Journal articles on the topic 'Locomotion Interaction'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Locomotion Interaction.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Wu, Michael, Stefan M. Brudzynski, and Gordon J. Mogenson. "Functional interaction of dopamine and glutamate in the nucleus accumbens in the regulation of locomotion." Canadian Journal of Physiology and Pharmacology 71, no. 5-6 (1993): 407–13. http://dx.doi.org/10.1139/y93-061.
Full textRen, Lin, Ling Yuan, Qingyu Gao, Rui Teng, Jing Wang, and Irving R. Epstein. "Chemomechanical origin of directed locomotion driven by internal chemical signals." Science Advances 6, no. 18 (2020): eaaz9125. http://dx.doi.org/10.1126/sciadv.aaz9125.
Full textHan, Yuanfeng, Ratan Othayoth, Yulong Wang, et al. "Shape-induced obstacle attraction and repulsion during dynamic locomotion." International Journal of Robotics Research 40, no. 6-7 (2021): 939–55. http://dx.doi.org/10.1177/0278364921989372.
Full textHasson, Christopher J., and Sarah E. Goodman. "Learning to shape virtual patient locomotor patterns: internal representations adapt to exploit interactive dynamics." Journal of Neurophysiology 121, no. 1 (2019): 321–35. http://dx.doi.org/10.1152/jn.00408.2018.
Full textKawashima, Noritaka, Daichi Nozaki, Masaki O. Abe, and Kimitaka Nakazawa. "Shaping Appropriate Locomotive Motor Output Through Interlimb Neural Pathway Within Spinal Cord in Humans." Journal of Neurophysiology 99, no. 6 (2008): 2946–55. http://dx.doi.org/10.1152/jn.00020.2008.
Full textBoletsis, Costas, and Jarl Erik Cedergren. "VR Locomotion in the New Era of Virtual Reality: An Empirical Comparison of Prevalent Techniques." Advances in Human-Computer Interaction 2019 (April 1, 2019): 1–15. http://dx.doi.org/10.1155/2019/7420781.
Full textMacKay-Lyons, Marilyn. "Central Pattern Generation of Locomotion: A Review of the Evidence." Physical Therapy 82, no. 1 (2002): 69–83. http://dx.doi.org/10.1093/ptj/82.1.69.
Full textNagarkar, Amit, Won-Kyu Lee, Daniel J. Preston, et al. "Elastic-instability–enabled locomotion." Proceedings of the National Academy of Sciences 118, no. 8 (2021): e2013801118. http://dx.doi.org/10.1073/pnas.2013801118.
Full textCalisti, M., G. Picardi, and C. Laschi. "Fundamentals of soft robot locomotion." Journal of The Royal Society Interface 14, no. 130 (2017): 20170101. http://dx.doi.org/10.1098/rsif.2017.0101.
Full textHayes, Heather Brant, Young-Hui Chang, and Shawn Hochman. "An In Vitro Spinal Cord–Hindlimb Preparation for Studying Behaviorally Relevant Rat Locomotor Function." Journal of Neurophysiology 101, no. 2 (2009): 1114–22. http://dx.doi.org/10.1152/jn.90523.2008.
Full textViana Di Prisco, Gonzalo, and Simon Alford. "Quantitative Investigation of Calcium Signals for Locomotor Pattern Generation in the Lamprey Spinal Cord." Journal of Neurophysiology 92, no. 3 (2004): 1796–806. http://dx.doi.org/10.1152/jn.00138.2004.
Full textOthayoth, Ratan, George Thoms, and Chen Li. "An energy landscape approach to locomotor transitions in complex 3D terrain." Proceedings of the National Academy of Sciences 117, no. 26 (2020): 14987–95. http://dx.doi.org/10.1073/pnas.1918297117.
Full textLiang, Jing Nong, and David A. Brown. "Impaired foot-force direction regulation during postural loaded locomotion in individuals poststroke." Journal of Neurophysiology 110, no. 2 (2013): 378–86. http://dx.doi.org/10.1152/jn.00005.2013.
Full textYazawa, Itaru, and Seiji Shioda. "Reciprocal functional interactions between the respiration/circulation center, the upper spinal cord, and the trigeminal system." Translational Neuroscience 6, no. 1 (2015): 87–102. http://dx.doi.org/10.1515/tnsci-2015-0008.
Full textScharenbrock, Amanda R., Hannah J. Schiffman, Zachariah P. G. Olufs, David A. Wassarman, and Misha Perouansky. "Interactions among Genetic Background, Anesthetic Agent, and Oxygen Concentration Shape Blunt Traumatic Brain Injury Outcomes in Drosophila melanogaster." International Journal of Molecular Sciences 21, no. 18 (2020): 6926. http://dx.doi.org/10.3390/ijms21186926.
Full textMazouchova, Nicole, Nick Gravish, Andrei Savu, and Daniel I. Goldman. "Utilization of granular solidification during terrestrial locomotion of hatchling sea turtles." Biology Letters 6, no. 3 (2010): 398–401. http://dx.doi.org/10.1098/rsbl.2009.1041.
Full textPreest, M. R., and F. H. Pough. "Interaction of Temperature and Hydration on Locomotion of Toads." Functional Ecology 3, no. 6 (1989): 693. http://dx.doi.org/10.2307/2389501.
Full textCornwell, James F. M., Olivia Mandelbaum, Allison Turza Bajger, Raymond D. Crookes, David H. Krantz, and E. Tory Higgins. "Locomoting Larks and Assessing Owls: Morality from Mode and Time of Day." Social Cognition 39, no. 1 (2021): 59–80. http://dx.doi.org/10.1521/soco.2021.39.1.59.
Full textPérez del Pulgar Mancebo, Carlos Jesús Pérez del Pulgar, Pablo Romeo Manrique, Gonzalo Jesús Paz Delgado, José Ricardo Sánchez Ibáñez, and Martin Azkarate. "Choosing the Best Locomotion Mode in Reconfigurable Rovers." Electronics 8, no. 7 (2019): 818. http://dx.doi.org/10.3390/electronics8070818.
Full textBiewener, Andrew, and Thomas Daniel. "A moving topic: control and dynamics of animal locomotion." Biology Letters 6, no. 3 (2010): 387–88. http://dx.doi.org/10.1098/rsbl.2010.0294.
Full textDawson, Cody, Parker Henley, Adam Schroeder, et al. "23 Effects of Rubber Matting on Cattle Locomotion Scores in Slatted Facilities." Journal of Animal Science 99, Supplement_1 (2021): 23. http://dx.doi.org/10.1093/jas/skab054.040.
Full textKo, Hyeongseok, and James Cremer. "VRLOCO: Real-Time Human Locomotion from Positional Input Streams." Presence: Teleoperators and Virtual Environments 5, no. 4 (1996): 367–80. http://dx.doi.org/10.1162/pres.1996.5.4.367.
Full textGordon, Ian T., Mary J. Dunbar, Kimberly J. Vanneste, and Patrick J. Whelan. "Interaction Between Developing Spinal Locomotor Networks in the Neonatal Mouse." Journal of Neurophysiology 100, no. 1 (2008): 117–28. http://dx.doi.org/10.1152/jn.00829.2007.
Full textMyslivecek, Jaromir. "Two Players in the Field: Hierarchical Model of Interaction between the Dopamine and Acetylcholine Signaling Systems in the Striatum." Biomedicines 9, no. 1 (2021): 25. http://dx.doi.org/10.3390/biomedicines9010025.
Full textRamia, M., D. L. Tullock, and N. Phan-Thien. "The role of hydrodynamic interaction in the locomotion of microorganisms." Biophysical Journal 65, no. 2 (1993): 755–78. http://dx.doi.org/10.1016/s0006-3495(93)81129-9.
Full textChen, J., W. O. Friesen, and T. Iwasaki. "Mechanisms underlying rhythmic locomotion: body-fluid interaction in undulatory swimming." Journal of Experimental Biology 214, no. 4 (2011): 561–74. http://dx.doi.org/10.1242/jeb.048751.
Full textSegers, Veerle. "Neuromechanical interaction during locomotion : Bipedal gait transition as a paradigm." Comparative Biochemistry and Physiology Part A: Molecular & Integrative Physiology 153, no. 2 (2009): S135. http://dx.doi.org/10.1016/j.cbpa.2009.04.242.
Full textDietz, Cornelia, and Reinhard Schnetter. "Interaction of two myosins with microfilaments causes locomotion inLabyrinthula sp." Protoplasma 206, no. 1-3 (1999): 97–104. http://dx.doi.org/10.1007/bf01279256.
Full textSamuel, S. K., R. A. Hurta, M. A. Spearman, J. A. Wright, E. A. Turley, and A. H. Greenberg. "TGF-beta 1 stimulation of cell locomotion utilizes the hyaluronan receptor RHAMM and hyaluronan." Journal of Cell Biology 123, no. 3 (1993): 749–58. http://dx.doi.org/10.1083/jcb.123.3.749.
Full textEtienne, A. S., R. Maurer, and V. Séguinot. "Path integration in mammals and its interaction with visual landmarks." Journal of Experimental Biology 199, no. 1 (1996): 201–9. http://dx.doi.org/10.1242/jeb.199.1.201.
Full textSchmitt, David E., Russell H. Hill, and Sten Grillner. "The Spinal GABAergic System Is a Strong Modulator of Burst Frequency in the Lamprey Locomotor Network." Journal of Neurophysiology 92, no. 4 (2004): 2357–67. http://dx.doi.org/10.1152/jn.00233.2004.
Full textFlammang, Brooke E., George V. Lauder, Daniel R. Troolin, and Tyson E. Strand. "Volumetric imaging of fish locomotion." Biology Letters 7, no. 5 (2011): 695–98. http://dx.doi.org/10.1098/rsbl.2011.0282.
Full textMarsh, William E., Jonathan W. Kelly, Veronica J. Dark, and James H. Oliver. "Cognitive Demands of Semi-Natural Virtual Locomotion." Presence: Teleoperators and Virtual Environments 22, no. 3 (2013): 216–34. http://dx.doi.org/10.1162/pres_a_00152.
Full textYasa, Immihan Ceren, Hakan Ceylan, Ugur Bozuyuk, Anna-Maria Wild, and Metin Sitti. "Elucidating the interaction dynamics between microswimmer body and immune system for medical microrobots." Science Robotics 5, no. 43 (2020): eaaz3867. http://dx.doi.org/10.1126/scirobotics.aaz3867.
Full textOchoa, Julieth, Dagmar Sternad, and Neville Hogan. "Treadmill vs. overground walking: different response to physical interaction." Journal of Neurophysiology 118, no. 4 (2017): 2089–102. http://dx.doi.org/10.1152/jn.00176.2017.
Full textoliveira Berretta, Luciana, Alexandre Cardoso, Edgard Lamounier, Fabrizzio Alphonsus Alves de Melo Nunes Soares, Milena Oliveira Silva, and Deller James Ferreira. "Locomotion Interface with Natural Interaction for Assisting Mobility of Visually Impaired." IEEE Latin America Transactions 13, no. 7 (2015): 2384–89. http://dx.doi.org/10.1109/tla.2015.7273802.
Full textRobatzek, Merrilee, and James H. Thomas. "Calcium/Calmodulin-Dependent Protein Kinase II Regulates Caenorhabditis elegans Locomotion in Concert With a Go/Gq Signaling Network." Genetics 156, no. 3 (2000): 1069–82. http://dx.doi.org/10.1093/genetics/156.3.1069.
Full textSu, Jianbo. "Motion Compression for Telepresence Locomotion." Presence: Teleoperators and Virtual Environments 16, no. 4 (2007): 385–98. http://dx.doi.org/10.1162/pres.16.4.385.
Full textRobertson, Benjamin D., and Gregory S. Sawicki. "Unconstrained muscle-tendon workloops indicate resonance tuning as a mechanism for elastic limb behavior during terrestrial locomotion." Proceedings of the National Academy of Sciences 112, no. 43 (2015): E5891—E5898. http://dx.doi.org/10.1073/pnas.1500702112.
Full textDunlevy, J. R., and J. R. Couchman. "Controlled induction of focal adhesion disassembly and migration in primary fibroblasts." Journal of Cell Science 105, no. 2 (1993): 489–500. http://dx.doi.org/10.1242/jcs.105.2.489.
Full textRantala, Jussi, Jari Kangas, Olli Koskinen, Tomi Nukarinen, and Roope Raisamo. "Comparison of Controller-Based Locomotion Techniques for Visual Observation in Virtual Reality." Multimodal Technologies and Interaction 5, no. 7 (2021): 31. http://dx.doi.org/10.3390/mti5070031.
Full textBalter, Jaclyn E., and E. Paul Zehr. "Neural Coupling Between the Arms and Legs During Rhythmic Locomotor-Like Cycling Movement." Journal of Neurophysiology 97, no. 2 (2007): 1809–18. http://dx.doi.org/10.1152/jn.01038.2006.
Full textSilva, Manuel F., J. A. Tenreiro Machado, and António M. Lopes. "Modelling and simulation of artificial locomotion systems." Robotica 23, no. 5 (2005): 595–606. http://dx.doi.org/10.1017/s0263574704001195.
Full textBeato, M., and A. Nistri. "Interaction Between Disinhibited Bursting and Fictive Locomotor Patterns in the Rat Isolated Spinal Cord." Journal of Neurophysiology 82, no. 5 (1999): 2029–38. http://dx.doi.org/10.1152/jn.1999.82.5.2029.
Full textSchmelter, Thereza, Levente Hernadi, Marc Aurel Störmer, Frank Steinicke, and Kristian Hildebrand. "Interaction Based Redirected Walking." Proceedings of the ACM on Computer Graphics and Interactive Techniques 4, no. 1 (2021): 1–16. http://dx.doi.org/10.1145/3451264.
Full textVideler, J. J., U. K. Muller, and E. J. Stamhuis. "Aquatic vertebrate locomotion: wakes from body waves." Journal of Experimental Biology 202, no. 23 (1999): 3423–30. http://dx.doi.org/10.1242/jeb.202.23.3423.
Full textLee, David V., John E. A. Bertram, Jennifer T. Anttonen, Ivo G. Ros, Sarah L. Harris, and Andrew A. Biewener. "A collisional perspective on quadrupedal gait dynamics." Journal of The Royal Society Interface 8, no. 63 (2011): 1480–86. http://dx.doi.org/10.1098/rsif.2011.0019.
Full textFletcher, Kelsey L., Brittany N. Whitley, Lisa A. Treidel, et al. "Voluntary locomotor activity mitigates oxidative damage associated with isolation stress in the prairie vole ( Microtus ochrogaster )." Biology Letters 11, no. 7 (2015): 20150178. http://dx.doi.org/10.1098/rsbl.2015.0178.
Full textHuang, Wei Dong, Jin Song Bao, and You Sheng Xu. "Dynamics Simulation of Rover Locomotion over Lunar Craters." Advanced Materials Research 476-478 (February 2012): 1222–27. http://dx.doi.org/10.4028/www.scientific.net/amr.476-478.1222.
Full textIyengar, Atulya, Jordan Imoehl, Atsushi Ueda, Jeffery Nirschl, and Chun-Fang Wu. "Automated Quantification of Locomotion, Social Interaction, and Mate Preference in Drosophila Mutants." Journal of Neurogenetics 26, no. 3-4 (2012): 306–16. http://dx.doi.org/10.3109/01677063.2012.729626.
Full text