Academic literature on the topic 'Logic in Computer Science'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Logic in Computer Science.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Logic in Computer Science"
Martin, Ursula. "Logic for computer science." Science of Computer Programming 11, no. 2 (December 1988): 176–78. http://dx.doi.org/10.1016/0167-6423(88)90006-8.
Full textSteingartner, William, Andrea Polakova, Peter Praznak, and Valerie Novitzka. "Linear logic in computer science." Journal of Applied Mathematics and Computational Mechanics 14, no. 1 (March 2015): 91–100. http://dx.doi.org/10.17512/jamcm.2015.1.09.
Full textIashin, Boris Leonidovich. "Non-Classical Logics in Modern Science." Философская мысль, no. 1 (January 2023): 15–25. http://dx.doi.org/10.25136/2409-8728.2023.1.39350.
Full textRota, Gian-Carlo. "Mathematical logic and theoretical computer science." Advances in Mathematics 72, no. 1 (November 1988): 168. http://dx.doi.org/10.1016/0001-8708(88)90023-0.
Full textBringsjord, Selmer. "Computer Science as Immaterial Formal Logic." Philosophy & Technology 33, no. 2 (August 5, 2019): 339–47. http://dx.doi.org/10.1007/s13347-019-00366-7.
Full textHoogewijs, Albert. "Partial-predicate logic in computer science." Acta Informatica 24, no. 4 (August 1987): 381–93. http://dx.doi.org/10.1007/bf00292109.
Full textBlass, Andreas. "Symbioses between mathematical logic and computer science." Annals of Pure and Applied Logic 167, no. 10 (October 2016): 868–78. http://dx.doi.org/10.1016/j.apal.2014.04.018.
Full textDeMol, Liesbeth. "Logic, Programming, and Computer Science: Local Perspectives." IEEE Annals of the History of Computing 43, no. 4 (October 1, 2021): 5–9. http://dx.doi.org/10.1109/mahc.2021.3121578.
Full textVardi, Moshe Y. "Special selection in logic in computer science." Journal of Symbolic Logic 62, no. 2 (June 1997): 608. http://dx.doi.org/10.2307/2275549.
Full textHamburger, Henry, and Dana Richards. "Logic and language models for computer science." ACM SIGACT News 33, no. 1 (March 2002): 67–70. http://dx.doi.org/10.1145/507457.507471.
Full textDissertations / Theses on the topic "Logic in Computer Science"
Wilkinson, Toby. "Enriched coalgebraic modal logic." Thesis, University of Southampton, 2013. https://eprints.soton.ac.uk/354112/.
Full textCoughlin, Devin. "Type-Intertwined Separation Logic." Thesis, University of Colorado at Boulder, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3704668.
Full textStatic program analysis can improve programmer productivity and software reliability by definitively ruling out entire classes of programmer mistakes. For mainstream imperative languages such as C, C++, and Java, static analysis about the heap---memory that is dynamically allocated at run time---is particularly challenging because heap memory acts as global, mutable state. This dissertation describes how to soundly combine two static analyses that each take vastly different approaches to reasoning about the heap: type systems and separation logic. Traditional type systems take an alias-agnostic, global view of the heap that affords both fast verification and light-weight annotation of invariants holding over the entire program. Separation logic, in contrast, provides an alias-aware, local view of the heap in which invariants can vary at each program point. In this work, I show how type systems and separation logic can be safely and efficiently combined. The result is type-intertwined separation logic, an analysis that applies traditional type-based reasoning to some regions of the program and separation logic to others---converting between analysis representations at region boundaries---and summarizes some portions of the heap with coarse type invariants and others with precise separation logic invariants. The key challenge that this dissertation addresses is the communication and preservation of heap invariants between analyses. I tackle this challenge with two core contributions. The first is type-consistent summarization and materialization, which enables type-intertwined separation logic to both leverage and selectively violate the global type invariant. This mechanism allows the analysis to efficiently and precisely verify invariants that hold almost everywhere. Second, I describe gated separating conjunction, a non-commutative strengthening of standard separating conjunction that expresses local dis-pointing relationships between sub-heaps. Gated separation enables local heap reasoning by permitting the separation logic to frame out portions of memory and prevent the type system from interfering with its contents---an operation that would be unsound in type-intertwined analysis with only standard separating conjunction. With these two contributions, type-intertwined separation logic combines the benefits of both type-like global reasoning and separation-logic-style local reasoning in a single analysis.
Tarnoff, David. "Episode 4.03 – Combinational Logic." Digital Commons @ East Tennessee State University, 2020. https://dc.etsu.edu/computer-organization-design-oer/31.
Full textTarnoff, David. "Episode 5.02 – NAND Logic." Digital Commons @ East Tennessee State University, 2020. https://dc.etsu.edu/computer-organization-design-oer/39.
Full textXu, Qing. "Optimization techniques for distributed logic simulation." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=96665.
Full textLa simulation "gate-level" est une tape ncessaire pour vrifier la conformit dela conception d'un circuit avant sa fabrication. C'est un programme qui prendbeaucoup de temps, compte tenu particulirement de la taille actuelle des circuits.Ceux-ci ne cessant de se dvelopper en taille et en complexit, il y a un rel besoin detechniques de simulation plus efficaces afin de maintenir la dure de vrification ducircuit raisonnablement courte. Une de ces techniques consiste utiliser la simulationparallle ou distribue. Quand excute sur un rseau de postes de travail, la simulationdistribue se rvle galement tre une technique trs rentable. Cette recherche se concentresur l'optimisation des techniques de simulations "gate-level" logiques bases surTime Warp. Les techniques qui sont dcrites dans cet expos sont orientes vers lesplateformes distribues. La premire contribution majeure de cet expos a t la crationd'un simulateur distribu orient sur l'objet, XTW. Il utilise un algorithme de synchronisationoptimiste et incorpore un certain nombre de techniques d'optimisationconnues visant diffrents aspects de la simulation distribue logique. XEQ, un algorithmeprogrammateur d'vnements O(1) pour ce simulateur a t dvelopp pour treutilis dans XTW. XEQ nous permet d'excuter des simulations "gate-level" jusqu'9,4 fois plus rapides qu'avec le mme simulateur utilisant une suite d'vnement en"skip-list" (O(lg n)). "rb-message" – un mcanisme qui diminue le co?t de rductiondans Time Warp a galement t mis au point pour tre utilis dans XTW. Nos essaisont rvl que le mcanisme de "rb-message" permettait de diminuer le nombre des antimessagesenvoys au cours d'une simulation logique base sur Time Warp de 76 % enmoyenne. Il a t en outre con?u, en se basant sur les observations que (1) certainscircuits ne devraient pas tre simuls en parallle et (2) que diffrents circuits atteignentleur meilleure performance de simulation parallle avec un nombre diffrent de noeudsde calculs, un algorithme utilisant l'algorithme d'apprentissage de la machine K-NNafin de dterminer quelle tait l'association de logiciel et de matriel la plus efficacedans le cadre d'une simulation logique. l'issue d'un entra?nement approfondi, ilest apparu qu'il pouvait faire un pronostic juste 99 % tablissant quand utiliser unsimulateur parallle ou squentiel. Le nombre annonc de noeuds utiliser sur une plateformeparallle s'est avr permettre une dure d'excution moyenne gale 12 % de la pluscourte dure d'excution. La configuration ayant abouti la dure d'excution minimalea t reprise dans 61 % des cas. Dernire contribution apporte par cet expos, relier lessimulateurs commerciaux processeur unique utilisant Verilog PLI.
Kabiri, Chimeh Mozhgan. "Data structures for SIMD logic simulation." Thesis, University of Glasgow, 2016. http://theses.gla.ac.uk/7521/.
Full textLapointe, Stéphane. "Induction of recursive logic programs." Thesis, University of Ottawa (Canada), 1992. http://hdl.handle.net/10393/7467.
Full textBotha, Leonard. "DevelopinThe Bayesian Description Logic BALC." Master's thesis, University of Cape Town, 2018. http://hdl.handle.net/11427/29350.
Full textXu, Qing. "XTW, a parallel and distributed logic simulator." Thesis, McGill University, 2003. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=19631.
Full textPhillips, Caitlin. "An algebraic approach to dynamic epistemic logic." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=86767.
Full textPast approaches to dynamic epistemic logic have typically been focused on actions whose primary purpose is to communicate information from one agent to another. These actions are unable to alter the valuation of any proposition within the system. In fields such as security and economics, it is easy to imagine situations in which this sort of action would be insufficient. Instead, we expand the framework to include both communication actions and actions that change the state of the system. Furthermore, we propose a new modality which captures both epistemic and propositional changes that result from the agents' actions.
En raisonnement sur les systemes multi-agents, il est important de regarder au-dela du domaine de la logique propositionnelle et de raisonner sur les con- naissances des agents au sein du syst`eme, parce que ce qu'ils savent au sujet de l'environnement influe sur la mani`ere dont ils se comportent. Un outil utile pour l'analyse et la formalisation de ce que les agents savent, est la logique epistemique, une logique modale developpee par les philosophes du debut des annees 1960. La logique epistemique est la cle de la comprehension des connaissances dans les systemes multi-agents, mais elle est insuffisante si l'on veut etudier la facon dont la connaissance des agents evolue a travers le temps. Pour ce faire, il est necessaire de recourir a une logique qui allie des modalites dynamiques et epistemiques, appele la logique epistemique dynamique. Certaines formalisations de la logique epistemique dynamique utilisent la semantique de Kripke pour les etats et les actions, tandis que d'autres prennent une approche algebrique, et utilisent les structures ordonne dans leur semantique. Nous discutons plusieurs de ces logiques, mais nous nous concentrons principalement sur le cadre algebrique pour la logique epistemique dynamique.
Les approches adoptees dans le passe a la logique epistemique dynamique ont generalement ete axe sur les actions dont l'objectif principal est de communiquer des informations d'un agent a un autre. Ces actions sont dans l'impossibilite de modifier l' evaluation de toute proposition au sein du systeme. Dans des domaines tels que la securite et l' economie, il est facile d'imaginer des situations dans lesquelles ce type d'action serait insuffisante. Au lieu de cela, nous etendons le cadre algebrique pour inclure a la fois des actions de communication et des actions qui changent l' etat du systeme. En outre, nous proposons une nouvelle modalite qui permet de capturer a la fois les changements epistemiques et les changements propositionels qui resultent de l'action des agents.
Books on the topic "Logic in Computer Science"
Duparc, Jacques, and Thomas A. Henzinger, eds. Computer Science Logic. Berlin, Heidelberg: Springer Berlin Heidelberg, 2007. http://dx.doi.org/10.1007/978-3-540-74915-8.
Full textFlum, Jörg, and Mario Rodriguez-Artalejo, eds. Computer Science Logic. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/3-540-48168-0.
Full textGottlob, Georg, Etienne Grandjean, and Katrin Seyr, eds. Computer Science Logic. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. http://dx.doi.org/10.1007/10703163.
Full textBradfield, Julian, ed. Computer Science Logic. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45793-3.
Full textFribourg, Laurent, ed. Computer Science Logic. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44802-0.
Full textOng, Luke, ed. Computer Science Logic. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11538363.
Full textvan Dalen, Dirk, and Marc Bezem, eds. Computer Science Logic. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/3-540-63172-0.
Full textNielsen, Mogens, and Wolfgang Thomas, eds. Computer Science Logic. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/bfb0028003.
Full textBörger, Egon, Yuri Gurevich, and Karl Meinke, eds. Computer Science Logic. Berlin/Heidelberg: Springer-Verlag, 1994. http://dx.doi.org/10.1007/bfb0049319.
Full textPacholski, Leszek, and Jerzy Tiuryn, eds. Computer Science Logic. Berlin, Heidelberg: Springer Berlin Heidelberg, 1995. http://dx.doi.org/10.1007/bfb0022242.
Full textBook chapters on the topic "Logic in Computer Science"
Henglein, Fritz. "Rock’n’Roll Computer Science." In Logic and Program Semantics, 354–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-29485-3_33.
Full textBelohlavek, Radim, Rudolf Kruse, and Christian Moewes. "Fuzzy Logic in Computer Science." In Computer Science, 385–419. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4614-1168-0_16.
Full textDawe, M. S., and C. M. Dawe. "Logic." In PROLOG for Computer Science, 7–20. London: Springer London, 1994. http://dx.doi.org/10.1007/978-1-4471-2031-5_2.
Full textLim, Daniel. "Logic." In Philosophy through Computer Science, 30–44. New York: Routledge, 2023. http://dx.doi.org/10.4324/9781003271284-4.
Full textDella Rocca, Simona Ronchi, and Luca Roversi. "Intersection Logic." In Computer Science Logic, 414–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/3-540-44802-0_29.
Full textAndreoli, Jean-Marc, Gabriele Pulcini, and Paul Ruet. "Permutative Logic." In Computer Science Logic, 184–99. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11538363_14.
Full textFinkbeiner, Bernd, and Sven Schewe. "Coordination Logic." In Computer Science Logic, 305–19. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15205-4_25.
Full textGillies, Donald. "Logicism and the Development of Computer Science." In Computational Logic: Logic Programming and Beyond, 588–604. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/3-540-45632-5_23.
Full textFeferman, Solomon. "Tarski’s Influence on Computer Science." In Studies in Universal Logic, 391–404. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-65430-0_29.
Full textVickers, Steve. "Geometric Logic in Computer Science." In Theory and Formal Methods 1993, 37–54. London: Springer London, 1993. http://dx.doi.org/10.1007/978-1-4471-3503-6_4.
Full textConference papers on the topic "Logic in Computer Science"
Lonsky, I. I., S. V. Bulgakov, and V. Ya Tsvetkov. "Probabilistic logic in computer science." In PROCEEDINGS OF THE III INTERNATIONAL CONFERENCE ON ADVANCED TECHNOLOGIES IN MATERIALS SCIENCE, MECHANICAL AND AUTOMATION ENGINEERING: MIP: Engineering-III – 2021. AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0071597.
Full textGehrke, Mai. "Duality in Computer Science." In LICS '16: 31st Annual ACM/IEEE Symposium on Logic in Computer Science. New York, NY, USA: ACM, 2016. http://dx.doi.org/10.1145/2933575.2934575.
Full textSchreiner, Wolfgang. "Logic and Semantic Technologies for Computer Science Education." In 2019 IEEE 15th International Scientific Conference on Informatics. IEEE, 2019. http://dx.doi.org/10.1109/informatics47936.2019.9119285.
Full textMyers, J. Paul. "The central role of mathematical logic in computer science." In the twenty-first SIGCSE technical symposium. New York, New York, USA: ACM Press, 1990. http://dx.doi.org/10.1145/323410.319071.
Full text"Proceedings. 14th Symposium on Logic in Computer Science (Cat. No. PR00158)." In Proceedings. 14th Symposium on Logic in Computer Science. IEEE, 1999. http://dx.doi.org/10.1109/lics.1999.782575.
Full text"Proceedings 16th Annual IEEE Symposium on Logic in Computer Science." In Proceedings 16th Annual IEEE Symposium on Logic in Computer Science. IEEE, 2001. http://dx.doi.org/10.1109/lics.2001.932476.
Full text"Proceedings 17th Annual IEEE Symposium on Logic in Computer Science." In Proceedings 17th Annual IEEE Symposium on Logic in Computer Science. IEEE, 2002. http://dx.doi.org/10.1109/lics.2002.1029811.
Full text"Proceedings 18th Annual IEEE Symposium on Logic in Computer Science." In Proceedings 18th Annual IEEE Symposium on Logic in Computer Science. IEEE, 2003. http://dx.doi.org/10.1109/lics.2003.1210038.
Full text"Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science." In Proceedings Ninth Annual IEEE Symposium on Logic in Computer Science. IEEE, 1994. http://dx.doi.org/10.1109/lics.1994.316093.
Full text"Proceedings 11th Annual IEEE Symposium on Logic in Computer Science." In Proceedings 11th Annual IEEE Symposium on Logic in Computer Science. IEEE, 1996. http://dx.doi.org/10.1109/lics.1996.561297.
Full textReports on the topic "Logic in Computer Science"
IOWA STATE UNIV AMES DEPT OF MATHEMATICS. Applications of Algebraic Logic and Universal Algebra to Computer Science. Fort Belvoir, VA: Defense Technical Information Center, June 1989. http://dx.doi.org/10.21236/ada210556.
Full textLutz, Carsten. PDL with Intersection and Converse is Decidable. Technische Universität Dresden, 2005. http://dx.doi.org/10.25368/2022.148.
Full textMeseguer, J. Rewriting Logic and its Applications First International Workshop, Asilomar Conference Center, Pacific Grove, California, 3-6 September 1996. Volume 4 Electronic Notes in Theoretical Computer Science. Fort Belvoir, VA: Defense Technical Information Center, September 1996. http://dx.doi.org/10.21236/ada314817.
Full textStriuk, Andrii M. Software engineering: first 50 years of formation and development. [б. в.], December 2018. http://dx.doi.org/10.31812/123456789/2880.
Full textMcGee, Steven, Randi McGee-Tekula, Jennifer Duck, Lucia Dettori, Don Yanek, Andrew M. Rasmussen, Ronald I. Greenberg, and Dale F, Reed. Does Exploring Computer Science Increase Computer Science Enrollment? The Learning Partnership, April 2018. http://dx.doi.org/10.51420/conf.2018.1.
Full textLydon, Michael, and Jessie Ford. Computer Science Career Network. Fort Belvoir, VA: Defense Technical Information Center, March 2013. http://dx.doi.org/10.21236/ada578200.
Full textRosenthal, Robert. Computer science and technology :. Gaithersburg, MD: National Bureau of Standards, 1987. http://dx.doi.org/10.6028/nbs.ir.87-3516.
Full textAnderson, Loren James, and Marion Kei Davis. Functional Programming in Computer Science. Office of Scientific and Technical Information (OSTI), January 2016. http://dx.doi.org/10.2172/1237221.
Full textRamamritham, Krithi. Computer Science Research in India. Fort Belvoir, VA: Defense Technical Information Center, October 1995. http://dx.doi.org/10.21236/ada300848.
Full textShafer, S., R. Bryant, J. Wing, B. Myers, and J. Reynolds. Basic Research in Computer Science. Fort Belvoir, VA: Defense Technical Information Center, December 1993. http://dx.doi.org/10.21236/ada275184.
Full text