Academic literature on the topic 'Locomotion Interaction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Locomotion Interaction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Locomotion Interaction"
Wu, Michael, Stefan M. Brudzynski, and Gordon J. Mogenson. "Functional interaction of dopamine and glutamate in the nucleus accumbens in the regulation of locomotion." Canadian Journal of Physiology and Pharmacology 71, no. 5-6 (1993): 407–13. http://dx.doi.org/10.1139/y93-061.
Full textRen, Lin, Ling Yuan, Qingyu Gao, Rui Teng, Jing Wang, and Irving R. Epstein. "Chemomechanical origin of directed locomotion driven by internal chemical signals." Science Advances 6, no. 18 (2020): eaaz9125. http://dx.doi.org/10.1126/sciadv.aaz9125.
Full textHan, Yuanfeng, Ratan Othayoth, Yulong Wang, et al. "Shape-induced obstacle attraction and repulsion during dynamic locomotion." International Journal of Robotics Research 40, no. 6-7 (2021): 939–55. http://dx.doi.org/10.1177/0278364921989372.
Full textHasson, Christopher J., and Sarah E. Goodman. "Learning to shape virtual patient locomotor patterns: internal representations adapt to exploit interactive dynamics." Journal of Neurophysiology 121, no. 1 (2019): 321–35. http://dx.doi.org/10.1152/jn.00408.2018.
Full textKawashima, Noritaka, Daichi Nozaki, Masaki O. Abe, and Kimitaka Nakazawa. "Shaping Appropriate Locomotive Motor Output Through Interlimb Neural Pathway Within Spinal Cord in Humans." Journal of Neurophysiology 99, no. 6 (2008): 2946–55. http://dx.doi.org/10.1152/jn.00020.2008.
Full textBoletsis, Costas, and Jarl Erik Cedergren. "VR Locomotion in the New Era of Virtual Reality: An Empirical Comparison of Prevalent Techniques." Advances in Human-Computer Interaction 2019 (April 1, 2019): 1–15. http://dx.doi.org/10.1155/2019/7420781.
Full textMacKay-Lyons, Marilyn. "Central Pattern Generation of Locomotion: A Review of the Evidence." Physical Therapy 82, no. 1 (2002): 69–83. http://dx.doi.org/10.1093/ptj/82.1.69.
Full textNagarkar, Amit, Won-Kyu Lee, Daniel J. Preston, et al. "Elastic-instability–enabled locomotion." Proceedings of the National Academy of Sciences 118, no. 8 (2021): e2013801118. http://dx.doi.org/10.1073/pnas.2013801118.
Full textCalisti, M., G. Picardi, and C. Laschi. "Fundamentals of soft robot locomotion." Journal of The Royal Society Interface 14, no. 130 (2017): 20170101. http://dx.doi.org/10.1098/rsif.2017.0101.
Full textHayes, Heather Brant, Young-Hui Chang, and Shawn Hochman. "An In Vitro Spinal Cord–Hindlimb Preparation for Studying Behaviorally Relevant Rat Locomotor Function." Journal of Neurophysiology 101, no. 2 (2009): 1114–22. http://dx.doi.org/10.1152/jn.90523.2008.
Full textDissertations / Theses on the topic "Locomotion Interaction"
GARCIA, C. A. C. "Human-Robot Interaction Strategies for Walker-Assisted Locomotion." Universidade Federal do Espírito Santo, 2015. http://repositorio.ufes.br/handle/10/9725.
Full textNabiyouni, Mahdi. "How Does Interaction Fidelity Influence User Experience in VR Locomotion?" Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/74945.
Full textFarhadi-Niaki, Farzin. "Usability Analysis in Locomotion Interface for Human Computer Interaction System Design." Thesis, Université d'Ottawa / University of Ottawa, 2019. http://hdl.handle.net/10393/38670.
Full textVassallo, Christian. "Using human-inspired models for guiding robot locomotion." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30177/document.
Full textBaiamonte, Brandon. "The Interaction of Pain and Morphine on Analgesia, Locomotion, and Cognitive Functioning." ScholarWorks@UNO, 2010. http://scholarworks.uno.edu/td/1207.
Full textWarren, Lawrence Elliot. "The Effect of Interaction Fidelity on User Experience in Virtual Reality Locomotion." Thesis, Virginia Tech, 2018. http://hdl.handle.net/10919/83403.
Full textBond, David, and Madelein Nyblom. "Evaluation of four different virtual locomotion techniques in an interactive environment." Thesis, Blekinge Tekniska Högskola, Institutionen för datavetenskap, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:bth-18363.
Full textLe, Gal Jean-Patrick. "Coordination locomotion-respiration : influences des réseaux locomoteurs cervico-lombaires sur l'activité des neurones respiratoires spinaux et bulbaires." Thesis, Bordeaux 2, 2013. http://www.theses.fr/2013BOR22089/document.
Full textLynch, Sean. "Perception visuelle du mouvement humain dans les interactions lors de tâches locomotrices." Thesis, Rennes 2, 2018. http://www.theses.fr/2018REN20046/document.
Full textCosta, Natália Meireles Santos da. "O desenvolvimento da locomoção em interações bebê-bebê no contexto de creche." Universidade de São Paulo, 2016. http://www.teses.usp.br/teses/disponiveis/59/59137/tde-02122016-164240/.
Full textBooks on the topic "Locomotion Interaction"
Cifuentes, Carlos A., and Anselmo Frizera. Human-Robot Interaction Strategies for Walker-Assisted Locomotion. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-34063-0.
Full textCifuentes, Carlos A., and Anselmo Frizera. Human-Robot Interaction Strategies for Walker-Assisted Locomotion. Springer, 2016.
Find full textCifuentes, Carlos A., and Anselmo Frizera. Human-Robot Interaction Strategies for Walker-Assisted Locomotion. Springer, 2018.
Find full textHanspal, Rajiv S., and Peter Calder. Amputations and prostheses. Oxford University Press, 2011. http://dx.doi.org/10.1093/med/9780199550647.003.011003.
Full textCruse, Holk, and Malte Schilling. Pattern generation. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780199674923.003.0024.
Full textVrbová, Gerta, T. Gordon, and Rosie Jones. Nerve-Muscle Interaction. 2nd ed. Springer, 1994.
Find full textStoddard, Frederick J., and Robert L. Sheridan. Wound Healing and Depression. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190603342.003.0009.
Full textBiewener, Andrew A., and Shelia N. Patek, eds. Muscles and Skeletons. Oxford University Press, 2018. http://dx.doi.org/10.1093/oso/9780198743156.003.0002.
Full textOliver, Jon L., and Rhodri S. Lloyd. Speed and agility training. Edited by Neil Armstrong and Willem van Mechelen. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780198757672.003.0037.
Full textBook chapters on the topic "Locomotion Interaction"
Lehmann, Fritz-Olaf. "Wing–wake interaction reduces power consumption in insect tandem wings." In Animal Locomotion. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11633-9_17.
Full textCifuentes, Carlos A., and Anselmo Frizera. "Human-Robot Interaction for Assisting Human Locomotion." In Springer Tracts in Advanced Robotics. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-34063-0_2.
Full textGrillner, Sten. "Interaction between Sensory Signals and the Central Networks Controlling Locomotion in Lamprey, Dogfish and Cat." In Neurobiology of Vertebrate Locomotion. Palgrave Macmillan UK, 1986. http://dx.doi.org/10.1007/978-1-349-09148-5_31.
Full textMori, Shigemi, and Y. Ohta. "Interaction of Posture and Locomotion and Initiation of Locomotion in Decerebrate Cats and Freely Moving Intact Cats." In Neurobiology of Vertebrate Locomotion. Palgrave Macmillan UK, 1986. http://dx.doi.org/10.1007/978-1-349-09148-5_5.
Full textJia, Laibing. "Locomotion Modes of a Plate in the Wake of a Cylinder." In The Interaction Between Flexible Plates and Fluid in Two-dimensional Flow. Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-662-43675-2_6.
Full textIto, Takuma, and Minoru Kamata. "Autonomous Locomotion Based on Interpersonal Contexts of Pedestrian Areas for Intelligent Powered Wheelchair." In Human Interface and the Management of Information. Information and Interaction for Health, Safety, Mobility and Complex Environments. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39215-3_55.
Full textGrillner, S. "Neural Control of Vertebrate Locomotion - Central Mechanisms and Reflex Interaction with Special Reference to the Cat." In Feedback and Motor Control in Invertebrates and Vertebrates. Springer Netherlands, 1985. http://dx.doi.org/10.1007/978-94-011-7084-0_3.
Full textRojratsirikul, P., Z. Wang, and I. Gursul. "Unsteady fluid-structure interactions of membrane airfoils at low Reynolds numbers." In Animal Locomotion. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11633-9_24.
Full textPeng, Jifeng, and John O. Dabiri. "A potential-flow, deformable-body model for fluid-structure interactions with compact vorticity: application to animal swimming measurements." In Animal Locomotion. Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-11633-9_2.
Full textLennard, Paul R., and J. W. Hermanson. "Central-Peripheral Interactions Influencing the Locomotor Rhythm." In Neurobiology of Vertebrate Locomotion. Palgrave Macmillan UK, 1986. http://dx.doi.org/10.1007/978-1-349-09148-5_32.
Full textConference papers on the topic "Locomotion Interaction"
Abdolhosseini, Farzad, Hung Yu Ling, Zhaoming Xie, Xue Bin Peng, and Michiel van de Panne. "On Learning Symmetric Locomotion." In MIG '19: Motion, Interaction and Games. ACM, 2019. http://dx.doi.org/10.1145/3359566.3360070.
Full textBermudez, Luis, Jerry Tessendorf, Daniel Zimmermann, and Victor Zordan. "Real-time locomotion with character-fluid interactions." In MIG '18: Motion, Interaction and Games. ACM, 2018. http://dx.doi.org/10.1145/3274247.3274515.
Full textHabib, Maki K., Keigo Watanabe, and Kiyotaka Izumi. "Biped locomotion using CPG with sensory interaction." In 2009 IEEE International Symposium on Industrial Electronics (ISIE 2009). IEEE, 2009. http://dx.doi.org/10.1109/isie.2009.5219063.
Full textBabadi, Amin, Kourosh Naderi, and Perttu Hämäläinen. "Self-Imitation Learning of Locomotion Movements through Termination Curriculum." In MIG '19: Motion, Interaction and Games. ACM, 2019. http://dx.doi.org/10.1145/3359566.3360072.
Full textDu, Han, Erik Herrmann, Janis Sprenger, Klaus Fischer, and Philipp Slusallek. "Stylistic Locomotion Modeling and Synthesis using Variational Generative Models." In MIG '19: Motion, Interaction and Games. ACM, 2019. http://dx.doi.org/10.1145/3359566.3360083.
Full textSantos, Mariana, Solange Santos, Carolina Cerqueira, Maria Pedroso, Inês Lopes, and Luís Duarte. "GESTURAL LOCOMOTION IN 360º VIRTUAL TOUR OF COIMBRA." In International Conference On Interfaces and Human Computer Interaction 2019. IADIS Press, 2019. http://dx.doi.org/10.33965/ihci2019_201906c048.
Full textBozgeyikli, Evren, Andrew Raij, Srinivas Katkoori, and Rajiv Dubey. "Locomotion in Virtual Reality for Individuals with Autism Spectrum Disorder." In SUI '16: Symposium on Spatial User Interaction. ACM, 2016. http://dx.doi.org/10.1145/2983310.2985763.
Full textWarren, Lawrence E., and Doug A. Bowman. "User experience with semi-natural locomotion techniques in virtual reality." In SUI '17: Symposium on Spatial User Interaction. ACM, 2017. http://dx.doi.org/10.1145/3131277.3134359.
Full textGriffin, Nathan Navarro, James Liu, and Eelke Folmer. "Evaluation of Handsbusy vs Handsfree Virtual Locomotion." In CHI PLAY '18: The annual symposium on Computer-Human Interaction in Play. ACM, 2018. http://dx.doi.org/10.1145/3242671.3242707.
Full textAgethen, Philipp, Max Link, Felix Gaisbauer, Thies Pfeiffer, and Enrico Rukzio. "Counterbalancing virtual reality induced temporal disparities of human locomotion for the manufacturing industry." In MIG '18: Motion, Interaction and Games. ACM, 2018. http://dx.doi.org/10.1145/3274247.3274517.
Full textReports on the topic "Locomotion Interaction"
Sibert, Linda E., James N. Templeman, Robert C. Page, Jeremy T. Barron, and Justin A. McCune. Initial Assessment of Human Performance Using the Gaiter Interaction Technique to Control Locomotion in Fully Immersive Virtual Environments. Defense Technical Information Center, 2004. http://dx.doi.org/10.21236/ada424639.
Full textRitzmann, Roy E., Roger D. Quinn, and Mark A. Willis. Descending and Local Network Interactions Control Adaptive Locomotion. Defense Technical Information Center, 2014. http://dx.doi.org/10.21236/ada615343.
Full text