Academic literature on the topic 'Locally conformally symplectic'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Locally conformally symplectic.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Locally conformally symplectic"

1

Belgun, F., O. Goertsches, and D. Petrecca. "Locally conformally symplectic convexity." Journal of Geometry and Physics 135 (January 2019): 235–52. http://dx.doi.org/10.1016/j.geomphys.2018.10.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Otiman, Alexandra. "Locally conformally symplectic bundles." Journal of Symplectic Geometry 16, no. 5 (2018): 1377–408. http://dx.doi.org/10.4310/jsg.2018.v16.n5.a5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Stanciu, Miron. "Locally conformally symplectic reduction." Annals of Global Analysis and Geometry 56, no. 2 (2019): 245–75. http://dx.doi.org/10.1007/s10455-019-09666-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bazzoni, Giovanni. "Locally conformally symplectic and Kähler geometry." EMS Surveys in Mathematical Sciences 5, no. 1 (2018): 129–54. http://dx.doi.org/10.4171/emss/29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gatsé, Servais Cyr. "AN EXAMPLE OF LOCALLY CONFORMALLY SYMPLECTIC MANIFOLDS." Advances in Mathematics: Scientific Journal 12, no. 1 (2023): 187–92. http://dx.doi.org/10.37418/amsj.12.1.12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bande, G., and D. Kotschick. "Moser stability for locally conformally symplectic structures." Proceedings of the American Mathematical Society 137, no. 07 (2009): 2419–24. http://dx.doi.org/10.1090/s0002-9939-09-09821-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Alekseevsky, D. V., V. Cortés, K. Hasegawa, and Y. Kamishima. "Homogeneous locally conformally Kähler and Sasaki manifolds." International Journal of Mathematics 26, no. 06 (2015): 1541001. http://dx.doi.org/10.1142/s0129167x15410013.

Full text
Abstract:
We prove various classification results for homogeneous locally conformally symplectic manifolds. In particular, we show that a homogeneous locally conformally Kähler manifold of a reductive group is of Vaisman type if the normalizer of the isotropy group is compact. We also show that such a result does not hold in the case of non-compact normalizer and determine all left-invariant lcK structures on reductive Lie groups.
APA, Harvard, Vancouver, ISO, and other styles
8

Esen, Oğul, Manuel de León, Cristina Sardón, and Marcin Zajşc. "Hamilton–Jacobi formalism on locally conformally symplectic manifolds." Journal of Mathematical Physics 62, no. 3 (2021): 033506. http://dx.doi.org/10.1063/5.0021790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Stanciu, Miron. "Locally conformally symplectic reduction of the cotangent bundle." Annals of Global Analysis and Geometry 61, no. 3 (2022): 533–51. http://dx.doi.org/10.1007/s10455-021-09815-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Otiman, Alexandra, and Miron Stanciu. "Darboux–Weinstein theorem for locally conformally symplectic manifolds." Journal of Geometry and Physics 111 (January 2017): 1–5. http://dx.doi.org/10.1016/j.geomphys.2016.10.006.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Locally conformally symplectic"

1

Currier, Adrien. "Quelques outils pour l’étude des sous-variétés lagrangiennes dans les fibrés cotangents avec structure lcs." Electronic Thesis or Diss., Nantes Université, 2024. http://www.theses.fr/2024NANU4021.

Full text
Abstract:
La géométrie localement conformément symplectique (lcs) est une généralisation de la géométrie symplectique dans laquelle une variété est munie d’une 2-forme non-dégénérée qui est localement une forme symplectique à un facteur positif près. Si les comportements locaux de telles variétés restent relativement similaires à ceux que l’on rencontre en géométrie symplectique, les comportements globaux peuvent néanmoins différer. Par exemple, nous pouvons étendre la définition des lagrangiennes à la géométrie lcs, mais S3 × S1 possède une structure lcs “exacte” donnée par la structure de contact cano
APA, Harvard, Vancouver, ISO, and other styles
2

Istrati, Nicolina. "Conformal structures on compact complex manifolds." Thesis, Sorbonne Paris Cité, 2018. http://www.theses.fr/2018USPCC054/document.

Full text
Abstract:
Dans cette thèse on s’intéresse à deux types de structures conformes non-dégénérées sur une variété complexe compacte donnée. La première c’est une forme holomorphe symplectique twistée (THS), i.e. une deux-forme holomorphe non-dégénérée à valeurs dans un fibré en droites. Dans le deuxième contexte, il s’agit des métriques localement conformément kähleriennes (LCK). Dans la première partie, on se place sur un variété de type Kähler. Les formes THS généralisent les formes holomorphes symplectiques, dont l’existence équivaut à ce que la variété admet une structure hyperkählerienne, par un théorè
APA, Harvard, Vancouver, ISO, and other styles
3

Origlia, Marcos Miguel. "Estructuras localmente conformes Kähler y localmente conformes simplécticas en solvariedades compacta." Doctoral thesis, 2017. http://hdl.handle.net/11086/5837.

Full text
Abstract:
Tesis (Doctor en Matemática)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía, Física y Computación, 2017.<br>En esta tesis estudiamos las estructuras localmente conformes Kähler (LCK) y localmente conformes simplécticas (LCS) invariantes a izquierda en grupos de Lie, o equivalentemente tales estructuras en álgebras de Lie. Luego se buscan retículos (subgrupos discretos co-compactos) en dichos grupos. De esta manera obtenemos estructuras LCK o LCS en las solvariedades compactas (cociente de un grupo de Lie por un retículo). Específicamente estudiamos las estructuras LCK e
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Locally conformally symplectic"

1

Guha, Partha. "The Role of the Jacobi Last Multiplier in Nonholonomic Systems and Locally Conformal Symplectic Structure." In STEAM-H: Science, Technology, Engineering, Agriculture, Mathematics & Health. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97175-9_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Locally conformally symplectic"

1

HALLER, STEFAN. "SOME PROPERTIES OF LOCALLY CONFORMAL SYMPLECTIC MANIFOLDS." In Infinite Dimensional Lie Groups in Geometry and Representation Theory. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777089_0007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

BANYAGA, A. "ON THE GEOMETRY OF LOCALLY CONFORMAL SYMPLECTIC MANIFOLDS." In Infinite Dimensional Lie Groups in Geometry and Representation Theory. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812777089_0006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cioroianu, Eugen-Mihaita. "Locally conformal symplectic structures: From standard to line bundle approach." In TIM 19 PHYSICS CONFERENCE. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0001020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Domitrz, Wojciech. "Reductions of locally conformal symplectic structures and de Rham cohomology tangent to a foliation." In Geometry and topology of caustics. Institute of Mathematics Polish Academy of Sciences, 2008. http://dx.doi.org/10.4064/bc82-0-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!