Academic literature on the topic 'Logicism'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Logicism.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Logicism"
Feferman, Solomon. "Logic, Logics, and Logicism." Notre Dame Journal of Formal Logic 40, no. 1 (January 1999): 31–54. http://dx.doi.org/10.1305/ndjfl/1039096304.
Full textBoccuni, Francesca. "Minimal Logicism." Philosophia Scientae, no. 18-3 (October 1, 2014): 81–94. http://dx.doi.org/10.4000/philosophiascientiae.974.
Full textJeffrey, Richard. "Logicism Lite*." Philosophy of Science 69, no. 3 (September 2002): 474–96. http://dx.doi.org/10.1086/342453.
Full textBoccuni, Francesca. "Plural Logicism." Erkenntnis 78, no. 5 (March 23, 2013): 1051–67. http://dx.doi.org/10.1007/s10670-013-9482-z.
Full textLinsky, Bernard, and Edward N. Zalta. "What is Neologicism?" Bulletin of Symbolic Logic 12, no. 1 (March 2006): 60–99. http://dx.doi.org/10.2178/bsl/1140640944.
Full textRodríguez Consuegra, Francisco. "El logicismo russelliano: su significado filosófico." Crítica (México D. F. En línea) 23, no. 67 (December 13, 1991): 15–39. http://dx.doi.org/10.22201/iifs.18704905e.1991.792.
Full textBRUNGS, Alexander, and Frédéric GOUBIER. "On Biblical Logicism." Recherches de Théologie et Philosophie Médiévales 76, no. 1 (June 30, 2009): 199–244. http://dx.doi.org/10.2143/rtpm.76.1.2037163.
Full textFREY, Adrian. "LOGICISM AND CARNAP’S." Grazer Philosophische Studien 83, no. 1 (2011): 143–69. http://dx.doi.org/10.1163/9789401200721_009.
Full textGandon, S., and B. Halimi. "Introduction: Logicism Today." Philosophia Mathematica 21, no. 2 (May 14, 2013): 129–32. http://dx.doi.org/10.1093/philmat/nkt018.
Full textRayo, A. "Nominalism, Trivialism, Logicism." Philosophia Mathematica 23, no. 1 (June 16, 2014): 65–86. http://dx.doi.org/10.1093/philmat/nku013.
Full textDissertations / Theses on the topic "Logicism"
Friend, Michèle. "The possibility of Frege's logicism /." Thesis, McGill University, 1991. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=61073.
Full textJennings, Mark Richard John. "Frege's logicism : getting an insight into what we grasp." Thesis, University College London (University of London), 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.269765.
Full textDoherty, Fiona Teresa. "The common foundation of neo-logicism and the Frege-Hilbert controversy." Thesis, University of Cambridge, 2017. https://www.repository.cam.ac.uk/handle/1810/277438.
Full textBritto, Arthur Heller. "O teorema de Frege: uma reavaliação do seu projeto logicista." Pontifícia Universidade Católica de São Paulo, 2013. https://tede2.pucsp.br/handle/handle/11644.
Full textThe objective of this dissertation is first to present the fundamental part of Frege's logicist project - that became known as Frege's theorem - as an independent mathematical result in order to then evaluate its philosophical significance through a discussion of Frege's concept of logic. Besides, there are two appendixes in which a general recursion theorem is proven inside a classical second-order logical system and a neofregean construction of the real numbers from Cauchy sequences is presented
O objetivo desta dissertação e, em primeiro lugar, apresentar o núcleo fundamental do projeto logicista fregeano - o que ficou conhecido pelo nome de teorema de Frege - como um resultado matemático independente para, em seguida, avaliar o seu significado filosófico por meio da discussão acerca do conceito fregeano de logica. Além disso, este trabalho contém dois anexos, nos quais se demonstra um teorema geral de recursão dentro de um sistema clássico de logica de segunda ordem e se apresenta uma construção neofregeana dos números reais por meio de sequências de Cauchy
Feijó, Rafael Godolphim. "O intuicionismo Kantiano à Luz do Logicismo e do Cognitivismo: Uma defesa da intuição pura do espaço e do tempo." Universidade do Vale do Rio dos Sinos, 2017. http://www.repositorio.jesuita.org.br/handle/UNISINOS/6390.
Full textMade available in DSpace on 2017-06-27T17:05:47Z (GMT). No. of bitstreams: 1 Rafael Godolphim Feijó_.pdf: 1835499 bytes, checksum: 9b7410f8b42d5a741ecbd275052ab216 (MD5) Previous issue date: 2017-03-31
CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
FAPERGS - Fundação de Amparo à Pesquisa do Estado do Rio Grande do Sul
A filosofia kantiana da matemática é fundamentada sobre uma estrutura epistemológica intuicionista. As categorias do espaço e do tempo constituem as formas da sensibilidade, formas estas manifestadas por meio de uma intuição pura a priori. O presente trabalho busca realizar uma defesa razoável de tal intuição frente aos críticos contemporâneos, os quais propõem um programa logicista desprovido de estrutura epistêmica no que tange ao raciocínio matemático. Tais críticos afirmam que a aritmética não necessita da intuição pura do tempo para que as operações numéricas possam ser realizadas. Buscaremos demonstrar que a lógica quantificacional constitui um expediente meramente formalista que deixa de lado os problemas epistemológicos da cognição matemática e, por esse motivo, pode ambicionar desconsiderar a intuição pura kantiana. Portanto, buscaremos demonstrar que a intuição pura kantiana ainda pode lançar luz sobre a natureza dos cálculos da matemática.
The Kantian philosophy of mathematics is based on an intuitionist epistemological structure. The categories of space and time are the forms of sensibility, these forms manifested through a pure intuition a priori. The present work seeks to make a reasonable defense of such intuition in the face of contemporary critics, who propose a logicist program devoid of epistemic structure regarding mathematical reasoning. Such critics claim that arithmetic does not need the pure intuition of time for numerical operations to be performed. We will try to demonstrate that the quantificational logic constitutes a merely formalistic expedient that leaves aside the epistemological problems of the mathematical cognition and, for this reason, it can ambition to disregard the pure Kantian intuition. Therefore, we shall try to demonstrate that pure Kantian intuition can still shed light on the nature of mathematical calculations.
Shipley, Jeremy Robert. "From a structural point of view." Diss., University of Iowa, 2011. https://ir.uiowa.edu/etd/1178.
Full textMichel, Bruno. "Abelard, lecteur de Boèce : entre réalisme et nominalisme, la critique du logicisme boécien dans les oeuvres logiques de Pierre Abélard." Thesis, Tours, 2009. http://www.theses.fr/2009TOUR2037/document.
Full textBoethius claims to have definitively solved the two great aporias of the corpus of Aristotelian Iogic, the universal aporia and the aporia of contingent futures. l demonstrate that Abelard,Through his critique of reales calls into question these two solutions and substitutes two distinctions that he wanted to he aporetique - between res and status on the one band andand dictum propositionis on the other hand - born of Abelard's recognition of the fictional character of the two Boetian solutions to the great aporias of the Aristotelician logical corpus. The two. distinctions pave the way for a profoundly new kind of philosophical reasoning,which this text mtends to describe
Gomes, Rodrigo Rafael [UNESP]. "A noção de função em Frege." Universidade Estadual Paulista (UNESP), 2009. http://hdl.handle.net/11449/91131.
Full textNeste trabalho apresentamos e analisamos o conceito fregiano de função, presente nos três livros de Frege: Begriffsschrift, Os Fundamentos da Aritmética e Leis Fundamentais da Aritmética. Discutimos ao longo dele o que Frege entendia por função e argumento, as modificações conceituais que tais noções sofreram no período de publicação de seus livros e a importância dessas noções para a sua filosofia. Para tanto, analisamos a linguagem artificial do primeiro livro, a definição de número do segundo, e os casos particulares de funções que são definidos no terceiro, bem como as considerações contidas em outros escritos do filósofo alemão. Verificamos uma caracterização puramente sintática de função em Begriffsschrift, uma distinção entre o sinal de uma função e aquilo que ele denota em Os Fundamentos da Aritmética, e a associação de dois elementos distintos a uma expressão funcional em Leis Fundamentais da Aritmética: o seu sentido e a sua referência. Finalmente, constatamos que a originalidade do sistema fregiano reside na possibilidade de considerar esse ou aquele termo de uma proposição como o argumento (ou os argumentos) de uma função.
In this work we present and analyze the fregean concept of function, present in the three books by Frege: Begriffsschrift, The Foundations of the Arithmetic and Fundamental Laws of the Arithmetic. We discuss what Frege understood by function and argument, the conceptual modifications that such notions suffered in the period of publication of those books and the importance of these notions for his philosophy. For so much, we analyze the artificial language of the first book, the definition of number in the second, and the particular cases of functions that are defined in the third, as well as the considerations contained in other works by the philosopher. We verify a purely syntactic characterization of function in Begriffsschrift, a distinction between the sign of a function and what it denotes in The Foundations of the Arithmetic, and the association of two different elements to a functional expression in Fundamental Laws of the Arithmetic: its sense and its reference. Finally, we verify that the originality of the Frege´s system is based on the possibility of considering one or other term of a proposition as the argument (or the arguments) of a function.
Andrew, James B. "Hume, Skepticism, and the Search for Foundations." University of Toledo / OhioLINK, 2014. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1396628762.
Full textFournier, Jean-Baptiste. "Du flux de vécus au monde objectif : le concept de constitution chez Edmund Husserl et Rudolf Carnap." Thesis, Paris 1, 2015. http://www.theses.fr/2015PA010532/document.
Full textIn this PhD thesis, I attempt to reevaluate the opposition between analytical and phenomenological philosophy through the study of Husserl’s and Carnap’s systems of constitution. Carnap’s idea of constitution as a “rational” and arbitrary “reconstruction” of the world seems to be radically antithetical to Husserl’s descriptive account of the “self-constitution” of the things themselves. Yet, Carnap’s use of the language of constitution, as well as his attempt to translate it into the language of logistics, lead us to question the links between his own enterprise and Husserl’s transcendental idealist constitution. What I am trying to demonstrate in this work is that the opposition between Husserl and Carnap cannot be interpreted either in terms of “phenomenology” and “analytical philosophy” or in terms of transcendental idealism, logicism and phenomenalism. In order to understand the opposition between Husserl and Carnap (and therefore, between continental and analytical philosophy), it is necessary to ask how and why, in their very first works and articles, they both conceived philosophy as a system of constitution. This leads us to give an account of Husserl’s and Carnap’s logico-mathematical models of the formal dimension of experience, and to define constitution as the elaboration of a continuous model for the discontinuity of the world – this discontinuity being given by the phenomenological and pre-constitutive description of the world. Would this imply then that topology is a suitable model for the construction of the world ?
Books on the topic "Logicism"
Gandon, Sébastien. Russell's Unknown Logicism. London: Palgrave Macmillan UK, 2012. http://dx.doi.org/10.1057/9781137024657.
Full textLindström, Sten, Erik Palmgren, Krister Segerberg, and Viggo Stoltenberg-Hansen, eds. Logicism, Intuitionism, and Formalism. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-1-4020-8926-8.
Full textLogicism and its philosophical legacy. Cambridge: Cambridge University Press, 2013.
Find full textLogicism renewed: Logical foundations for mathematics and computer science. Wellesley, Mass: Association for Symbolic Logic, 2005.
Find full textGilmore, Paul C. Logicism renewed: Logical foundations for mathematics and computer science. Wellesley, MA: Association for Symbolic Logic, 2005.
Find full textGessler, Nadine. Le logicisme catégoriel. Neuchâtel (Switzerland): Le Centre, 2005.
Find full textM, Luis Felipe Segura. La prehistoria del logicismo. México: Plaza y Valdés, 2001.
Find full textBook chapters on the topic "Logicism"
Schroeder, Severin. "Logicism." In Wittgenstein on Mathematics, 9–14. New York, NY : Routledge, 2021. | Series: Wittgenstein’s thought and legacy: Routledge, 2020. http://dx.doi.org/10.4324/9781003056904-3.
Full textÇevik, Ahmet. "Logicism." In Philosophy of Mathematics, 81–94. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003223191-5.
Full textPatras, Frédéric. "Frege’s Logicism." In Lecture Notes in Mathematics, 101–9. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56700-2_10.
Full textHiż, Henry. "Grammar logicism." In Categorial Grammar, 265. Amsterdam: John Benjamins Publishing Company, 1988. http://dx.doi.org/10.1075/llsee.25.18hiz.
Full textGandon, Sébastien. "Benacerraf on Logicism." In Logic, Epistemology, and the Unity of Science, 129–45. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-45980-6_6.
Full textGandon, Sébastien. "Introduction." In Russell's Unknown Logicism, 1–15. London: Palgrave Macmillan UK, 2012. http://dx.doi.org/10.1057/9781137024657_1.
Full textGandon, Sébastien. "Projective Geometry." In Russell's Unknown Logicism, 16–48. London: Palgrave Macmillan UK, 2012. http://dx.doi.org/10.1057/9781137024657_2.
Full textGandon, Sébastien. "Metrical Geometry." In Russell's Unknown Logicism, 49–78. London: Palgrave Macmillan UK, 2012. http://dx.doi.org/10.1057/9781137024657_3.
Full textGandon, Sébastien. "Geometry, Logicism and ‘If-Thenism’." In Russell's Unknown Logicism, 79–106. London: Palgrave Macmillan UK, 2012. http://dx.doi.org/10.1057/9781137024657_4.
Full textGandon, Sébastien. "Quantity in The Principles of Mathematics." In Russell's Unknown Logicism, 107–33. London: Palgrave Macmillan UK, 2012. http://dx.doi.org/10.1057/9781137024657_5.
Full textConference papers on the topic "Logicism"
Sun, Mingming, Xu Li, Xin Wang, Miao Fan, Yue Feng, and Ping Li. "Logician." In WSDM 2018: The Eleventh ACM International Conference on Web Search and Data Mining. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3159652.3159712.
Full textMagdin, Martin, Martin Capay, and Martin Halmes. "Implementation of LogicSim in LMS Moodle." In 2012 IEEE 10th International Conference on Emerging eLearning Technologies and Applications (ICETA). IEEE, 2012. http://dx.doi.org/10.1109/iceta.2012.6418281.
Full textde Groot, Jim, and Dirk Pattinson. "Modal Intuitionistic Logics as Dialgebraic Logics." In LICS '20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science. New York, NY, USA: ACM, 2020. http://dx.doi.org/10.1145/3373718.3394807.
Full textValiant, Leslie G. "Robust logics." In the thirty-first annual ACM symposium. New York, New York, USA: ACM Press, 1999. http://dx.doi.org/10.1145/301250.301425.
Full textBaldi, Paolo, Petr Cintula, and Carles Noguera. "Translating Classical Probability Logics into Modal Fuzzy Logics." In Proceedings of the 2019 Conference of the International Fuzzy Systems Association and the European Society for Fuzzy Logic and Technology (EUSFLAT 2019). Paris, France: Atlantis Press, 2019. http://dx.doi.org/10.2991/eusflat-19.2019.49.
Full textKawaguchi, Mayuka F., and Michiro Kondo. "A correspondence between implicational fragment logics and fuzzy logics." In 2014 IEEE International Conference on Granular Computing (GrC). IEEE, 2014. http://dx.doi.org/10.1109/grc.2014.6982820.
Full textKostadinov, Atanas, Vitali Guitberg, Morten Olavsbraten, and Guennadi Kouzaev. "Multi-Logics Gates." In 2019 International Seminar on Electron Devices Design and Production (SED). IEEE, 2019. http://dx.doi.org/10.1109/sed.2019.8798452.
Full textOsborn, Joseph C., Noah Wardrip-Fruin, and Michael Mateas. "Refining operational logics." In FDG'17: International Conference on the Foundations of Digital Games 2017. New York, NY, USA: ACM, 2017. http://dx.doi.org/10.1145/3102071.3102107.
Full textChen, Yijia, and Joerg Flum. "Listings and Logics." In 2011 26th Annual IEEE Symposium on Logic in Computer Science (LICS 2011). IEEE, 2011. http://dx.doi.org/10.1109/lics.2011.17.
Full textBalbiani, Philippe, David Fernández-Duque, Andreas Herzig, and Emiliano Lorini. "Stratified Evidence Logics." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/211.
Full textReports on the topic "Logicism"
Allwein, Gerard, and William L. Harrison. Distributed Logics. Fort Belvoir, VA: Defense Technical Information Center, October 2014. http://dx.doi.org/10.21236/ada610943.
Full textBastien, R. Logiciel d'echantillonnage pour le polycorder. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/315262.
Full textBastien, R. Logiciel d'echantillonnage pour le polycorder. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1986. http://dx.doi.org/10.4095/315263.
Full textDavoren, Jennifer M. Modal Logics for Continuous Dynamics. Fort Belvoir, VA: Defense Technical Information Center, November 1997. http://dx.doi.org/10.21236/ada344316.
Full textSchwartz, Daniel. Approximate reasoning, logics for self-reference, and the use of nonclassical logics in systems modeling. Portland State University Library, January 2000. http://dx.doi.org/10.15760/etd.591.
Full textAlur, Rajeev, and Thomas A. Henzinger. Real-Time Logics: Complexity and Expressiveness,. Fort Belvoir, VA: Defense Technical Information Center, March 1990. http://dx.doi.org/10.21236/ada323441.
Full textSyverson, Paul F., and Paul C. van Oorschot. On Unifying Some Cryptographic Protocol Logics. Fort Belvoir, VA: Defense Technical Information Center, January 1994. http://dx.doi.org/10.21236/ada465512.
Full textMeseguer, Jose. Logics and Models for Concurrency and Type Theory. Fort Belvoir, VA: Defense Technical Information Center, June 1992. http://dx.doi.org/10.21236/ada252737.
Full textArtemov, Sergei N., Jennifer M. Davoren, and A. Nerode. Modal Logics and Topological Semantics for Hybrid Systems. Fort Belvoir, VA: Defense Technical Information Center, June 1997. http://dx.doi.org/10.21236/ada344355.
Full textBoivin, R., H. Larocque, and S. J. Paradis. Étapes de création d'un modèle numérique de terrain et d'une carte thématique avec relief en utilisant le logiciel ArcInfo et le module GRID. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 2002. http://dx.doi.org/10.4095/213049.
Full text