Academic literature on the topic 'Locking free finite elements'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Locking free finite elements.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Locking free finite elements"
Reddy, J. N. "On locking-free shear deformable beam finite elements." Computer Methods in Applied Mechanics and Engineering 149, no. 1-4 (October 1997): 113–32. http://dx.doi.org/10.1016/s0045-7825(97)00075-3.
Full textFalk, Richard S., and Tong Tu. "Locking-free finite elements for the Reissner-Mindlin plate." Mathematics of Computation 69, no. 231 (August 20, 1999): 911–29. http://dx.doi.org/10.1090/s0025-5718-99-01165-5.
Full textKrysl, P., and B. Zhu. "Locking-free continuum displacement finite elements with nodal integration." International Journal for Numerical Methods in Engineering 76, no. 7 (November 12, 2008): 1020–43. http://dx.doi.org/10.1002/nme.2354.
Full textChinosi, C., C. Lovadina, and L. D. Marini. "Nonconforming locking-free finite elements for Reissner–Mindlin plates." Computer Methods in Applied Mechanics and Engineering 195, no. 25-28 (May 2006): 3448–60. http://dx.doi.org/10.1016/j.cma.2005.06.025.
Full textBelhachmi, Z., J. M. Sac-Epée, and S. Tahir. "Locking-Free Finite Elements for Unilateral Crack Problems in Elasticity." Mathematical Modelling of Natural Phenomena 4, no. 1 (2009): 1–20. http://dx.doi.org/10.1051/mmnp/20094101.
Full textXiao, Liu-Chao, Yong-Qin Yang, and Shao-Chun Chen. "Locking-free nonconforming finite elements for three-dimensional elasticity problem." Applied Mathematics and Computation 217, no. 12 (February 2011): 5790–97. http://dx.doi.org/10.1016/j.amc.2010.12.061.
Full textIzzuddin, B. A., and Y. Liang. "A hierarchic optimisation approach towards locking-free shell finite elements." Computers & Structures 232 (May 2020): 105839. http://dx.doi.org/10.1016/j.compstruc.2017.08.010.
Full textHeisserer, Ulrich, Stefan Hartmann, Alexander Düster, and Zohar Yosibash. "On volumetric locking-free behaviour of p-version finite elements under finite deformations." Communications in Numerical Methods in Engineering 24, no. 11 (June 5, 2007): 1019–32. http://dx.doi.org/10.1002/cnm.1008.
Full textArnold, Douglas N., and Franco Brezzi. "Locking-free finite element methods for shells." Mathematics of Computation 66, no. 217 (January 1, 1997): 1–15. http://dx.doi.org/10.1090/s0025-5718-97-00785-0.
Full textOyarzúa, Ricardo, and Ricardo Ruiz-Baier. "Locking-Free Finite Element Methods for Poroelasticity." SIAM Journal on Numerical Analysis 54, no. 5 (January 2016): 2951–73. http://dx.doi.org/10.1137/15m1050082.
Full textDissertations / Theses on the topic "Locking free finite elements"
Fernàndez, Méndez Sònia. ""Mesh-free methods and finite elements: friend or foe?"." Doctoral thesis, Universitat Politècnica de Catalunya, 2001. http://hdl.handle.net/10803/6705.
Full textHowever, in several situations the FE method is still more competitive: for instance, the computation of the FE shape functions and its integrals are less costly, and essential boundary conditions can be easily imposed. Thus, in order to take advantage of the good properties of both methods, a mixed interpolation combining FE and EFG is proposed. This formulation can be applied in two useful situations: (i) enrichment of finite elements with EFG, and (ii) coupling of FE and EFG. An a priori error estimate for the first one is presented and proved. Several examples show the applicability of the mixed interpolation in adaptive computations.
Aquesta tesi està dedicada a l'anàlisi numèrica dels mètodes sense malla i, en particular, a l'estudi dels possibles avantatges del mètode EFG (Element Free Galerkin) davant del ben conegut MEF (Mètode dels Elements Finits). Concretament, es comparen el mètode EFG i el MEF en dos problemes concrets d'interès: (1) l'anàlisi del bloqueig volumètric en problemes mecànics i (2) la resolució precisa de problemes transitoris amb convecció dominant. Les bones propietats i possibilitats dels mètodes sense malla es fan evidents en tots dos casos.
Tot i així, en varis aspectes el MEF resulta més competitiu: per exemple, el càlcul de les funcions de forma i de les seves integrals es menys costós, i les condicions de contorn essencials es poden imposar fàcilment. Amb l'objectiu d'aprofitar les bones qualitats dels dos mètodes, es proposa una interpolació mixta combinant elements finits y EFG, aplicable en dues situacions: (i) enriquiment d'elements finits amb EFG i (ii) acoblament d'elements finits i EFG. Per al primer cas, es presenta i demostra una cota a priori de l'error. L'aplicabilitat d'aquesta interpolació mixta en processos adaptatius es mostra amb varis exemples.
Esta tesis está dedicada al análisis numérico de los métodos sin malla y, en particular, al estudio de las posibles ventajas del método EFG (Element Free Galerkin) frente al bien conocido MEF (Método de los Elementos Finitos). Concretamente, se comparan el método EFG y el MEF en dos problemas concretos de interés: (1) el análisis del bloqueo volumétrico en problemas mecánicos y (2) la resolución precisa de problemas transitorios con convección dominante. Las buenas propiedades y posibilidades de los métodos sin malla se hacen evidentes en ambos casos.
Sin embargo, en varios aspectos el MEF resulta más competitivo: por ejemplo, el cálculo de las funciones de forma y sus integrales es menos costoso, y las condiciones de contorno esenciales se pueden imponer fácilmente. Con el objetivo de aprovechar las buenas cualidades de ambos métodos, se propone una interpolación mixta combinando elementos finitos y EFG, aplicable en dos situaciones: (i) enriquecimiento de elementos finitos con EFG, y (ii) acoplamiento de elementos finitos y EFG. Para el primer caso, se presenta y demuestra una cota a priori del error. La aplicabilidad de esta interpolación mixta en procesos adaptativos se muestra con varios ejemplos.
Dietzsch, Julian. "Implementierung gemischter Finite-Element-Formulierungen für polykonvexe Verzerrungsenergiefunktionen elastischer Kontinua." Master's thesis, Universitätsbibliothek Chemnitz, 2017. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-qucosa-217381.
Full textThis paper presents a mixed finite element formulation of Hu-Washizu type (CoFEM) designed to reduce locking effects with respect to a linear and quadratic approximation in space. We consider a hyperelastic, isotropic, polyconvex material formulation as well as transverse isotropy. The resulting nonlinear algebraic equations are solved with a multilevel NEWTON-RAPHSON method. As a numerical example serves a cook-like cantilever beam with a quadratic distribution of in-plane load on the Neumann boundary. We analyze the spatial convergence with respect to the polynomial degree of the underlying Lagrange polynomials and with respect to the level of mesh refinement in terms of algorithmic efficiency
Kobelansky, Allan John. "Divergence-free fields in the solution of waveguide problems by finite elements." Thesis, McGill University, 1988. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=61936.
Full textTchakoutio, Paul. "The numerical approximation of minimal surfaces with free boundaries by finite elements." [S.l. : s.n.], 2003. http://www.freidok.uni-freiburg.de/volltexte/765.
Full textAsdal, Bent. "Static and free vibration analysis of advanced composites using shear-deformable rectangular plate finite elements." Thesis, Virginia Polytechnic Institute and State University, 1988. http://hdl.handle.net/10919/80092.
Full textMaster of Science
Scheichl, Robert. "Iterative solution of saddle point problems using divergence-free finite elements with applications to groundwater flow." Thesis, University of Bath, 2000. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.341106.
Full textJunior, Alex Neves. "Sobre a modelagem de estruturas delgadas usando elementos finitos tridimensionais." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/3/3144/tde-08122006-152205/.
Full textThe main objective of the present work is to establish guidelines for the use of solid finite elements in the modeling of thin structures submitted to bending. By means of a set of problems the locking of elements three-dimensional and two-dimensional elasticity was studied, when used to model problems thin structures subjected to bending. We use 2-D displacements-based elements of 4, 8 and 9 nodes and 3-D displacement based of 4, 10, 11, 8, 20 and 27 nodes, considering undistorted and distorted elements. The analysis of the results of these models lead to the understanding of the behavior and the use of solid elements in thin structures.
Wang, Peng. "Solid–shell finite elements for quasi-static and dynamic analysis of 3D thin structures : application to sheet metal forming processes." Thesis, Paris, ENSAM, 2017. http://www.theses.fr/2017ENAM0010/document.
Full textNowadays, the finite element (FE) simulation provides great assistance to engineers in the design of products and optimization of manufacturing processes. Despite the growing development of computational resources, reliability and efficiency of the FE simulations remain the most important features. The current work contributes to the development of a family of assumed strain based solid-shell elements (SHB), for the modeling of 3D thin structures. Based on reduced integration and special treatments to eliminate locking effects and to control spurious zero-energy modes, the SHB solid‒shell elements are capable of modeling most thin 3D structural problems with only a single element layer, while describing accurately the various through-thickness phenomena. In the current contribution, a family of prismatic and hexahedral SHB elements with their linear and quadratic versions have been implemented into ABAQUS using both standard/quasi-static and explicit/dynamic solvers. The performance of the SHB elements is evaluated via a series of popular benchmarks as well as with impact/crash and sheet metal forming processes. All numerical results reveal that the SHB elements represent an interesting alternative to traditional shell and solid elements for the 3D modeling of thin structural problems
Albuquerque, Arthur Álax de Araújo. "Implementação de elementos finitos de barra e placa para a análise de esforços em tabuleiros de pontes por meio de superfícies de influência." Universidade de São Paulo, 2014. http://www.teses.usp.br/teses/disponiveis/18/18134/tde-28072014-093844/.
Full textThis work aims at the analysis of bridge deck stresses through influence surfaces. The finite element method (FEM) is used and the results are compared with those of Rüsch\'s tables. The bar and plate finite elements represent stringers, cross beams and slabs bridge deck. These finite elements are implemented in the SIPlacas code and the theories of Timoshenko beam and Reissner-Mindlin plate are used to theirs formulation. The Shear Locking problem is solved by two proposals: reduced integration and definition of element with transversal shear strain assumed (TSSA). The elements with quadratic approximations for the displacements and TSSA are the best suited to the proposed analysis of this research. Such elements have convergence of results considering structures with low discretization. Displacement, bending moment and shear force were the results analyzed. Subsequently a case study on a beam bridge was carried out. The bridge deck is calculated using Rüsch\'s tables and SIPlacas code. The calculation of the internal forces by SIPlacas is performed in three ways. The first one considers the slabs isolated panels; the second, the slab deck is on a rigid support; and third, the slab deck is on deformable supports. It was concluded that the third configuration showed the lowest internal forces. This configuration is the optimum representation to the structure analysis.
Le, Thi Huyen Cham. "Robust variable kinematics plate finite elements for composite structures." Thesis, Paris 10, 2019. http://faraway.parisnanterre.fr/login?url=http://bdr.parisnanterre.fr/theses/intranet/2019/2019PA100053/2019PA100053.pdf.
Full textThe aim of this work is the development of two classes of new four-node and eightnode quadrilateral finite elements implemented into the commercial finite element (FE) code Abaqus for composite plates. Variable kinematics plate models are formulated in the framework of Carrera’s Unified Formulation (CUF), which encompasses Equivalent Single Layer (ESL) as well as Layer-Wise (LW) models, with the variables that are defined by polynomials up to 4th order along the thickness direction z. The two classes refer to two variational formulations that are employed to derive the finite elements matrices, namely the Principle of Virtual Displacement (PVD) and Reissner’s Mixed Variational Theorem (RMVT). Thanks to the static condensation technique, a Hybrid formulation based on the RMVT is derived. For the purpose of eliminating the shear locking pathology, two field compatible approximations for only the z−constant transverse shear strain terms, referred to as QC4 and CL8 interpolations, are extended to all variable kinematics CUF plate elements. Moreover, the QC4S and CL8S interpolations, are also introduced for the transverse shear stress field within RMVT-based and Hybrid mixed-based elements. Numerical results in comparison with those available in literature show that the proposed FEs are efficient for modeling a robust finite elements
Books on the topic "Locking free finite elements"
Hachenberger, Dirk. Finite Fields: Normal Bases and Completely Free Elements. Boston, MA: Springer US, 1997.
Find full textHachenberger, Dirk. Finite fields: Normal bases and completely free elements. Boston: Kluwer Academic Publishers, 1997.
Find full textSager, Ali. On elements of finite order in free central extensions of groups. Manchester: UMIST, 1997.
Find full textMadenci, Erdogan. Implementation of free-formulation-based flat shell elements into NASA comet code and development of nonlinear shallow shell element: Grant NAG1-1626. [Hampton, Va.]: NASA Langley Research Center, 1997.
Find full textUnited States. National Aeronautics and Space Administration., ed. Traction free finite elements with the assumed stress hybrid model. [Washington, DC]: National Aeronautics and Space Administration, 1991.
Find full textCenter, Langley Research, and United States. National Aeronautics and Space Administration., eds. Implementation of free-formulation-based flat shell elements into NASA comet code and development of nonlinear shallow shell element: Grant NAG1-1626. [Hampton, Va.]: NASA Langley Research Center, 1997.
Find full textCenter, Langley Research, and United States. National Aeronautics and Space Administration., eds. Implementation of free-formulation-based flat shell elements into NASA comet code and development of nonlinear shallow shell element: Grant NAG1-1626. [Hampton, Va.]: NASA Langley Research Center, 1997.
Find full textImplementation of free-formulation-based flat shell elements into NASA comet code and development of nonlinear shallow shell element: Grant NAG1-1626. [Hampton, Va.]: NASA Langley Research Center, 1997.
Find full textGrishman, Ralph. Information Extraction. Edited by Ruslan Mitkov. Oxford University Press, 2012. http://dx.doi.org/10.1093/oxfordhb/9780199276349.013.0030.
Full textBook chapters on the topic "Locking free finite elements"
Dasgupta, Gautam. "Incompressible Plane Strain Elements: Locking-Free in the x and y Directions." In Finite Element Concepts, 147–73. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7423-8_8.
Full textDasgupta, Gautam. "Four-Node “Locking-Free” Elements: Capturing Analytical Stresses in Pure Bending: For Two Orthogonal Directions." In Finite Element Concepts, 131–46. New York, NY: Springer New York, 2017. http://dx.doi.org/10.1007/978-1-4939-7423-8_7.
Full textChapelle, Dominique, and Rolf Stenberg. "Locking-free mixed stabilized finite element methods for bending-dominated shells." In Plates and Shells, 81–94. Providence, Rhode Island: American Mathematical Society, 1999. http://dx.doi.org/10.1090/crmp/021/06.
Full textCuvelier, C., A. Segal, and A. A. van Steenhoven. "Divergence-free elements." In Finite Element Methods and Navier-Stokes Equations, 288–322. Dordrecht: Springer Netherlands, 1986. http://dx.doi.org/10.1007/978-94-010-9333-0_9.
Full textHachenberger, Dirk. "The Existence of Completely Free Elements." In Finite Fields, 75–97. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-6269-6_4.
Full textLiang, Y., and B. Izzuddin. "An optimisation approach towards locking-free isotropic shell elements." In Insights and Innovations in Structural Engineering, Mechanics and Computation, 491–97. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2016. http://dx.doi.org/10.1201/9781315641645-82.
Full textPechstein, Astrid S., Martin Meindlhumer, Alexander Humer, and Michael Krommer. "Locking Free High-Order Mixed Elements for Ferroelectric Polarization." In Advanced Structured Materials, 173–86. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79325-8_15.
Full textBergan, P. G., and M. K. Nygård. "Nonlinear Shell Analysis Using Free Formulation Finite Elements." In Finite Element Methods for Nonlinear Problems, 317–38. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-82704-4_18.
Full textHuang, Hou-Cheng. "Theory of Degenerated Curved Shell and Locking in Shell Finite Elements." In Numerical Techniques for Engineering Analysis and Design, 111–18. Dordrecht: Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-3653-9_13.
Full textNygård, M. K., and P. G. Bergan. "Nonconforming Finite Elements Based on the Free Formulation." In Discretization Methods in Structural Mechanics, 71–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1990. http://dx.doi.org/10.1007/978-3-642-49373-7_7.
Full textConference papers on the topic "Locking free finite elements"
Wasfy, Tamer, Hatem Wasfy, Paramsothy Jayakumar, and Srinivas Sanikommu. "Validation of a High-Fidelity Finite Element Tire Model on Pavement." In ASME 2020 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/detc2020-22763.
Full textTang, Xiaowei, Ying Jie, and Maotian Luan. "A Coupled Finite Element-Element Free Galerkin Method for Liquefiable Soil-Structure Interaction Analysis Under Earthquake Loading." In ASME 2009 28th International Conference on Ocean, Offshore and Arctic Engineering. ASMEDC, 2009. http://dx.doi.org/10.1115/omae2009-80174.
Full textKapoor, Hitesh, and Rakesh Kapania. "Locking Free and Stabilized Geometrically Nonlinear NURBS Isogeometric finite element Analysis of Laminated Composite Plate." In 52nd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. Reston, Virigina: American Institute of Aeronautics and Astronautics, 2011. http://dx.doi.org/10.2514/6.2011-2165.
Full textIura, M. "Finite Element Formulation for Dynamic Analysis of Planar Flexible Beams With Finite Rotations." In ASME 1993 International Computers in Engineering Conference and Exposition. American Society of Mechanical Engineers, 1993. http://dx.doi.org/10.1115/cie1993-0011.
Full textShastry, A. V. S. Ravi, and Pramod Kumar. "Frequency Response of a Three-Node Finite Element for Composite Thin and Thick Plates." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-61097.
Full textYamashita, Hiroki, Paramsothy Jayakumar, and Hiroyuki Sugiyama. "Modeling of Deformable Tire and Soil Interaction Using Multiplicative Finite Plasticity for Multibody Off-Road Mobility Simulation." In ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2016. http://dx.doi.org/10.1115/detc2016-59294.
Full textSenjanović, Ivo, Nikola Vladimir, Dae-Seung Cho, and Tae-Muk Choi. "Vibration Analysis of Thick Plates: Analytical and Numerical Approaches." In ASME 2014 33rd International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/omae2014-23273.
Full textRichter, C. C., and G. R. Heppler. "L-Spline Finite Elements." In ASME 2005 International Mechanical Engineering Congress and Exposition. ASMEDC, 2005. http://dx.doi.org/10.1115/imece2005-81747.
Full textj, Petrolito. "The Free Formulation and Thick Plate Finite Elements." In 10th International Conference on Advances in Steel Concrete Composite and Hybrid Structures. Singapore: Research Publishing Services, 2012. http://dx.doi.org/10.3850/978-981-07-2615-7_039.
Full textBalch, Chad D. "Structural Finite Elements With High-Order Basis Functions." In ASME 1991 International Computers in Engineering Conference and Exposition. American Society of Mechanical Engineers, 1991. http://dx.doi.org/10.1115/cie1991-0099.
Full textReports on the topic "Locking free finite elements"
Epperly, E., A. Barker, and R. Falgout. Smoothers for Matrix-Free Algebraic Multigrid Preconditioning of High-Order Finite Elements. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1660522.
Full text