijun Yang. "Discriminant uncorrelated locality preserving projection." In 2010 3rd International Congress on Image and Signal Processing (CISP). IEEE, 2010. http://dx.doi.org/10.1109/cisp.2010.5647191.
Full textChen, Zipei. "Adaptively Discriminant Locality Preserving Projection." In 2021 2nd International Conference on Artificial Intelligence and Computer Engineering (ICAICE). IEEE, 2021. http://dx.doi.org/10.1109/icaice54393.2021.00119.
Full textKezheng Lin, Shu Li, and Jingtian Li. "Multiple information projection based on Locality Preserving Projections." In 2013 IEEE Conference Anthology. IEEE, 2013. http://dx.doi.org/10.1109/anthology.2013.6784809.
Full textZheng, Zhonglong, and Jianmin Zhao. "Locality Preserving Projection in Orthogonal Domain." In 2008 Congress on Image and Signal Processing. IEEE, 2008. http://dx.doi.org/10.1109/cisp.2008.71.
Full textShikkenawis, Gitam, and Suman K. Mitra. "Kernelization of locality preserving discriminant projection." In 2015 Fifth National Conference on Computer Vision, Pattern Recognition, Image Processing and Graphics (NCVPRIPG). IEEE, 2015. http://dx.doi.org/10.1109/ncvpripg.2015.7489993.
Full textSun, Shaoyuan, and Haitao Zhao. "Normalized Laplacian based Optimal Locality Preserving Projection." In 2010 International Conference on Audio, Language and Image Processing (ICALIP). IEEE, 2010. http://dx.doi.org/10.1109/icalip.2010.5684530.
Full textLong, Tianhang, Junbin Gao, Mingyan Yang, Yongli Hu, and Baocai Yin. "Locality Preserving Projection via Deep Neural Network." In 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 2019. http://dx.doi.org/10.1109/ijcnn.2019.8852218.
Full textSong, Xin, Xinwei Jiang, Junbin Gao, Zhihua Cai, and Xia Hong. "Functional Locality Preserving Projection for Dimensionality Reduction." In 2018 International Joint Conference on Neural Networks (IJCNN). IEEE, 2018. http://dx.doi.org/10.1109/ijcnn.2018.8489598.
Full text