Academic literature on the topic 'Loewner equation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Loewner equation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Loewner equation"
Schleißinger, Sebastian. "The chordal Loewner equation and monotone probability theory." Infinite Dimensional Analysis, Quantum Probability and Related Topics 20, no. 03 (September 2017): 1750016. http://dx.doi.org/10.1142/s0219025717500163.
Full textStarnes, Andrew. "The Loewner equation for multiple hulls." Annales Academiae Scientiarum Fennicae Mathematica 44, no. 1 (February 2019): 581–99. http://dx.doi.org/10.5186/aasfm.2019.4435.
Full textGruzberg, Ilya A., and Leo P. Kadanoff. "The Loewner Equation: Maps and Shapes." Journal of Statistical Physics 114, no. 5/6 (March 2004): 1183–98. http://dx.doi.org/10.1023/b:joss.0000013973.40984.3b.
Full textRohde, Steffen, Huy Tran, and Michel Zinsmeister. "The Loewner equation and Lipschitz graphs." Revista Matemática Iberoamericana 34, no. 2 (May 28, 2018): 937–48. http://dx.doi.org/10.4171/rmi/1010.
Full textMcDonald, Robb. "Geodesic Loewner paths with varying boundary conditions." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 476, no. 2242 (October 2020): 20200466. http://dx.doi.org/10.1098/rspa.2020.0466.
Full textGraham, Ian, Hidetaka Hamada, and Gabriela Kohr. "Parametric Representation of Univalent Mappings in Several Complex Variables." Canadian Journal of Mathematics 54, no. 2 (April 1, 2002): 324–51. http://dx.doi.org/10.4153/cjm-2002-011-2.
Full textRoth, Oliver. "Pontryagin’s Maximum Principle for the Loewner Equation in Higher Dimensions." Canadian Journal of Mathematics 67, no. 4 (August 1, 2015): 942–60. http://dx.doi.org/10.4153/cjm-2014-027-6.
Full textMarshall, Donald E., and Steffen Rohde. "The Loewner differential equation and slit mappings." Journal of the American Mathematical Society 18, no. 4 (June 10, 2005): 763–78. http://dx.doi.org/10.1090/s0894-0347-05-00492-3.
Full textProkhorov, D. "Exact Solutions of the Multiple Loewner Equation." Lobachevskii Journal of Mathematics 41, no. 11 (November 2020): 2248–56. http://dx.doi.org/10.1134/s1995080220110189.
Full textRoth, Oliver, and Sebastian Schleissinger. "The Schramm-Loewner equation for multiple slits." Journal d'Analyse Mathématique 131, no. 1 (March 2017): 73–99. http://dx.doi.org/10.1007/s11854-017-0002-y.
Full textDissertations / Theses on the topic "Loewner equation"
Zhang, Henshui. "Local analysis of Loewner equation." Thesis, Orléans, 2018. http://www.theses.fr/2018ORLE2064.
Full textThis thesis studies the curve generation problem of the general Loewner equation. We use a local transformation in the chordal Loewner equation, and analyse the solution of the Loewner equation, obtain three results.At first, we analyse the Limit superior and limit inferior of the left 1/2 order of the driving function, then we prove a basic lemma about that the generation curves do not intersect with itself locally. By this lemma, we have three conclusion. Firstly, Lind proved that when 1/2-Hölder norm is less than 4, then the Loewner equation is generated by a simple curve. We discuss the case that the 1/2-Hölder norm is greater than 4, and give a sufficient condition of the generation curve is simple. Secondly, the limit inferior of the 1/2 order of the Brownian motion will tends to 0 locally, we give a estimation of the speed of it tends to 0. Thirdly, we proof that for the1/2 order Weierstrass function with coefficient less that a constant, the Loewner equation which is driven by it is generated by a simple curve.In the second part, we define the imaginary Loewner equation and its dual equation, and we do the local transformation for these two equation, after analyse their vanishing property, we build the connection between it with the curve generation problem. And then we give a sufficient condition on that the Loewner equation is generated by a curve locally.At last, we define and discuss the left self-similar driving function, and use the knowledge of complex dynamic to prove that if it is generated by a curve in the upper-half plane locally, then it is generated by a curve entirely
Johansson, Carl Fredrik. "Random Loewner Chains." Doctoral thesis, KTH, Matematik (Inst.), 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-12163.
Full textDyhr, Benjamin Nicholas. "The Chordal Loewner Equation Driven by Brownian Motion with Linear Drift." Diss., The University of Arizona, 2009. http://hdl.handle.net/10150/195702.
Full textRingqvist, Carl. "The Loewner Equation: An introduction and the winding of its trace." Thesis, KTH, Matematik (Avd.), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-161214.
Full textKarl Löwner (senare Charles Loewner) introducerade på 1920-talet en enkel differentialekvation som kodar information om kontinuerligt växande domäner i komplexa planet i en reellvärd funktion över tid. Denna uppsats behandlar denna ekvation, kallad Löwnerekvationen och har tre separata delar. I den första visar vi att differentialekvationen uppfylls av konforma avbildningar som tar komplementet av enkla kurvor i övre halvplanet till övre halvplanet. I den andra delen visar vi existensen av- och entydigheten hos en konform lösning till Löwnerekvationen med kontinuerlig drivfunktion. Avsikten är att presentera resultaten från en ny synvinkel, medelst variationer av utvalda bevis och fokus på kompakthet. Den tredje delen utforskar nya områden. Vi börjar med att behandla existensen av en genererande kurva för domänen hos lösningen till Löwnerekvation med Hölder-1/2 kontinuerlig drivfunktion av norm mindre än 4. Beviset för existensen av en sådan kurva förlitar sig på en övre begränsning till absolutbeloppet av derivatan till Löwnerekvationens lösning. Vi reproducerar beviset för en sådan begränsning med metoder hämtade från S. Rohde, H. Tran och M. Zinsmeister, och noterar att dessa verkar lämpliga för att finna en liknande begränsning för argumentet till samma funktion med norm hos drivfunktionen mindre än 2√2. Vi presenterar ett resultat för norm mindre än √2, men kommer till slutsatsen att metoderna verkar otillräckliga för att producera en icke-trivial begränsning för norm i intervallet [2, 2). Sist beräknar vi de explicita avbildningarna för en sorts logaritmiska spiraler, vilket leder till ett bevis för att den korrekta övre begränsningen för normen i avseende existensen av en icke-trivial begränsning till argumentet inte är större än 2√2.
Murayama, Takuya. "Loewner chains and evolution families on parallel slit half-planes." Doctoral thesis, Kyoto University, 2021. http://hdl.handle.net/2433/263438.
Full textBöhm, Christoph [Verfasser], and Oliver [Gutachter] Roth. "Loewner equations in multiply connected domains / Christoph Böhm. Gutachter: Oliver Roth." Würzburg : Universität Würzburg, 2016. http://d-nb.info/1111785139/34.
Full textVoda, Mircea Iulian. "Loewner Theory in Several Complex Variables and Related Problems." Thesis, 2011. http://hdl.handle.net/1807/31964.
Full textPecelerowicz, Michał. "Modele igłowe procesów wzrostu nierównowagowego." Doctoral thesis, 2017. https://depotuw.ceon.pl/handle/item/2134.
Full textBöhm, Christoph. "Loewner equations in multiply connected domains." Doctoral thesis, 2015. https://nbn-resolving.org/urn:nbn:de:bvb:20-opus-129903.
Full textZunächst diskutieren wir eine Verallgemeinerung der radialen und chordalen Loewner Differentialgleichung auf mehrfach zusammenhängende Standardgebiete (Kreisschlitzgebiete, Kreisringschlitzgebiete, parallel Schlitz-Halbebenen). Diese Differentialgleichungen werden Komatu-Loewner Differentialgleichungen bezeichnet. Wir verallgemeinern diese auch auf mehrere Schlitze und zeigen, dass es Parametrisierungen gibt, die zu konstanten Koeffizienten führen. Zusätzlich vergleichen wir Komatu-Loewner Gleichungen für mehrere Schlitze mit Loewner Gleichungen im Einschlitzfall. Schließlich untersuchen wir den Fall von allgemeineren Wachstumsprozessen, die dadurch charakterisiert sind, dass nur ein "lokaler Zuwachs" möglich ist
Books on the topic "Loewner equation"
Simon, Barry. Advanced complex analysis. Providence, Rhode Island: American Mathematical Society, 2015.
Find full textBook chapters on the topic "Loewner equation"
Kemppainen, Antti. "Loewner Equation." In Schramm–Loewner Evolution, 49–67. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65329-7_4.
Full textLawler, Gregory. "Loewner differential equation." In Mathematical Surveys and Monographs, 91–117. Providence, Rhode Island: American Mathematical Society, 2008. http://dx.doi.org/10.1090/surv/114/04.
Full textAntoulas, Athanasios C., Ion Victor Gosea, and Matthias Heinkenschloss. "On the Loewner Framework for Model Reduction of Burgers’ Equation." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 255–70. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-98177-2_16.
Full textRosenblum, Marvin, and James Rovnyak. "Loewner’s Differential Equation." In Topics in Hardy Classes and Univalent Functions, 181–207. Basel: Birkhäuser Basel, 1994. http://dx.doi.org/10.1007/978-3-0348-8520-1_8.
Full textRovnyak, James. "A Vector Extension of Loewner’s Differential Equation." In Linear Operators in Function Spaces, 301–8. Basel: Birkhäuser Basel, 1990. http://dx.doi.org/10.1007/978-3-0348-7250-8_22.
Full textFukushima, Masatoshi, and Hiroshi Kaneko. "On Villat’s Kernels and BMD Schwarz Kernels in Komatu-Loewner Equations." In Springer Proceedings in Mathematics & Statistics, 327–48. Cham: Springer International Publishing, 2014. http://dx.doi.org/10.1007/978-3-319-11292-3_12.
Full textAntoulas, Athanasios C., Ion Victor Gosea, and Matthias Heinkenschloss. "Data-Driven Model Reduction for a Class of Semi-Explicit DAEs Using the Loewner Framework." In Progress in Differential-Algebraic Equations II, 185–210. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53905-4_7.
Full textDiaz, Alejandro N., and Matthias Heinkenschloss. "Towards Data-Driven Model Reduction of the Navier-Stokes Equations Using the Loewner Framework." In Notes on Numerical Fluid Mechanics and Multidisciplinary Design, 225–39. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-90727-3_14.
Full textConference papers on the topic "Loewner equation"
Roth, Oliver. "A remark on the Loewner differential equation." In Third CMFT Conference. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789812833044_0036.
Full text