Academic literature on the topic 'Logic circuits'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Logic circuits.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Logic circuits"

1

Jin, Chen. "A review on multiple-valued logic circuits." Applied and Computational Engineering 43, no. 1 (2024): 322–26. http://dx.doi.org/10.54254/2755-2721/43/20230857.

Full text
Abstract:
Since the traditional binary logic has several disadvantages including inaccuracy, high complexity, and limited applications. Multiple-Valued Logic (MVL), which can store more information in one digit than binary logics, require less number of logic gates and take the third value in practical logic problems, is developed and introduced. More information stored per digit leads to higher computational efficiency. Less logic gates results in more spaces on the circuit board. Considering the third value means higher accuracy. In this research, some examples of different MVL circuit are designed to give a rough picture of current research in this domain. These designs are based on ternary and quaternary logics rather than binary logics. Besides, reliability evaluation through mathematical approach is presented in order to prove that the new design is more preferable. This can be carried out with mathematical analysis such as calculating a matrix that reflects its reliability, and simulating different designs to obtain certain values and comparing them with each other. Despite facing various challenges, including complicated physical implementation and difficulty to modulate the signals. This means that there is still potential of further research in this domain of logic circuits. This result in the conclusion that the MVL logic circuits will replace the conventional binary logic circuits in the future, and probably that decimal logic would be developed and no binary-to-decimal conversion unit will be required.
APA, Harvard, Vancouver, ISO, and other styles
2

Patel, Ambresh, and Ritesh Sadiwala. "Performance Analysis of Various Complementary Metaloxide Semiconductor Logics for High Speed Very Large Scale Integration Circuits." SAMRIDDHI : A Journal of Physical Sciences, Engineering and Technology 15, no. 01 (2023): 91–95. http://dx.doi.org/10.18090/10.18090/samriddhi.v15i01.13.

Full text
Abstract:
The demand for VLSI low voltage high-performance low power systems are increasing significantly. Today's deviceapplications necessitate a system that consumes little power and conserves performance. Recent battery-powered lowvoltagedevices optimize power and high-speed constraints. Aside from that, there is a design constraint with burst-modetype integrated circuits for small devices to scale down. Low voltage low power static CMOS logic integrated circuitsoperate at a slower rate and cannot be used in high performance circuits. As a result, dynamic CMOS logic is used inintegrated circuits because it requires fewer transistors, has lower parasitic capacitance, is faster, and enables pipelinedsystem architecture with glitch-free circuits. It has, however, increased power dissipation. Both types of CMOS circuits withlow power dissipation overcome their own shortcomings.This paper discusses dynamic CMOS logic circuits and their structures. Various logics are also discussed and on the basisof the results obtained, logic which is best suited for designing CMOS logic circuit will be found out. The logic on the basisof structure layout and design which gives best results for high-speed VLSI circuits, is found out.
APA, Harvard, Vancouver, ISO, and other styles
3

Bundalo, Dusanka, Zlatko Bundalo, and Branimir Ðordjevic. "Design of quaternary logic systems and circuits." Facta universitatis - series: Electronics and Energetics 18, no. 1 (2005): 45–56. http://dx.doi.org/10.2298/fuee0501045b.

Full text
Abstract:
The principles and possibilities of design of fully quaternary multiple valued combinational logic systems and circuits are described and proposed in the paper. Different ways of design of fully quaternary combinational logic systems and circuits are considered and described first. Then algorithm for automated computerized design of such systems and circuits is considered and proposed. The algorithm gives possibility for synthesis and optimization of quaternary logic systems and circuits. It is applied on design of CMOS quaternary multiple valued logic systems and circuits. The algorithm includes the most important aspects of design of quaternary logic circuits: logic circuit scheme synthesis and logic circuit optimization. Methods for synthesis of quaternary CMOS combinational logic circuits are proposed and described. Also, method for optimization of CMOS quaternary logic circuits, according to operation conditions and needed characteristics, is proposed and described. Design procedure is realized by personal computer using PSPICE for circuit simulation. Computer PSPICE simulation results confirming described methods and conclusions are given in the paper.
APA, Harvard, Vancouver, ISO, and other styles
4

Bansal, Deepika, Brahmadeo Prasad Singh, and Ajay Kumar. "Stack Contention-alleviated Precharge Keeper for Pseudo Domino Logic." Bulletin of Electrical Engineering and Informatics 6, no. 2 (2017): 122–32. http://dx.doi.org/10.11591/eei.v6i2.597.

Full text
Abstract:
The dynamic circuits are supposed to offer superior speed and low power dissipation over static CMOS circuits. The domino logic circuits are used for high system performance but suffer from the precharge pulse degradation. This article provides different design topologies on the domino circuits to overcome the charge sharing and charge leakage with reference to the power dissipation and delay. The precharge keeper circuit has been proposed such that the keeper transistors also work as the precharge transistors to realize multiple output function. The performance improvement of the circuit’s analysis have been done for adders and logic gates using HSPICE tool. The proposed keeper techniques reveal lower power dissipation and lesser delay over the standard keeper circuit with less transistor count for different process variation.
APA, Harvard, Vancouver, ISO, and other styles
5

Upadhyay, Shipra, R. A. Mishra, R. K. Nagaria, and S. P. Singh. "DFAL: Diode-Free Adiabatic Logic Circuits." ISRN Electronics 2013 (February 10, 2013): 1–12. http://dx.doi.org/10.1155/2013/673601.

Full text
Abstract:
The manufacturing advances in semiconductor processing (continually reducing minimum feature size of transistors, increased complexity and ever increasing number of devices on a given IC) change the design challenges for circuit designers in CMOS technology. The important challenges are low power high speed computational devices. In this paper a novel low power adiabatic circuit topology is proposed. By removing the diode from the charging and discharging path, higher output amplitude is achieved and also the power dissipation of the diodes is eliminated. A mathematical expression has been developed to explain the energy dissipation in the proposed circuit. Performance of the proposed logic is analyzed and compared with CMOS and reported adiabatic logic styles. Also the layout of proposed inverter circuit has been drawn. Subsequently proposed topology-based various logic gates, combinational and sequential circuits and multiplier circuit are designed and simulated. The simulations were performed by VIRTUOSO SPECTRE simulator of Cadence in 0.18 μm UMC technology. In proposed inverter the energy efficiency has been improved to almost 60% up to 100 MHz in comparison to conventional CMOS circuits. The present research provides low power high speed results up to 100 MHz, and proposal has proven to be used in power aware high-performance VLSI circuitry.
APA, Harvard, Vancouver, ISO, and other styles
6

Kamde, Shilpa, Jitesh Shinde, Sanjay Badjate, and Pratik Hajare. "Comparative Analysis Domino Logic Based Techniques For VLSI Circuit." INTERNATIONAL JOURNAL OF COMPUTERS & TECHNOLOGY 12, no. 8 (2014): 3803–8. http://dx.doi.org/10.24297/ijct.v12i8.2998.

Full text
Abstract:
Domino logic is a CMOS-based evolution of the dynamic logic techniques  based on either PMOS or NMOS transistors. Domino logic technique is widely used in modern digital VLSI circuit. Dynamic logic is twice as fast as static CMOS logic because it uses only N fast transistors. The Dynamic (Domino) logic circuit are often favored in high performance designs because of the high speed and low area advantage.Four different dynamic circuit techniques including Basic domino logic circuit are compared in this paper for low power consumption and speed of domino logic circuits. For digital circuit simulation used BSIM(Berkeley Short Channel IGFET ) Model because it control leakage current.
APA, Harvard, Vancouver, ISO, and other styles
7

Muneesa, Sk Haleem, Jakkala Yoga Deepika, Obulam Yogendra Lakshmi Prasanna, Gummadi Sumasree, and Shaik Thaslim. "Design of Reconfigurable Logic Block Based Sequential Circuits Using Look Up Table Logics." Turkish Journal of Computer and Mathematics Education (TURCOMAT) 15, no. 1 (2024): 195–204. http://dx.doi.org/10.61841/turcomat.v15i1.14612.

Full text
Abstract:
Reconfigurable sequential circuits find applications in various digital systems, including communication networks, data processing units, embedded systems, and FPGA-based designs. Their ability to adapt and reconfigure their functionality onthe-fly allows them to accommodate dynamic requirements and optimize the use of hardware resources. Traditional implementations of sequential circuits involve static configurations, where the logic and functionality are fixed during synthesis. While these methods are straightforward to design and implement, they lack adaptability and cannot be modified without redesigning the entire circuit. The proposed method involves the utilization of a dedicated Reconfigurable Logic Block (RLB) within the sequential circuits, allowing for dynamic configuration changes without altering the overall circuit structure. The RLB can be programmed to provide different logic functions using look up tables, multiplexers, enabling the sequential circuit such as counters and shift registers to change its behaviour.
APA, Harvard, Vancouver, ISO, and other styles
8

Sun, Junwei, Qinfei Yang, and Yanfeng Wang. "Memristive Circuit Design of Five-Person Voter Based on Memristor Ratioed Logic." Journal of Nanoelectronics and Optoelectronics 15, no. 12 (2020): 1482–93. http://dx.doi.org/10.1166/jno.2020.2895.

Full text
Abstract:
Conventional CMOS-based logic circuits are approaching their limits when it comes to speed and energy consumption, so the development of new electronic components becomes critical. Memristor is a nano-structured special electronic device with the advantages of simple structure, low power consumption and easy integration. This invention supplys a new method for developing complex logic circuits. This article mainly presents the design of a five-person voter circuit. The OR/AND logic can be accomplished by varying the polarity of two parallel memristors. On the basis of the two logic circuits, adder and comparator are constructed. Further, based on the adder and comparator, a five-person voter is implemented. The correctness and rationality of the five-person voter based on MRL are confirmed via logistical analysis and simulation. Compared with the traditional logic circuits, the logic circuit designed in this paper has advantages in area cost. The realization of the five-person voter circuit further proves that the logic circuit based on memristor can be cascaded. The research results are expected to build more complex circuits, which may provide a reference for the design of other practical circuits.
APA, Harvard, Vancouver, ISO, and other styles
9

Raman, Karthik, and Andreas Wagner. "The evolvability of programmable hardware." Journal of The Royal Society Interface 8, no. 55 (2010): 269–81. http://dx.doi.org/10.1098/rsif.2010.0212.

Full text
Abstract:
In biological systems, individual phenotypes are typically adopted by multiple genotypes. Examples include protein structure phenotypes, where each structure can be adopted by a myriad individual amino acid sequence genotypes. These genotypes form vast connected ‘neutral networks’ in genotype space. The size of such neutral networks endows biological systems not only with robustness to genetic change, but also with the ability to evolve a vast number of novel phenotypes that occur near any one neutral network. Whether technological systems can be designed to have similar properties is poorly understood. Here we ask this question for a class of programmable electronic circuits that compute digital logic functions. The functional flexibility of such circuits is important in many applications, including applications of evolutionary principles to circuit design. The functions they compute are at the heart of all digital computation. We explore a vast space of 10 45 logic circuits (‘genotypes’) and 10 19 logic functions (‘phenotypes’). We demonstrate that circuits that compute the same logic function are connected in large neutral networks that span circuit space. Their robustness or fault-tolerance varies very widely. The vicinity of each neutral network contains circuits with a broad range of novel functions. Two circuits computing different functions can usually be converted into one another via few changes in their architecture. These observations show that properties important for the evolvability of biological systems exist in a commercially important class of electronic circuitry. They also point to generic ways to generate fault-tolerant, adaptable and evolvable electronic circuitry.
APA, Harvard, Vancouver, ISO, and other styles
10

Sun, Jun-Wei, Yu-Qi Tian, and Yan-Feng Wang. "Eight-Person Voter Implementation Based on Hewlett-Packard Memristor." Journal of Nanoelectronics and Optoelectronics 15, no. 3 (2020): 404–14. http://dx.doi.org/10.1166/jno.2020.2728.

Full text
Abstract:
The logic function based on memristor has been proved and can be applied to the future large scale integrated circuits. In this paper, we use logic circuit based on memristor to realize the function of eight-person voter. The basic logic circuit designed in this paper is consisted of two Hewlett-Packard memristors in series connection and an operational amplifier. Operational amplifiers are used to regulate the output voltages to meet the requirements of the input signals in the next stage circuits. The adder, binary comparator and multi-input logic gate are realized by using the designed logic circuit. Full adders, binary comparators and multi-input logic gates are combined into eight-person voter circuit. Theoretical analysis and spice simulation results verify the feasibility of the circuit under different cases. This method is expected to be applied to more complex voter logic circuits based on memristor.
APA, Harvard, Vancouver, ISO, and other styles
More sources
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography