Academic literature on the topic 'Log-concavité'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Log-concavité.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Log-concavité"

1

Habsieger, Laurent. "Inégalités entre fonctions symétriques élémentaires: applications à des problèmes de log-concavité." Discrete Mathematics 115, no. 1-3 (1993): 167–74. http://dx.doi.org/10.1016/0012-365x(93)90486-d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

McNamara, Peter R. W., and Bruce E. Sagan. "Infinite log-concavity: developments and conjectures." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AK,..., Proceedings (2009). http://dx.doi.org/10.46298/dmtcs.2678.

Full text
Abstract:
International audience Given a sequence $(a_k)=a_0,a_1,a_2,\ldots$ of real numbers, define a new sequence $\mathcal{L}(a_k)=(b_k)$ where $b_k=a_k^2-a_{k-1}a_{k+1}$. So $(a_k)$ is log-concave if and only if $(b_k)$ is a nonnegative sequence. Call $(a_k)$ $\textit{infinitely log-concave}$ if $\mathcal{L}^i(a_k)$ is nonnegative for all $i \geq 1$. Boros and Moll conjectured that the rows of Pascal's triangle are infinitely log-concave. Using a computer and a stronger version of log-concavity, we prove their conjecture for the $n$th row for all $n \leq 1450$. We can also use our methods to give a
APA, Harvard, Vancouver, ISO, and other styles
3

Narayanan, Hariharan. "Estimating deep Littlewood-Richardson Coefficients." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AT,..., Proceedings (2014). http://dx.doi.org/10.46298/dmtcs.2403.

Full text
Abstract:
International audience Littlewood Richardson coefficients are structure constants appearing in the representation theory of the general linear groups $(GL_n)$. The main results of this paper are: 1. A strongly polynomial randomized approximation scheme for Littlewood-Richardson coefficients corresponding to indices sufficiently far from the boundary of the Littlewood Richardson cone. 2. A proof of approximate log-concavity of the above mentioned class of Littlewood-Richardson coefficients. Coefficients de Littlewood Richardson sont des constantes de structure apparaissant dans la théorie de la
APA, Harvard, Vancouver, ISO, and other styles
4

Gleitz, Anne-Sophie. "$\ell$-restricted $Q$-systems and quantum affine algebras." Discrete Mathematics & Theoretical Computer Science DMTCS Proceedings vol. AT,..., Proceedings (2014). http://dx.doi.org/10.46298/dmtcs.2375.

Full text
Abstract:
International audience Kuniba, Nakanishi, and Suzuki (1994) have formulated a general conjecture expressing the positive solution of an $\ell$-restricted $Q$-system in terms of quantum dimensions of Kirillov-Reshetikhin modules. After presenting this conjecture, we sketch a proof for the exceptional type $E_6$ following our preprint (2013). In types $E_7$ and $E_8$, we prove positivity for a subset of the nodes of the Dynkin diagram, and we reduce the positivity for the remaining nodes to the conjectural iterated log-concavity of certain explicit sequences of real algebraic numbers. Kuniba, Na
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Log-concavité"

1

Bizeul, Pierre. "Stochastic methods in convexity." Electronic Thesis or Diss., Sorbonne université, 2023. http://www.theses.fr/2023SORUS731.

Full text
Abstract:
Cette thèse s'inscrit dans le cadre des probabilités en grande dimension, en particulier sous hypothèse de convexité. Dans une première partie, on étudie le comportement des l'entropie et de l'information de Fisher vis à vis des convolutions de vecteurs log-concave. Ensuite, à l'aide de la localisation stochastique, une technique récente qui a notamment servi à la quasi résolution de la conjecture KLS, nous établissons des résultats nouveaux sur la fonction de concentration des mesures log-concave, et leur constante de log-sobolev. La dernière partie est consacrée à l'étude de grands systèmes
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!