Academic literature on the topic 'Logicism'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Logicism.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Logicism"

1

Feferman, Solomon. "Logic, Logics, and Logicism." Notre Dame Journal of Formal Logic 40, no. 1 (January 1999): 31–54. http://dx.doi.org/10.1305/ndjfl/1039096304.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Boccuni, Francesca. "Minimal Logicism." Philosophia Scientae, no. 18-3 (October 1, 2014): 81–94. http://dx.doi.org/10.4000/philosophiascientiae.974.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jeffrey, Richard. "Logicism Lite*." Philosophy of Science 69, no. 3 (September 2002): 474–96. http://dx.doi.org/10.1086/342453.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Boccuni, Francesca. "Plural Logicism." Erkenntnis 78, no. 5 (March 23, 2013): 1051–67. http://dx.doi.org/10.1007/s10670-013-9482-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Linsky, Bernard, and Edward N. Zalta. "What is Neologicism?" Bulletin of Symbolic Logic 12, no. 1 (March 2006): 60–99. http://dx.doi.org/10.2178/bsl/1140640944.

Full text
Abstract:
Logicism is a thesis about the foundations of mathematics, roughly, that mathematics is derivable from logic alone. It is now widely accepted that the thesis is false and that the logicist program of the early 20th century was unsuccessful. Frege's [1893/1903] system was inconsistent and the Whitehead and Russell [1910–1913] system was not thought to be logic, given its axioms of infinity, reducibility, and choice. Moreover, both forms of logicism are in some sense non-starters, since each asserts the existence of objects (courses of values, propositional functions, etc.), something which many philosophers think logic is not supposed to do. Indeed, the tension in the idea underlying logicism, that the axioms and theorems of mathematics can be derived as theorems of logic, is obvious: on the one hand, there are numerous existence claims among the theorems of mathematics, while on the other, it is thought to be impossible to prove the existence of anything from logic alone. According to one well-received view, logicism was replaced by a very different account of the foundations of mathematics, in which mathematics was seen as the study of axioms and their consequences in models consisting of the sets described by Zermelo-Fraenkel set theory (ZF). Mathematics, on this view, is just applied set theory.
APA, Harvard, Vancouver, ISO, and other styles
6

Rodríguez Consuegra, Francisco. "El logicismo russelliano: su significado filosófico." Crítica (México D. F. En línea) 23, no. 67 (December 13, 1991): 15–39. http://dx.doi.org/10.22201/iifs.18704905e.1991.792.

Full text
Abstract:
After a brief presentation of Russell' s logicism, I attempt a global explanation of its philosophical significance. I reject the existence of two different kinds of logicism (Putnam) with the argument that Russell was trying to justify the existing mathematics and, at the same time, to escape from a mere formal calculus. For the same reason, the logicist definitions cannot be regarded as new axioms to be added to Peano's postulates (Reichenbach): according to Russell it is necessary to show that there is a constant meaning satisfying those postulates. The lack of a clear definition of logic in Russell (and Frege) is a consequence of his whole philosophy, therefore we must not look for it in the concept of necessity (Griffin), nor must we interpret this lack as a gap in the system (Grattan-Guinness). Russell's starting point was Moore's notion of truth as something indefinable and intuitive according to which we immediately recognize the true propositions. The problem of logicism is rather the deep tension between the ontological preeminence of relations (structures) and their terms (fields). [F.R.C.]
APA, Harvard, Vancouver, ISO, and other styles
7

BRUNGS, Alexander, and Frédéric GOUBIER. "On Biblical Logicism." Recherches de Théologie et Philosophie Médiévales 76, no. 1 (June 30, 2009): 199–244. http://dx.doi.org/10.2143/rtpm.76.1.2037163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

FREY, Adrian. "LOGICISM AND CARNAP’S." Grazer Philosophische Studien 83, no. 1 (2011): 143–69. http://dx.doi.org/10.1163/9789401200721_009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gandon, S., and B. Halimi. "Introduction: Logicism Today." Philosophia Mathematica 21, no. 2 (May 14, 2013): 129–32. http://dx.doi.org/10.1093/philmat/nkt018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Rayo, A. "Nominalism, Trivialism, Logicism." Philosophia Mathematica 23, no. 1 (June 16, 2014): 65–86. http://dx.doi.org/10.1093/philmat/nku013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Logicism"

1

Friend, Michèle. "The possibility of Frege's logicism /." Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=61073.

Full text
Abstract:
In order to understand the implications of Frege's Grundlagen der Arithmetik, we must bear in mind that Frege saw logic as an overarching discipline, necessary for all scientific enquiry. This consideration allows us to make sense of his logicism, the idea that arithmetic is embedded in logic, and his platonism, the commitment to the mind-independent nature of arithmetic objects, such as numbers. In 1902, Russell generated a paradox from Basic Law (V), found in the first volume of Grundgesetze, which suggested that Frege's entire logical system was inconsistent. Recent work by Boolos and Wright, have fenced off the damage and shown that the bulk of Frege's work is consistent. I shall argue, however, that their proposed solutions prove unsatisfactory with respect to Frege's view of logic and especially his logicism.
APA, Harvard, Vancouver, ISO, and other styles
2

Jennings, Mark Richard John. "Frege's logicism : getting an insight into what we grasp." Thesis, University College London (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Doherty, Fiona Teresa. "The common foundation of neo-logicism and the Frege-Hilbert controversy." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/277438.

Full text
Abstract:
In the first half of the thesis I investigate David Hilbert's early ontology of mathematics around the period 1899-1916. Hilbert's early views are of significant philosophical interest and have been largely ignored due to his later, more influential work. I suggest that, in this period Hilbert, can be understood as an early structuralist. In the second half of the thesis, I connect two important debates in the foundations of mathematics: Hale and Wright's neo-Fregean logicism and the Frege-Hilbert controversy. Using this connection, I adapt Frege's objections to Hilbert and apply them to Hale and Wright's account. By doing this, I show that the neo-Fregean logicists have long abandoned the Fregean element of their program in favor of a structuralist ontology. I conclude that our ontological conception of what exists in mathematics and what it is like constrains the foundations we use to characterise mathematical reality.
APA, Harvard, Vancouver, ISO, and other styles
4

Britto, Arthur Heller. "O teorema de Frege: uma reavaliação do seu projeto logicista." Pontifícia Universidade Católica de São Paulo, 2013. https://tede2.pucsp.br/handle/handle/11644.

Full text
Abstract:
Made available in DSpace on 2016-04-27T17:27:06Z (GMT). No. of bitstreams: 1 Arthur Heller Britto.pdf: 403242 bytes, checksum: 9ea7d542e4846499fab1760b30fe2a33 (MD5) Previous issue date: 2013-11-08
The objective of this dissertation is first to present the fundamental part of Frege's logicist project - that became known as Frege's theorem - as an independent mathematical result in order to then evaluate its philosophical significance through a discussion of Frege's concept of logic. Besides, there are two appendixes in which a general recursion theorem is proven inside a classical second-order logical system and a neofregean construction of the real numbers from Cauchy sequences is presented
O objetivo desta dissertação e, em primeiro lugar, apresentar o núcleo fundamental do projeto logicista fregeano - o que ficou conhecido pelo nome de teorema de Frege - como um resultado matemático independente para, em seguida, avaliar o seu significado filosófico por meio da discussão acerca do conceito fregeano de logica. Além disso, este trabalho contém dois anexos, nos quais se demonstra um teorema geral de recursão dentro de um sistema clássico de logica de segunda ordem e se apresenta uma construção neofregeana dos números reais por meio de sequências de Cauchy
APA, Harvard, Vancouver, ISO, and other styles
5

Feijó, Rafael Godolphim. "O intuicionismo Kantiano à Luz do Logicismo e do Cognitivismo: Uma defesa da intuição pura do espaço e do tempo." Universidade do Vale do Rio dos Sinos, 2017. http://www.repositorio.jesuita.org.br/handle/UNISINOS/6390.

Full text
Abstract:
Submitted by JOSIANE SANTOS DE OLIVEIRA (josianeso) on 2017-06-27T17:05:47Z No. of bitstreams: 1 Rafael Godolphim Feijó_.pdf: 1835499 bytes, checksum: 9b7410f8b42d5a741ecbd275052ab216 (MD5)
Made available in DSpace on 2017-06-27T17:05:47Z (GMT). No. of bitstreams: 1 Rafael Godolphim Feijó_.pdf: 1835499 bytes, checksum: 9b7410f8b42d5a741ecbd275052ab216 (MD5) Previous issue date: 2017-03-31
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
FAPERGS - Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul
A filosofia kantiana da matemática é fundamentada sobre uma estrutura epistemológica intuicionista. As categorias do espaço e do tempo constituem as formas da sensibilidade, formas estas manifestadas por meio de uma intuição pura a priori. O presente trabalho busca realizar uma defesa razoável de tal intuição frente aos críticos contemporâneos, os quais propõem um programa logicista desprovido de estrutura epistêmica no que tange ao raciocínio matemático. Tais críticos afirmam que a aritmética não necessita da intuição pura do tempo para que as operações numéricas possam ser realizadas. Buscaremos demonstrar que a lógica quantificacional constitui um expediente meramente formalista que deixa de lado os problemas epistemológicos da cognição matemática e, por esse motivo, pode ambicionar desconsiderar a intuição pura kantiana. Portanto, buscaremos demonstrar que a intuição pura kantiana ainda pode lançar luz sobre a natureza dos cálculos da matemática.
The Kantian philosophy of mathematics is based on an intuitionist epistemological structure. The categories of space and time are the forms of sensibility, these forms manifested through a pure intuition a priori. The present work seeks to make a reasonable defense of such intuition in the face of contemporary critics, who propose a logicist program devoid of epistemic structure regarding mathematical reasoning. Such critics claim that arithmetic does not need the pure intuition of time for numerical operations to be performed. We will try to demonstrate that the quantificational logic constitutes a merely formalistic expedient that leaves aside the epistemological problems of the mathematical cognition and, for this reason, it can ambition to disregard the pure Kantian intuition. Therefore, we shall try to demonstrate that pure Kantian intuition can still shed light on the nature of mathematical calculations.
APA, Harvard, Vancouver, ISO, and other styles
6

Shipley, Jeremy Robert. "From a structural point of view." Diss., University of Iowa, 2011. https://ir.uiowa.edu/etd/1178.

Full text
Abstract:
In this thesis I argue forin re structuralism in the philosophy of mathematics. In the first chapters of the thesis I argue that there is a genuine epistemic access problem for Platonism, that the semantic challenge to nominalism may be met by paraphrase strategies, and that nominalizations of scientific theories have had adequate success to blunt the force of the indispensability argument for Platonism. In the second part of the thesis I discuss the development of logicism and structuralism as methodologies in the history of mathematics. The goal of this historical investigation is to lay the groundwork for distinguishing between the philosophical analysis of the content of mathematics and the analysis of the breadth and depth of results in mathematics. My central contention is that the notion of logical structure provides a context for the latter not the former. In turn, this contention leads to a rejection of ante rem structuralism in favor of in re structuralism. In the concluding part of the dissertation the philosophy of mathematical structures developed and defended in the preceding chapters is applied to the philosophy of science.
APA, Harvard, Vancouver, ISO, and other styles
7

Michel, Bruno. "Abelard, lecteur de Boèce : entre réalisme et nominalisme, la critique du logicisme boécien dans les oeuvres logiques de Pierre Abélard." Thesis, Tours, 2009. http://www.theses.fr/2009TOUR2037/document.

Full text
Abstract:
Boèce prétend avoir apporté une solution définitive aux deux grandes apories du corpus logique aristotélicien, l'aporie de l'universel et l'aporie des futurs contingents. Nous montrons qu'Abélard, à travers sa critique des reales, met en question ces deux solutions et leur substitue deux distinctions voulues comme aporétiques - entre res et status d'un côté et entre res et dictum propositionis de l'autre - qui naissent de la reconnaissance par Abélard du caractère fictif des solutions boéciennes aux grandes apories du corpus logique aristotélicien. Ces deux distinctions organisent une réflexion philosophique profondément novatrice que nous nous efforçons de décrire
Boethius claims to have definitively solved the two great aporias of the corpus of Aristotelian Iogic, the universal aporia and the aporia of contingent futures. l demonstrate that Abelard,Through his critique of reales calls into question these two solutions and substitutes two distinctions that he wanted to he aporetique - between res and status on the one band andand dictum propositionis on the other hand - born of Abelard's recognition of the fictional character of the two Boetian solutions to the great aporias of the Aristotelician logical corpus. The two. distinctions pave the way for a profoundly new kind of philosophical reasoning,which this text mtends to describe
APA, Harvard, Vancouver, ISO, and other styles
8

Gomes, Rodrigo Rafael [UNESP]. "A noção de função em Frege." Universidade Estadual Paulista (UNESP), 2009. http://hdl.handle.net/11449/91131.

Full text
Abstract:
Made available in DSpace on 2014-06-11T19:24:54Z (GMT). No. of bitstreams: 0 Previous issue date: 2009-08-12Bitstream added on 2014-06-13T20:52:49Z : No. of bitstreams: 1 gomes_rr_me_rcla.pdf: 970847 bytes, checksum: f1f63ef47745a8d3404205c27335f1b1 (MD5)
Neste trabalho apresentamos e analisamos o conceito fregiano de função, presente nos três livros de Frege: Begriffsschrift, Os Fundamentos da Aritmética e Leis Fundamentais da Aritmética. Discutimos ao longo dele o que Frege entendia por função e argumento, as modificações conceituais que tais noções sofreram no período de publicação de seus livros e a importância dessas noções para a sua filosofia. Para tanto, analisamos a linguagem artificial do primeiro livro, a definição de número do segundo, e os casos particulares de funções que são definidos no terceiro, bem como as considerações contidas em outros escritos do filósofo alemão. Verificamos uma caracterização puramente sintática de função em Begriffsschrift, uma distinção entre o sinal de uma função e aquilo que ele denota em Os Fundamentos da Aritmética, e a associação de dois elementos distintos a uma expressão funcional em Leis Fundamentais da Aritmética: o seu sentido e a sua referência. Finalmente, constatamos que a originalidade do sistema fregiano reside na possibilidade de considerar esse ou aquele termo de uma proposição como o argumento (ou os argumentos) de uma função.
In this work we present and analyze the fregean concept of function, present in the three books by Frege: Begriffsschrift, The Foundations of the Arithmetic and Fundamental Laws of the Arithmetic. We discuss what Frege understood by function and argument, the conceptual modifications that such notions suffered in the period of publication of those books and the importance of these notions for his philosophy. For so much, we analyze the artificial language of the first book, the definition of number in the second, and the particular cases of functions that are defined in the third, as well as the considerations contained in other works by the philosopher. We verify a purely syntactic characterization of function in Begriffsschrift, a distinction between the sign of a function and what it denotes in The Foundations of the Arithmetic, and the association of two different elements to a functional expression in Fundamental Laws of the Arithmetic: its sense and its reference. Finally, we verify that the originality of the Frege´s system is based on the possibility of considering one or other term of a proposition as the argument (or the arguments) of a function.
APA, Harvard, Vancouver, ISO, and other styles
9

Andrew, James B. "Hume, Skepticism, and the Search for Foundations." University of Toledo / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1396628762.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Fournier, Jean-Baptiste. "Du flux de vécus au monde objectif : le concept de constitution chez Edmund Husserl et Rudolf Carnap." Thesis, Paris 1, 2015. http://www.theses.fr/2015PA010532/document.

Full text
Abstract:
Ce travail propose une réévaluation du schisme phénoménologico-analytique à la lumière des textes de Husserl et de Carnap qui en constituent l’un des fondements et qui cependant émergent d’un contexte philosophique et scientifique similaire. L’idée carnapienne de constitution comme « reconstruction rationnelle » et arbitraire du monde peut en effet paraître s’opposer terme à terme au «se-constituer» des choses que déploie la phénoménologie husserlienne, mais l’emploi par Carnap du vocabulaire de la constitution nous impose d’interroger le lien que l’entreprise de l’Aufbau entretient avec la constitution idéaliste transcendantale. La thèse de ce travail revient à affirmer que l’opposition Husserl/Carnap ne peut être interprétée dans les termes d’une opposition entre phénoménologie et analyse logique, ni non plus sur la base des concepts d’idéalisme transcendantal, de logicisme ou de phénoménalisme. Comprendre l’opposition entre les deux auteurs (et donc plus lointainement entre les deux mouvements dont ils endossent, au moins partiellement, la paternité) implique de se pencher sur les textes de jeunesse où l’un et l’autre élaborent leur concept respectif de constitution, en s’intéressant notamment au modèle logico-mathématique du formel dont ils héritent, et dont leur système de constitution présente le déploiement. Cette confrontation nous amène à définir la constitution comme l’élaboration d’un modèle continu de la discontinuité atteinte par la description phénoménologique pré-constitutive du monde – ce qui nous conduira à interroger la pertinence du modèle topologique pour la constitution
In this PhD thesis, I attempt to reevaluate the opposition between analytical and phenomenological philosophy through the study of Husserl’s and Carnap’s systems of constitution. Carnap’s idea of constitution as a “rational” and arbitrary “reconstruction” of the world seems to be radically antithetical to Husserl’s descriptive account of the “self-constitution” of the things themselves. Yet, Carnap’s use of the language of constitution, as well as his attempt to translate it into the language of logistics, lead us to question the links between his own enterprise and Husserl’s transcendental idealist constitution. What I am trying to demonstrate in this work is that the opposition between Husserl and Carnap cannot be interpreted either in terms of “phenomenology” and “analytical philosophy” or in terms of transcendental idealism, logicism and phenomenalism. In order to understand the opposition between Husserl and Carnap (and therefore, between continental and analytical philosophy), it is necessary to ask how and why, in their very first works and articles, they both conceived philosophy as a system of constitution. This leads us to give an account of Husserl’s and Carnap’s logico-mathematical models of the formal dimension of experience, and to define constitution as the elaboration of a continuous model for the discontinuity of the world – this discontinuity being given by the phenomenological and pre-constitutive description of the world. Would this imply then that topology is a suitable model for the construction of the world ?
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Logicism"

1

Gandon, Sébastien. Russell's Unknown Logicism. London: Palgrave Macmillan UK, 2012. http://dx.doi.org/10.1057/9781137024657.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Lindström, Sten, Erik Palmgren, Krister Segerberg, and Viggo Stoltenberg-Hansen, eds. Logicism, Intuitionism, and Formalism. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-8926-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Logicism and its philosophical legacy. Cambridge: Cambridge University Press, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Logicism renewed: Logical foundations for mathematics and computer science. Wellesley, Mass: Association for Symbolic Logic, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gilmore, Paul C. Logicism renewed: Logical foundations for mathematics and computer science. Wellesley, MA: Association for Symbolic Logic, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Boccuni, Francesca. Logicismo plurale. Roma: Aracne, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gessler, Nadine. Le logicisme catégoriel. Neuchâtel (Switzerland): Le Centre, 2005.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

M, Luis Felipe Segura. La prehistoria del logicismo. México: Plaza y Valdés, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Nolt, John Eric. Logics. Belmont, CA: Wadsworth Pub. Co., 1997.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Dumitriu, Anton. Istoria logicii. 3rd ed. București: Editura Tehnică, 1993.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Logicism"

1

Schroeder, Severin. "Logicism." In Wittgenstein on Mathematics, 9–14. New York, NY : Routledge, 2021. | Series: Wittgenstein’s thought and legacy: Routledge, 2020. http://dx.doi.org/10.4324/9781003056904-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Çevik, Ahmet. "Logicism." In Philosophy of Mathematics, 81–94. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003223191-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Patras, Frédéric. "Frege’s Logicism." In Lecture Notes in Mathematics, 101–9. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56700-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hiż, Henry. "Grammar logicism." In Categorial Grammar, 265. Amsterdam: John Benjamins Publishing Company, 1988. http://dx.doi.org/10.1075/llsee.25.18hiz.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gandon, Sébastien. "Benacerraf on Logicism." In Logic, Epistemology, and the Unity of Science, 129–45. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45980-6_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gandon, Sébastien. "Introduction." In Russell's Unknown Logicism, 1–15. London: Palgrave Macmillan UK, 2012. http://dx.doi.org/10.1057/9781137024657_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Gandon, Sébastien. "Projective Geometry." In Russell's Unknown Logicism, 16–48. London: Palgrave Macmillan UK, 2012. http://dx.doi.org/10.1057/9781137024657_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gandon, Sébastien. "Metrical Geometry." In Russell's Unknown Logicism, 49–78. London: Palgrave Macmillan UK, 2012. http://dx.doi.org/10.1057/9781137024657_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gandon, Sébastien. "Geometry, Logicism and ‘If-Thenism’." In Russell's Unknown Logicism, 79–106. London: Palgrave Macmillan UK, 2012. http://dx.doi.org/10.1057/9781137024657_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gandon, Sébastien. "Quantity in The Principles of Mathematics." In Russell's Unknown Logicism, 107–33. London: Palgrave Macmillan UK, 2012. http://dx.doi.org/10.1057/9781137024657_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Logicism"

1

Sun, Mingming, Xu Li, Xin Wang, Miao Fan, Yue Feng, and Ping Li. "Logician." In WSDM 2018: The Eleventh ACM International Conference on Web Search and Data Mining. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3159652.3159712.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Magdin, Martin, Martin Capay, and Martin Halmes. "Implementation of LogicSim in LMS Moodle." In 2012 IEEE 10th International Conference on Emerging eLearning Technologies and Applications (ICETA). IEEE, 2012. http://dx.doi.org/10.1109/iceta.2012.6418281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

de Groot, Jim, and Dirk Pattinson. "Modal Intuitionistic Logics as Dialgebraic Logics." In LICS '20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3373718.3394807.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Valiant, Leslie G. "Robust logics." In the thirty-first annual ACM symposium. New York, New York, USA: ACM Press, 1999. http://dx.doi.org/10.1145/301250.301425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Baldi, Paolo, Petr Cintula, and Carles Noguera. "Translating Classical Probability Logics into Modal Fuzzy Logics." In Proceedings of the 2019 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (EUSFLAT 2019). Paris, France: Atlantis Press, 2019. http://dx.doi.org/10.2991/eusflat-19.2019.49.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kawaguchi, Mayuka F., and Michiro Kondo. "A correspondence between implicational fragment logics and fuzzy logics." In 2014 IEEE International Conference on Granular Computing (GrC). IEEE, 2014. http://dx.doi.org/10.1109/grc.2014.6982820.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kostadinov, Atanas, Vitali Guitberg, Morten Olavsbraten, and Guennadi Kouzaev. "Multi-Logics Gates." In 2019 International Seminar on Electron Devices Design and Production (SED). IEEE, 2019. http://dx.doi.org/10.1109/sed.2019.8798452.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Osborn, Joseph C., Noah Wardrip-Fruin, and Michael Mateas. "Refining operational logics." In FDG'17: International Conference on the Foundations of Digital Games 2017. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3102071.3102107.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Yijia, and Joerg Flum. "Listings and Logics." In 2011 26th Annual IEEE Symposium on Logic in Computer Science (LICS 2011). IEEE, 2011. http://dx.doi.org/10.1109/lics.2011.17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Balbiani, Philippe, David Fernández-Duque, Andreas Herzig, and Emiliano Lorini. "Stratified Evidence Logics." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/211.

Full text
Abstract:
Evidence logics model agents' belief revision process as they incorporate and aggregate information obtained from multiple sources. This information is captured using neighbourhood structures, where individual neighbourhoods represent pieces of evidence. In this paper we propose an extended framework which allows one to explicitly quantify either the number of evidence sets, or effort, needed to justify a given proposition, provide a complete deductive calculus and a proof of decidability, and show how existing frameworks can be embedded into ours.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Logicism"

1

Allwein, Gerard, and William L. Harrison. Distributed Logics. Fort Belvoir, VA: Defense Technical Information Center, October 2014. http://dx.doi.org/10.21236/ada610943.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bastien, R. Logiciel d'echantillonnage pour le polycorder. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/315262.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Bastien, R. Logiciel d'echantillonnage pour le polycorder. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/315263.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Davoren, Jennifer M. Modal Logics for Continuous Dynamics. Fort Belvoir, VA: Defense Technical Information Center, November 1997. http://dx.doi.org/10.21236/ada344316.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Schwartz, Daniel. Approximate reasoning, logics for self-reference, and the use of nonclassical logics in systems modeling. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.591.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Alur, Rajeev, and Thomas A. Henzinger. Real-Time Logics: Complexity and Expressiveness,. Fort Belvoir, VA: Defense Technical Information Center, March 1990. http://dx.doi.org/10.21236/ada323441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Syverson, Paul F., and Paul C. van Oorschot. On Unifying Some Cryptographic Protocol Logics. Fort Belvoir, VA: Defense Technical Information Center, January 1994. http://dx.doi.org/10.21236/ada465512.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Meseguer, Jose. Logics and Models for Concurrency and Type Theory. Fort Belvoir, VA: Defense Technical Information Center, June 1992. http://dx.doi.org/10.21236/ada252737.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Artemov, Sergei N., Jennifer M. Davoren, and A. Nerode. Modal Logics and Topological Semantics for Hybrid Systems. Fort Belvoir, VA: Defense Technical Information Center, June 1997. http://dx.doi.org/10.21236/ada344355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Boivin, R., H. Larocque, and S. J. Paradis. Étapes de création d'un modèle numérique de terrain et d'une carte thématique avec relief en utilisant le logiciel ArcInfo et le module GRID. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2002. http://dx.doi.org/10.4095/213049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography