Academic literature on the topic 'Loewner equation'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Loewner equation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Loewner equation"

1

Schleißinger, Sebastian. "The chordal Loewner equation and monotone probability theory." Infinite Dimensional Analysis, Quantum Probability and Related Topics 20, no. 03 (September 2017): 1750016. http://dx.doi.org/10.1142/s0219025717500163.

Full text
Abstract:
In Ref. 5, O. Bauer interpreted the chordal Loewner equation in terms of noncommutative probability theory. We follow this perspective and identify the chordal Loewner equations as the non-autonomous versions of evolution equations for semigroups in monotone and anti-monotone probability theory. We also look at the corresponding equation for free probability theory.
APA, Harvard, Vancouver, ISO, and other styles
2

Starnes, Andrew. "The Loewner equation for multiple hulls." Annales Academiae Scientiarum Fennicae Mathematica 44, no. 1 (February 2019): 581–99. http://dx.doi.org/10.5186/aasfm.2019.4435.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gruzberg, Ilya A., and Leo P. Kadanoff. "The Loewner Equation: Maps and Shapes." Journal of Statistical Physics 114, no. 5/6 (March 2004): 1183–98. http://dx.doi.org/10.1023/b:joss.0000013973.40984.3b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rohde, Steffen, Huy Tran, and Michel Zinsmeister. "The Loewner equation and Lipschitz graphs." Revista Matemática Iberoamericana 34, no. 2 (May 28, 2018): 937–48. http://dx.doi.org/10.4171/rmi/1010.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

McDonald, Robb. "Geodesic Loewner paths with varying boundary conditions." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476, no. 2242 (October 2020): 20200466. http://dx.doi.org/10.1098/rspa.2020.0466.

Full text
Abstract:
Equations of the Loewner class subject to non-constant boundary conditions along the real axis are formulated and solved giving the geodesic paths of slits growing in the upper half complex plane. The problem is motivated by Laplacian growth in which the slits represent thin fingers growing in a diffusion field. A single finger follows a curved path determined by the forcing function appearing in Loewner’s equation. This function is found by solving an ordinary differential equation whose terms depend on curvature properties of the streamlines of the diffusive field in the conformally mapped ‘mathematical’ plane. The effect of boundary conditions specifying either piecewise constant values of the field variable along the real axis, or a dipole placed on the real axis, reveal a range of behaviours for the growing slit. These include regions along the real axis from which no slit growth is possible, regions where paths grow to infinity, or regions where paths curve back toward the real axis terminating in finite time. Symmetric pairs of paths subject to the piecewise constant boundary condition along the real axis are also computed, demonstrating that paths which grow to infinity evolve asymptotically toward an angle of bifurcation of π /5.
APA, Harvard, Vancouver, ISO, and other styles
6

Graham, Ian, Hidetaka Hamada, and Gabriela Kohr. "Parametric Representation of Univalent Mappings in Several Complex Variables." Canadian Journal of Mathematics 54, no. 2 (April 1, 2002): 324–51. http://dx.doi.org/10.4153/cjm-2002-011-2.

Full text
Abstract:
AbstractLet B be the unit ball of with respect to an arbitrary norm. We prove that the analog of the Carathéodory set, i.e. the set of normalized holomorphic mappings from B into of “positive real part”, is compact. This leads to improvements in the existence theorems for the Loewner differential equation in several complex variables. We investigate a subset of the normalized biholomorphic mappings of B which arises in the study of the Loewner equation, namely the set S0(B) of mappings which have parametric representation. For the case of the unit polydisc these mappings were studied by Poreda, and on the Euclidean unit ball they were studied by Kohr. As in Kohr’s work, we consider subsets of S0(B) obtained by placing restrictions on the mapping from the Carathéodory set which occurs in the Loewner equation. We obtain growth and covering theorems for these subsets of S0(B) as well as coefficient estimates, and consider various examples. Also we shall see that in higher dimensions there exist mappings in S(B) which can be imbedded in Loewner chains, but which do not have parametric representation.
APA, Harvard, Vancouver, ISO, and other styles
7

Roth, Oliver. "Pontryagin’s Maximum Principle for the Loewner Equation in Higher Dimensions." Canadian Journal of Mathematics 67, no. 4 (August 1, 2015): 942–60. http://dx.doi.org/10.4153/cjm-2014-027-6.

Full text
Abstract:
AbstractIn this paper we develop a variational method for the Loewner equation in higher dimensions. As a result we obtain a version of Pontryagin’s maximum principle from optimal control theory for the Loewner equation in several complex variables. Based on recent work of Arosio, Bracci, and Wold, we then apply our version of the Pontryagin maximum principle to obtain first-order necessary conditions for the extremal mappings for a wide class of extremal problems over the set of normalized biholomorphic mappings on the unit ball in ℂn.
APA, Harvard, Vancouver, ISO, and other styles
8

Marshall, Donald E., and Steffen Rohde. "The Loewner differential equation and slit mappings." Journal of the American Mathematical Society 18, no. 4 (June 10, 2005): 763–78. http://dx.doi.org/10.1090/s0894-0347-05-00492-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Prokhorov, D. "Exact Solutions of the Multiple Loewner Equation." Lobachevskii Journal of Mathematics 41, no. 11 (November 2020): 2248–56. http://dx.doi.org/10.1134/s1995080220110189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Roth, Oliver, and Sebastian Schleissinger. "The Schramm-Loewner equation for multiple slits." Journal d'Analyse Mathématique 131, no. 1 (March 2017): 73–99. http://dx.doi.org/10.1007/s11854-017-0002-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Loewner equation"

1

Zhang, Henshui. "Local analysis of Loewner equation." Thesis, Orléans, 2018. http://www.theses.fr/2018ORLE2064.

Full text
Abstract:
Dans cette thèse nous étudions le problème de la génération d’une courbe par l’équation de Loewner generalisée. Nous utilisons une transformation locale dans l’équation chordal de Loewner, analysons la solution de l’équation de Loewner, et obtenons trois résultats.En premier lieu, nous analysons la limite supérieure et la limite inférieure de l’ordre 1/2 à gauche de la fonction pilotant l’équation, nous prouvons ensuite un lemme basique qui assure que la courbe générée ne s’auto-intersecte pas localement. Ce lemme nous conduit à trois conclusions. Premièrement Lind a prouvé que lorsque la normeHölder-1/2 est inférieure à 4, alors l’équation de Loewner est générée par une courbe simple. Nous nous intéressons au cas où la norme Hölder-1/2 est supérieure à 4, et donnons une condition suffisante pour que la courbe générée soit simple. Deuxièmement, la limite inférieure de l’ordre 1/2 du mouvement brownien tend vers 0 localement, nous donnons un estimé de la vitesse à laquelle il tend vers 0. Troisièmement, nous prouvons que pour la fonction de Weierstrass d’ordre 1/2 dont le coefficient est inférieur à une certaine constante, l’équation de Loewner correspondante est générée par une courbe simple.Dans la deuxième partie, nous définissons l’équation de Loewner imaginaire et son équation duale, et nous procédons à la transformation locale de ces deux équations. Après analyse de leurs propriétés d’annulation,nous construisons le lien entre ces dernières et le problème de génération de courbe. Nous donnons ensuite une conditions suffisante pour que l’équation de Loewner soit localement générée par une courbe.Finalement, nous définissons et nous intéressons au cas où la fonction pilotant l’équation est auto-similaire à gauche, et utilisons des connaissances en dynamique complexe pour prouver que si elle est localement générée par une courbe dans le demi-plan supérieur, alors elle est entièrement générée par une courbe
This thesis studies the curve generation problem of the general Loewner equation. We use a local transformation in the chordal Loewner equation, and analyse the solution of the Loewner equation, obtain three results.At first, we analyse the Limit superior and limit inferior of the left 1/2 order of the driving function, then we prove a basic lemma about that the generation curves do not intersect with itself locally. By this lemma, we have three conclusion. Firstly, Lind proved that when 1/2-Hölder norm is less than 4, then the Loewner equation is generated by a simple curve. We discuss the case that the 1/2-Hölder norm is greater than 4, and give a sufficient condition of the generation curve is simple. Secondly, the limit inferior of the 1/2 order of the Brownian motion will tends to 0 locally, we give a estimation of the speed of it tends to 0. Thirdly, we proof that for the1/2 order Weierstrass function with coefficient less that a constant, the Loewner equation which is driven by it is generated by a simple curve.In the second part, we define the imaginary Loewner equation and its dual equation, and we do the local transformation for these two equation, after analyse their vanishing property, we build the connection between it with the curve generation problem. And then we give a sufficient condition on that the Loewner equation is generated by a curve locally.At last, we define and discuss the left self-similar driving function, and use the knowledge of complex dynamic to prove that if it is generated by a curve in the upper-half plane locally, then it is generated by a curve entirely
APA, Harvard, Vancouver, ISO, and other styles
2

Johansson, Carl Fredrik. "Random Loewner Chains." Doctoral thesis, KTH, Matematik (Inst.), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-12163.

Full text
Abstract:
This thesis contains four papers and two introductory chapters. It is mainly devoted to problems concerning random growth models related to the Loewner differential equation. In Paper I we derive a rate of convergence of the Loewner driving function for loop-erased random walk to Brownian motion with speed 2 on the unit circle, the Loewner driving function for radial SLE(2). Thereby we provide the first instance of a formal derivation of a rate of convergence for any of the discrete models known to converge to SLE. In Paper II we use the known convergence of (radial) loop-erased random walk to radial SLE(2) to prove that the scaling limit of loop-erased random walk excursion in the upper half plane is chordal SLE(2). Our proof relies on a version of Wilson’s algorithm for weighted graphs together with a Beurling-type hitting estimate for random walk excursion. We also establish and use the convergence of the radial SLE path to the chordal SLE path as the bulk point tends to a boundary point. In the final section we sketch how to extend our results to more general domains. In Paper III we prove an upper bound on the optimal Hölder exponent for the chordal SLE path parameterized by capacity and thereby establish the optimal exponent as conjectured by J. Lind. We also give a new proof of the lower bound. Our proofs are based on sharp estimates of moments of the derivative of the inverse SLE map. In particular, we improve an estimate of G. F. Lawler. In Paper IV we consider radial Loewner evolutions driven by unimodular Lévy processes. We rescale the hulls of the evolution by capacity, and prove that the weak limit of the rescaled hulls exists. We then study a random growth model obtained by driving the Loewner equation with a compound Poisson process with two real parameters: the intensity of the underlying Poisson process and a localization parameter of the Poisson kernel which determines the jumps. A particular choice of parameters yields a growth process similar to the Hastings-Levitov HL(0) model. We describe the asymptotic behavior of the hulls with respect to the parameters, showing that growth tends to become localized as the jump parameter increases. We obtain deterministic evolutions in one limiting case, and Loewner evolution driven by a unimodular Cauchy process in another. We also show that the Hausdorff dimension of the limiting rescaled hulls is equal to 1.
APA, Harvard, Vancouver, ISO, and other styles
3

Dyhr, Benjamin Nicholas. "The Chordal Loewner Equation Driven by Brownian Motion with Linear Drift." Diss., The University of Arizona, 2009. http://hdl.handle.net/10150/195702.

Full text
Abstract:
Schramm-Loewner evolution (SLE(kappa)) is an important contemporary tool for identifying critical scaling limits of two-dimensional statistical systems. The SLE(kappa) one-parameter family of processes can be viewed as a special case of a more general, two-parameter family of processes we denote SLE(kappa, mu). The SLE(kappa, mu) process is defined for kappa>0 and real numbers mu; it represents the solution of the chordal Loewner equations under special conditions on the driving function parameter which require that it is a Brownian motion with drift mu and variance kappa. We derive properties of this process by use of methods applied to SLE(kappa) and application of Girsanov's Theorem. In contrast to SLE(kappa), we identify stationary asymptotic behavior of SLE(kappa, mu). For kappa in (0,4] and mu > 0, we present a pathwise construction of a process with stationary temporal increments and stationary imaginary component and relate it to the limiting behavior of the SLE(kappa, mu) generating curve. Our main result is a spatial invariance property of this process achieved by defining a top-crossing probability for points in the upper half plane with respect to the generating curve.
APA, Harvard, Vancouver, ISO, and other styles
4

Ringqvist, Carl. "The Loewner Equation: An introduction and the winding of its trace." Thesis, KTH, Matematik (Avd.), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-161214.

Full text
Abstract:
In the early 1920's Karl Löwner (later Charles Loewner) introduced a simple differential equation that encodes domains in the complex plane changing continuously in time t into a real-valued function of t. This thesis centers around this equation, called the Loewner Equation, and has three separate parts. The first part proves it is satisfied by conformal maps taking the complement of a simple curve in the upper half plane to the upper half plane. The second part proves the existence and uniqueness of a conformal solution to the Loewner Equation with continuous driving function. Although by no means new results, the intention is nevertheless to provide them from a fresh point of view by means of compactness, rigor and variations of selected partial proofs. The third part tentatively explores new domains. It starts with treating the existence of a generating curve for the domain of the Loewner Equation with Hölder-1/2 continuous driving function of norm less than 4. In establishing the existence of such a curve, finding a bound for the absolute value of the Loewner function's derivative is crucial. We reproduce the proof of the existence of such a bound by methods of S. Rohde, H. Tran and M. Zinsmeister, and note that these methods seem suitable for investigating similar bounds for the argument of the same function for driving-norm less than 2√2. We present a result for norm less than √2, but otherwise reach the conclusion that the methods considered are unable to produce the desired bound for norms in the interval [√2, 2√2). The explicit traces and maps of logarithmic spirals are calculated showing that the correct upper limit for the norm regarding the existence of a non-trivial bound to the argument is no larger than 2√2.
Karl Löwner (senare Charles Loewner) introducerade på 1920-talet en enkel differentialekvation som kodar information om kontinuerligt växande domäner i komplexa planet i en reellvärd funktion över tid. Denna uppsats behandlar denna ekvation, kallad Löwnerekvationen och har tre separata delar. I den första visar vi att differentialekvationen uppfylls av konforma avbildningar som tar komplementet av enkla kurvor i  övre halvplanet till övre halvplanet. I den andra delen visar vi existensen av- och entydigheten hos en konform lösning till Löwnerekvationen med kontinuerlig drivfunktion. Avsikten  är att presentera resultaten från en ny synvinkel, medelst variationer av utvalda bevis och fokus på kompakthet. Den tredje delen utforskar nya områden. Vi börjar med att behandla existensen av en genererande kurva för domänen hos lösningen till Löwnerekvation med Hölder-1/2 kontinuerlig drivfunktion av norm mindre än 4. Beviset för existensen av en sådan kurva förlitar sig på en övre begränsning till absolutbeloppet av derivatan till Löwnerekvationens lösning. Vi reproducerar beviset för en sådan begränsning med metoder hämtade från S. Rohde, H. Tran och M. Zinsmeister, och noterar att dessa verkar lämpliga för att finna en liknande begränsning för argumentet till samma funktion med norm hos drivfunktionen mindre än 2√2. Vi presenterar ett resultat för norm mindre än √2, men kommer till slutsatsen att metoderna verkar otillräckliga för att producera en icke-trivial begränsning för norm i intervallet [2, 2). Sist beräknar vi de explicita avbildningarna för en sorts logaritmiska spiraler, vilket leder till ett bevis för att den korrekta övre begränsningen för normen i avseende existensen av en icke-trivial begränsning till argumentet inte är större än 2√2.
APA, Harvard, Vancouver, ISO, and other styles
5

Murayama, Takuya. "Loewner chains and evolution families on parallel slit half-planes." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263438.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Böhm, Christoph [Verfasser], and Oliver [Gutachter] Roth. "Loewner equations in multiply connected domains / Christoph Böhm. Gutachter: Oliver Roth." Würzburg : Universität Würzburg, 2016. http://d-nb.info/1111785139/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Voda, Mircea Iulian. "Loewner Theory in Several Complex Variables and Related Problems." Thesis, 2011. http://hdl.handle.net/1807/31964.

Full text
Abstract:
The first part of the thesis deals with aspects of Loewner theory in several complex variables. First we show that a Loewner chain with minimal regularity assumptions (Df(0,t) of local bounded variation) satisfies an associated Loewner equation. Next we give a way of renormalizing a general Loewner chain so that it corresponds to the same increasing family of domains. To do this we will prove a generalization of the converse of Carathéodory's kernel convergence theorem. Next we address the problem of finding a Loewner chain solution to a given Loewner chain equation. The main result is a complete solution in the case when the infinitesimal generator satisfies Dh(0,t)=A where inf {Re: ||z| =1}> 0. We will see that the existence of a bounded solution depends on the real resonances of A, but there always exists a polynomially bounded solution. Finally we discuss some properties of classes of biholomorphic mappings associated to A-normalized Loewner chains. In particular we give a characterization of the compactness of the class of spirallike mappings in terms of the resonance of A. The second part of the thesis deals with the problem of finding examples of extreme points for some classes of mappings. We see that straightforward generalizations of one dimensional extreme functions give examples of extreme Carathéodory mappings and extreme starlike mappings on the polydisc, but not on the ball. We also find examples of extreme Carathéodory mappings on the ball starting from a known example of extreme Carathéodory function in higher dimensions.
APA, Harvard, Vancouver, ISO, and other styles
8

Pecelerowicz, Michał. "Modele igłowe procesów wzrostu nierównowagowego." Doctoral thesis, 2017. https://depotuw.ceon.pl/handle/item/2134.

Full text
Abstract:
Non-equilibrium growth processes, such as electrodeposition, dielectric breakdown, viscous ngering, or even bacterial colonies formation, are often driven by instabilities. Accordingly, the resulting growth patterns are usually highly branched fractal structures. In all these processes the growth may be described in terms of a harmonic scalar eld Ψ, interpreted for instance as an electrostatic potential or pressure. Additionally, the front is assumed to grow with velocity proportional to the gradient of the eld. Such a growth problem is non-linear due to the boundary conditions the front is unstable under small perturbations. Therefore, even though the basic mechanisms of growth are well understood, the strongly non-linear character of the process makes the latter stages of evolution very complicated, with a strong competition between spontaneously formed dendrite-like structures, and tip-splitting e ects when dendrites bifurcate into secondary branches. In the thesis we considered a simple model of non-equilibrium growth in two spatial dimensions, in which the growth takes place only at the tips of long-and-thin ngers. The quantitative analysis of the model was provided by means of the Loewner equation, which one can use to reduce the problem of the interface motion to that of the evolution of the conformal mapping onto the complex plane. In spite of being considerably simpli ed, the model allows to describe a strong, nonlinear interaction between the ngers and their competition due to the long-range screening. In the rst part we applied the thin nger model to description of the growth processes in which the envelope of the rami ed structure grows in a highly regular manner, with the perturbations smoothed out over the course of time. We showed that the regularity of the envelope growth can be connected to small-scale instabilities leading to the tip splitting of the ngers at the advancing front of the structure. Whenever the growth velocity becomes too large, the nger splits into two branches. In this way it can absorb an increased ux and thus damp the instability. Hence, somewhat counterintuitively, the instability at a small scale results in a stability at a larger scale. In particular we analyzed the growth in a half-plane geometry, in which case the envelopes form perfect semi-circular shapes with non-uniform intensity of the splitting process along the interface. Interestingly, a similar e ect can be observed in some 2D combustion experiments. In the second part we studied patterns formed by viscous ngering in a rectangular network of micro uidic channels. Due to the strong anisotropy of such a system, the emerging patterns have a form of thin needle-like ngers, which interact with each other, competing for an available ow. We developed an upscaled description of this system in which only the ngers are tracked and the e ective interactions between them are 1 introduced, mediated through the evolving pressure eld. A complex two-phase ow problem was thus reduced to a much simpler task of tracking evolving shapes in a 2d complex plane. This description, although simpli ed, turned out to capture all the key features of the system's dynamics and allowed for the e ective prediction of the resulting growth patterns.
APA, Harvard, Vancouver, ISO, and other styles
9

Böhm, Christoph. "Loewner equations in multiply connected domains." Doctoral thesis, 2015. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-129903.

Full text
Abstract:
The first goal of this thesis is to generalize Loewner's famous differential equation to multiply connected domains. The resulting differential equations are known as Komatu--Loewner differential equations. We discuss Komatu--Loewner equations for canonical domains (circular slit disks, circular slit annuli and parallel slit half-planes). Additionally, we give a generalisation to several slits and discuss parametrisations that lead to constant coefficients. Moreover, we compare Komatu--Loewner equations with several slits to single slit Loewner equations. Finally we generalise Komatu--Loewner equations to hulls satisfying a local growth property
Zunächst diskutieren wir eine Verallgemeinerung der radialen und chordalen Loewner Differentialgleichung auf mehrfach zusammenhängende Standardgebiete (Kreisschlitzgebiete, Kreisringschlitzgebiete, parallel Schlitz-Halbebenen). Diese Differentialgleichungen werden Komatu-Loewner Differentialgleichungen bezeichnet. Wir verallgemeinern diese auch auf mehrere Schlitze und zeigen, dass es Parametrisierungen gibt, die zu konstanten Koeffizienten führen. Zusätzlich vergleichen wir Komatu-Loewner Gleichungen für mehrere Schlitze mit Loewner Gleichungen im Einschlitzfall. Schließlich untersuchen wir den Fall von allgemeineren Wachstumsprozessen, die dadurch charakterisiert sind, dass nur ein "lokaler Zuwachs" möglich ist
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Loewner equation"

1

Simon, Barry. Advanced complex analysis. Providence, Rhode Island: American Mathematical Society, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Loewner equation"

1

Kemppainen, Antti. "Loewner Equation." In Schramm–Loewner Evolution, 49–67. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65329-7_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lawler, Gregory. "Loewner differential equation." In Mathematical Surveys and Monographs, 91–117. Providence, Rhode Island: American Mathematical Society, 2008. http://dx.doi.org/10.1090/surv/114/04.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Antoulas, Athanasios C., Ion Victor Gosea, and Matthias Heinkenschloss. "On the Loewner Framework for Model Reduction of Burgers’ Equation." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 255–70. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98177-2_16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Rosenblum, Marvin, and James Rovnyak. "Loewner’s Differential Equation." In Topics in Hardy Classes and Univalent Functions, 181–207. Basel: Birkhäuser Basel, 1994. http://dx.doi.org/10.1007/978-3-0348-8520-1_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rovnyak, James. "A Vector Extension of Loewner’s Differential Equation." In Linear Operators in Function Spaces, 301–8. Basel: Birkhäuser Basel, 1990. http://dx.doi.org/10.1007/978-3-0348-7250-8_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Fukushima, Masatoshi, and Hiroshi Kaneko. "On Villat’s Kernels and BMD Schwarz Kernels in Komatu-Loewner Equations." In Springer Proceedings in Mathematics & Statistics, 327–48. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11292-3_12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Antoulas, Athanasios C., Ion Victor Gosea, and Matthias Heinkenschloss. "Data-Driven Model Reduction for a Class of Semi-Explicit DAEs Using the Loewner Framework." In Progress in Differential-Algebraic Equations II, 185–210. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53905-4_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Diaz, Alejandro N., and Matthias Heinkenschloss. "Towards Data-Driven Model Reduction of the Navier-Stokes Equations Using the Loewner Framework." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 225–39. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-90727-3_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Loewner equation"

1

Roth, Oliver. "A remark on the Loewner differential equation." In Third CMFT Conference. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789812833044_0036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography