Academic literature on the topic 'Locally conformal symplectic structures'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Locally conformal symplectic structures.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Locally conformal symplectic structures"

1

Bazzoni, Giovanni, and Alberto Raffero. "Special Types of Locally Conformal Closed G2-Structures." Axioms 7, no. 4 (2018): 90. http://dx.doi.org/10.3390/axioms7040090.

Full text
Abstract:
Motivated by known results in locally conformal symplectic geometry, we study different classes of G 2 -structures defined by a locally conformal closed 3-form. In particular, we provide a complete characterization of invariant exact locally conformal closed G 2 -structures on simply connected Lie groups, and we present examples of compact manifolds with different types of locally conformal closed G 2 -structures.
APA, Harvard, Vancouver, ISO, and other styles
2

Banyaga, A. "Some properties of locally conformal symplectic structures." Commentarii Mathematici Helvetici 77, no. 2 (2002): 383–98. http://dx.doi.org/10.1007/s00014-002-8345-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kadobianski, Roman, Jan Kubarski, Vitalij Kushnirevitch, and Robert Wolak. "Transitive Lie algebroids of rank 1 and locally conformal symplectic structures." Journal of Geometry and Physics 46, no. 2 (2003): 151–58. http://dx.doi.org/10.1016/s0393-0440(02)00128-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Marrero, Juan C., David Martínez Torres, and Edith Padrón. "Universal models via embedding and reduction for locally conformal symplectic structures." Annals of Global Analysis and Geometry 40, no. 3 (2011): 311–37. http://dx.doi.org/10.1007/s10455-011-9259-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Bande, G., and D. Kotschick. "Moser stability for locally conformally symplectic structures." Proceedings of the American Mathematical Society 137, no. 07 (2009): 2419–24. http://dx.doi.org/10.1090/s0002-9939-09-09821-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Origlia, Marcos. "Locally conformal symplectic structures on Lie algebras of type I and their solvmanifolds." Forum Mathematicum 31, no. 3 (2019): 563–78. http://dx.doi.org/10.1515/forum-2018-0200.

Full text
Abstract:
Abstract We study Lie algebras of type I, that is, a Lie algebra {\mathfrak{g}} where all the eigenvalues of the operator {\operatorname{ad}_{X}} are imaginary for all {X\in\mathfrak{g}} . We prove that the Morse–Novikov cohomology of a Lie algebra of type I is trivial for any closed 1-form. We focus on locally conformal symplectic structures (LCS) on Lie algebras of type I. In particular, we show that for a Lie algebra of type I any LCS structure is of the first kind. We also exhibit lattices for some 6-dimensional Lie groups of type I admitting left invariant LCS structures in order to produ
APA, Harvard, Vancouver, ISO, and other styles
7

Andrada, A., and M. Origlia. "Lattices in almost abelian Lie groups with locally conformal Kähler or symplectic structures." manuscripta mathematica 155, no. 3-4 (2017): 389–417. http://dx.doi.org/10.1007/s00229-017-0938-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Origlia, M. "On a certain class of locally conformal symplectic structures of the second kind." Differential Geometry and its Applications 68 (February 2020): 101586. http://dx.doi.org/10.1016/j.difgeo.2019.101586.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Alekseevsky, D. V., V. Cortés, K. Hasegawa, and Y. Kamishima. "Homogeneous locally conformally Kähler and Sasaki manifolds." International Journal of Mathematics 26, no. 06 (2015): 1541001. http://dx.doi.org/10.1142/s0129167x15410013.

Full text
Abstract:
We prove various classification results for homogeneous locally conformally symplectic manifolds. In particular, we show that a homogeneous locally conformally Kähler manifold of a reductive group is of Vaisman type if the normalizer of the isotropy group is compact. We also show that such a result does not hold in the case of non-compact normalizer and determine all left-invariant lcK structures on reductive Lie groups.
APA, Harvard, Vancouver, ISO, and other styles
10

Apostolov, Vestislav, and Georges Dloussky. "Locally Conformally Symplectic Structures on Compact Non-Kähler Complex Surfaces." International Mathematics Research Notices 2016, no. 9 (2015): 2717–47. http://dx.doi.org/10.1093/imrn/rnv211.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Locally conformal symplectic structures"

1

Istrati, Nicolina. "Conformal structures on compact complex manifolds." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC054/document.

Full text
Abstract:
Dans cette thèse on s’intéresse à deux types de structures conformes non-dégénérées sur une variété complexe compacte donnée. La première c’est une forme holomorphe symplectique twistée (THS), i.e. une deux-forme holomorphe non-dégénérée à valeurs dans un fibré en droites. Dans le deuxième contexte, il s’agit des métriques localement conformément kähleriennes (LCK). Dans la première partie, on se place sur un variété de type Kähler. Les formes THS généralisent les formes holomorphes symplectiques, dont l’existence équivaut à ce que la variété admet une structure hyperkählerienne, par un théorè
APA, Harvard, Vancouver, ISO, and other styles
2

Currier, Adrien. "Quelques outils pour l’étude des sous-variétés lagrangiennes dans les fibrés cotangents avec structure lcs." Electronic Thesis or Diss., Nantes Université, 2024. http://www.theses.fr/2024NANU4021.

Full text
Abstract:
La géométrie localement conformément symplectique (lcs) est une généralisation de la géométrie symplectique dans laquelle une variété est munie d’une 2-forme non-dégénérée qui est localement une forme symplectique à un facteur positif près. Si les comportements locaux de telles variétés restent relativement similaires à ceux que l’on rencontre en géométrie symplectique, les comportements globaux peuvent néanmoins différer. Par exemple, nous pouvons étendre la définition des lagrangiennes à la géométrie lcs, mais S3 × S1 possède une structure lcs “exacte” donnée par la structure de contact cano
APA, Harvard, Vancouver, ISO, and other styles
3

Origlia, Marcos Miguel. "Estructuras localmente conformes Kähler y localmente conformes simplécticas en solvariedades compacta." Doctoral thesis, 2017. http://hdl.handle.net/11086/5837.

Full text
Abstract:
Tesis (Doctor en Matemática)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2017.<br>En esta tesis estudiamos las estructuras localmente conformes Kähler (LCK) y localmente conformes simplécticas (LCS) invariantes a izquierda en grupos de Lie, o equivalentemente tales estructuras en álgebras de Lie. Luego se buscan retículos (subgrupos discretos co-compactos) en dichos grupos. De esta manera obtenemos estructuras LCK o LCS en las solvariedades compactas (cociente de un grupo de Lie por un retículo). Específicamente estudiamos las estructuras LCK e
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Locally conformal symplectic structures"

1

Ibragimov, Zair. Topics in several complex variables: First USA-Uzbekistan Conference on Analysis and Mathematical Physics, May 20-23, 2014, California State University, Fullerton, California. American Mathematical Society, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Locally conformal symplectic structures"

1

Guha, Partha. "The Role of the Jacobi Last Multiplier in Nonholonomic Systems and Locally Conformal Symplectic Structure." In STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97175-9_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kashiwada, Toyoko. "On locally conformal Kähler structures." In New Developments in Differential Geometry. Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-009-0149-0_17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

McDuff, Dusa, and Dietmar Salamon. "Symplectic Manifolds." In Introduction to Symplectic Topology. Oxford University PressOxford, 1995. http://dx.doi.org/10.1093/oso/9780198511779.003.0005.

Full text
Abstract:
Abstract This is a foundational chapter, and everything in it (except perhaps Section 3.4 on contact structures) is needed to understand later chapters. The first section contains elementary definitions and first examples of symplectic manifolds. The second section is devoted to Darboux’s theorem. Some situations are flexible and there are no nontrivial invariants, while other situations are rigid. In this chapter we deal with ‘soft’ phenomena, the fact that in symplectic geometry there are no local invariants. The classical formulation of this principle is known as Darboux’s theorem: all symp
APA, Harvard, Vancouver, ISO, and other styles
4

Fefferman, Charles, and C. Robin Graham. "Conformally Flat and Conformally Einstein Spaces." In The Ambient Metric (AM-178). Princeton University Press, 2011. http://dx.doi.org/10.23943/princeton/9780691153131.003.0007.

Full text
Abstract:
This chapter analyzes the ambient and Poincaré metrics for locally conformally flat manifolds and for conformal classes containing an Einstein metric. The obstruction tensor vanishes for even dimensional conformal structures of these types. It shows that for these special conformal classes, there is a way to uniquely specify the formally undetermined term at order n/2 in an invariant way and thereby obtain a unique ambient metric up to terms vanishing to infinite order and up to diffeomorphism, just like in odd dimensions. It derives a formula of Skenderis and Solodukhin [SS] for the ambient o
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Locally conformal symplectic structures"

1

Cioroianu, Eugen-Mihaita. "Locally conformal symplectic structures: From standard to line bundle approach." In TIM 19 PHYSICS CONFERENCE. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0001020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Domitrz, Wojciech. "Reductions of locally conformal symplectic structures and de Rham cohomology tangent to a foliation." In Geometry and topology of caustics. Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc82-0-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

HALLER, STEFAN. "SOME PROPERTIES OF LOCALLY CONFORMAL SYMPLECTIC MANIFOLDS." In Infinite Dimensional Lie Groups in Geometry and Representation Theory. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777089_0007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

BANYAGA, A. "ON THE GEOMETRY OF LOCALLY CONFORMAL SYMPLECTIC MANIFOLDS." In Infinite Dimensional Lie Groups in Geometry and Representation Theory. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777089_0006.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Locally conformal symplectic structures"

1

Vaisman, Izu. On Locally Lagrangian Symplectic Structures. GIQ, 2012. http://dx.doi.org/10.7546/giq-4-2003-326-329.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!