Dissertations / Theses on the topic 'Logistic Regresion'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Logistic Regresion.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Kazemi, Seyed Mehran. "Relational logistic regression." Thesis, University of British Columbia, 2014. http://hdl.handle.net/2429/50091.
Full textScience, Faculty of
Computer Science, Department of
Graduate
Widman, Linnea. "Regression då data utgörs av urval av ranger." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-60664.
Full textAlpine skiers measure their performance in FIS ranking. We will investigate some methods on how to analyze data where response data is based on ranks like this. In situations where response data is based on ranks there is no obvious method of analysis. Here, we examine differences in the use of linear, logistic and ordinal logistic regression to analyze data of this type. Bootstrap is used to make confidence intervals. For our data these methods give similar results when it comes to finding important explanatory variables. Based on this survey we cannot see any reason why one should use the more advanced models.
Noreika, Marius. "Mirtingumo nuo galvos smegenų insulto prognozavimo modeliai ir programinės priemonės." Master's thesis, Lithuanian Academic Libraries Network (LABT), 2007. http://vddb.library.lt/obj/LT-eLABa-0001:E.02~2007~D_20070816_143821-99512.
Full textEstimation and forecasting of mortality from various diseases are very frequent data analysis tasks in medicine nowadays. In order to estimate expected number of deaths, probability to die from a disease or trends in mortality we should apply the most suitable statistical methods. Data analysis models were created using Poisson, logistic, Cox regression methods and realized in SAS macros. Created software also contains models for goodness of fit analysis, graphical visualization and prepares a report of data analysis in RTF (Rich Text Format) format. Analysis was made for mortality from stroke data among Kaunas population aged 25 to 64 during the period 1980-2004. The study contains the description of applying created data analysis models, SAS macros and received results.
Nargis, Suraiya, and n/a. "Robust methods in logistic regression." University of Canberra. Information Sciences & Engineering, 2005. http://erl.canberra.edu.au./public/adt-AUC20051111.141200.
Full textRashid, Mamunur. "Inference on Logistic Regression Models." Bowling Green State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1214165101.
Full textBrabcová, Hana. "Využití logistické regrese ve výzkumu trhu." Master's thesis, Vysoká škola ekonomická v Praze, 2009. http://www.nusl.cz/ntk/nusl-19234.
Full textWilliams, Ulyana P. "On Some Ridge Regression Estimators for Logistic Regression Models." FIU Digital Commons, 2018. https://digitalcommons.fiu.edu/etd/3667.
Full textLi, Yin. "Application of logistic regression in biostatistics." Thesis, McGill University, 1993. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=68201.
Full textMak, Carmen. "Polychotomous logistic regression via the Lasso." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape10/PQDD_0004/NQ41227.pdf.
Full textAl-Sarraf, Z. J. "Some problems connected with logistic regression." Thesis, Brunel University, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374301.
Full textOlsén, Johan. "Logistic regression modelling for STHR analysis." Thesis, KTH, Matematisk statistik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-148971.
Full textBatchelor, John Stephen. "Trauma scoring models using logistic regression." Thesis, University College London (University of London), 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.418022.
Full textLo, Sau Yee. "Measurement error in logistic regression model /." View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?MATH%202004%20LO.
Full textIncludes bibliographical references (leaves 82-83). Also available in electronic version. Access restricted to campus users.
MOREIRA, RODRIGO PINTO. "SMOOTH TRANSITION LOGISTIC REGRESSION MODEL TREE." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2008. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=13437@1.
Full textCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
FUNDAÇÃO DE APOIO À PESQUISA DO ESTADO DO RIO DE JANEIRO
Este trabalho tem como objetivo principal adaptar o modelo STR-Tree, o qual é a combinação de um modelo Smooth Transition Regression com Classification and Regression Tree (CART), a fim de utilizá-lo em Classificação. Para isto algumas alterações foram realizadas em sua forma estrutural e na estimação. Devido ao fato de estarmos fazendo classificação de variáveis dependentes binárias, se faz necessária a utilização das técnicas empregadas em Regressão Logística, dessa forma a estimação dos parâmetros da parte linear passa a ser feita por Máxima Verossimilhança. Assim o modelo, que é paramétrico não-linear e estruturado por árvore de decisão, onde cada nó terminal representa um regime os quais têm seus parâmetros estimados da mesma forma que em uma Regressão Logística, é denominado Smooth Transition Logistic Regression-Tree (STLR-Tree). A inclusão dos regimes, determinada pela divisão dos nós da árvore, é feita baseada em testes do tipo Multiplicadores de Lagrange, que em sua forma para o caso Gaussiano utiliza a Soma dos Quadrados dos Resíduos em suas estatísticas de teste, aqui são substituídas pela Função Desvio (Deviance), que é equivalente para o caso dos modelos não Gaussianos, cuja distribuição da variável dependente pertença à família exponencial. Na aplicação a dados reais selecionou-se dois conjuntos das variáveis explicativas de cada uma das duas bases utilizadas, que resultaram nas melhores taxas de acerto, verificadas através de Tabelas de Classificação (Matrizes de Confusão). Esses conjuntos de variáveis foram usados com outros métodos de classificação existentes, são eles: Generalized Additive Models (GAM), Regressão Logística, Redes Neurais, Análise Discriminante, k-Nearest Neighbor (K-NN) e Classification and Regression Trees (CART).
The main goal of this work is to adapt the STR-Tree model, which is the combination of a Smooth Transition with Regression model with Classi cation and Regression Tree (CART), in order to use it in Classification. Some changes were made in its structural form and in the estimation. Due to the fact we are doing binary dependent variables classification, is necessary to use the techniques employed in Logistic Regression, so the estimation of the linear part will be made by Maximum Likelihood. Thus the model, which is nonlinear parametric and structured by a decision tree, where each terminal node represents a regime that have their parameters estimated in the same way as in a Logistic Regression, is called Smooth Transition Logistic Regression Tree (STLR-Tree). The inclusion of the regimes, determined by the splitting of the tree's nodes, is based on Lagrange Multipliers tests, which for the Gaussian cases uses the Residual Sum-of-squares in their test statistic, here are replaced by the Deviance function, which is equivalent to the case of non-Gaussian models, that has the distribution of the dependent variable in the exponential family. After applying the model in two datasets chosen from the bibliography comparing with other methods of classi cation such as: Generalized Additive Models (GAM), Logistic Regression, Neural Networks, Discriminant Analyses, k-Nearest Neighbor (k-NN) and Classification and Regression Trees (CART). It can be seen, verifying in the Classification Tables (Confusion Matrices) that STLR-Tree showed the second best result for the overall rate of correct classification in three of the four applications shown, being in all of them, behind only from GAM.
Emfevid, Lovisa, and Hampus Nyquist. "Financial Risk Profiling using Logistic Regression." Thesis, KTH, Matematisk statistik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229821.
Full textI samband med en ökad automatiseringstrend har digital investeringsrådgivning dykt upp som ett nytt fenomen. Av central betydelse är tjänstens förmåga att bedöma en investerares förmåga till att bära finansiell risk. Logistik regression tillämpas för att bedöma en icke- professionell investerares vilja att bära finansiell risk. Målet med uppsatsen är således att identifiera ett antal faktorer med signifikant förmåga till att bedöma en icke-professionell investerares riskprofil. Med andra ord, så syftar denna uppsats till att studera förmågan hos ett antal socioekonomiska- och psykometriska variabler. För att därigenom utveckla en prediktiv modell som kan skatta en individs finansiella riskprofil. Analysen genomförs med hjälp av en enkätstudie hos respondenter bosatta i Sverige. Den huvudsakliga slutsatsen är att en individs inkomst, konsumtionstakt, tidigare erfarenheter av abnorma marknadsförhållanden, och diverse psykometriska komponenter besitter en betydande förmåga till att avgöra en individs finansiella risktolerans
Hallett, David C. "Goodness of fit tests in logistic regression." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/mq45403.pdf.
Full textWang, Jie. "Incorporating survey weights into logistic regression models." Digital WPI, 2013. https://digitalcommons.wpi.edu/etd-theses/267.
Full textRaner, Max. "On logistic regression and a medical application." Thesis, Uppsala universitet, Tillämpad matematik och statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-420680.
Full textHu, ChungLynn. "Nonignorable nonresponse in the logistic regression analysis /." The Ohio State University, 1998. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487950153601414.
Full textThorleifsson, Alexander. "Stochastic Gradient Descent for Efficient Logistic Regression." Thesis, Stockholms universitet, Statistiska institutionen, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:su:diva-132366.
Full textWebster, Gregg. "Bayesian logistic regression models for credit scoring." Thesis, Rhodes University, 2011. http://hdl.handle.net/10962/d1005538.
Full textLind, Nilsson Rasmus. "Machine learning in logistics : Increasing the performance of machine learning algorithms on two specific logistic problems." Thesis, Luleå tekniska universitet, Institutionen för system- och rymdteknik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-64761.
Full textData Ductus, ett multinationellt IT-konsultföretag vill utveckla en AI som övervakar ett logistiksystem och uppmärksammar fel. När denna AI är tillräckligt upplärd ska den föreslå korrigering eller automatiskt korrigera problem som uppstår. Detta projekt presenterar hur man arbetar med maskininlärningsproblem och ger en djupare inblick i hur kors-validering och regularisering, bland andra tekniker, används för att förbättra prestandan av maskininlärningsalgoritmer på det definierade problemet. Dessa tekniker testas och utvärderas i vårt logistiksystem på tre olika maskininlärnings algoritmer, nämligen Naïve Bayes, Logistic Regression och Random Forest. Utvärderingen av algoritmerna leder oss till att slutsatsen är att Random Forest, som använder korsvaliderade parametrar, ger bästa prestanda på våra specifika problem, medan de andra två faller bakom i varje testad kategori. Det blev klart för oss att kors-validering är ett enkelt, men kraftfullt verktyg för att öka prestanda hos maskininlärningsalgoritmer.
Vesterlund, Sebastian, and Jens Svensson. "Illusionen om frihet : Det nya arbetslivet och dess fängslande egenskaper." Thesis, Södertörns högskola, Institutionen för samhällsvetenskaper, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:sh:diva-18157.
Full textThe purpose of this paper is to explore how different aspects of working life affect the individual. Our starting point in this paper is that we are critical of jobs with high autonomy that is becoming increasingly common. To assist us, we have a lot of previous research as well as critical theory and Foucault’s theory about power and surveillance that guides us through the research process. The selection is based on previous statistics produced by the ESS, which consists of a collaboration between 24 European countries. The essay test different aspects of paid work and its affect on work-life balance. The results show that the higher the degree of autonomy the individual has in his/her work, the less dissatisfied he/she is with time spent between work and leisure. A higher degree of autonomy does in fact lead to the individual worrying about work-related problems in his/her leisure time. Our conclusion is that there are good reasons to pay attention to what this increasingly common tendency can affect the individual.
Pan, Tianshu. "Using the multivariate multilevel logistic regression model to detect DIF a comparison with HGLM and logistic regression DIF detection methods /." Diss., Connect to online resource - MSU authorized users, 2008.
Find full textTitle from PDF t.p. (viewed on Sept. 8, 2009) Includes bibliographical references (p. 85-89). Also issued in print.
Kim, Hyun Sun. "Topics in ordinal logistic regression and its applications." Diss., Texas A&M University, 2004. http://hdl.handle.net/1969.1/1120.
Full textBirkenes, Øystein. "A Framework for Speech Recognition using Logistic Regression." Doctoral thesis, Norwegian University of Science and Technology, Faculty of Information Technology, Mathematics and Electrical Engineering, 2007. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1599.
Full textAlthough discriminative approaches like the support vector machine or logistic regression have had great success in many pattern recognition application, they have only achieved limited success in speech recognition. Two of the difficulties often encountered include 1) speech signals typically have variable lengths, and 2) speech recognition is a sequence labeling problem, where each spoken utterance corresponds to a sequence of words or phones.
In this thesis, we present a framework for automatic speech recognition using logistic regression. We solve the difficulty of variable length speech signals by including a mapping in the logistic regression framework that transforms each speech signal into a fixed-dimensional vector. The mapping is defined either explicitly with a set of hidden Markov models (HMMs) for the use in penalized logistic regression (PLR), or implicitly through a sequence kernel to be used with kernel logistic regression (KLR). Unlike previous work that has used HMMs in combination with a discriminative classification approach, we jointly optimize the logistic regression parameters and the HMM parameters using a penalized likelihood criterion.
Experiments show that joint optimization improves the recognition accuracy significantly. The sequence kernel we present is motivated by the dynamic time warping (DTW) distance between two feature vector sequences. Instead of considering only the optimal alignment path, we sum up the contributions from all alignment paths. Preliminary experiments with the sequence kernel show promising results.
A two-step approach is used for handling the sequence labeling problem. In the first step, a set of HMMs is used to generate an N-best list of sentence hypotheses for a spoken utterance. In the second step, these sentence hypotheses are rescored using logistic regression on the segments in the N-best list. A garbage class is introduced in the logistic regression framework in order to get reliable probability estimates for the segments in the N-best lists. We present results on both a connected digit recognition task and a continuous phone recognition task.
Liu, Ying. "On goodness-of-fit of logistic regression model." Diss., Manhattan, Kan. : Kansas State University, 2007. http://hdl.handle.net/2097/530.
Full textRoberts, Brook R. "Measuring NAVSPASUR sensor performance using logistic regression models." Thesis, Monterey, California. Naval Postgraduate School, 1992. http://hdl.handle.net/10945/23952.
Full textWeng, Yu. "Maximum Likelihood Estimation of Logistic Sinusoidal Regression Models." Thesis, University of North Texas, 2013. https://digital.library.unt.edu/ark:/67531/metadc407796/.
Full textJun, Shi. "Frequentist Model Averaging For Functional Logistic Regression Model." Thesis, Uppsala universitet, Statistiska institutionen, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-352519.
Full textHeise, Mark A. "Optimal designs for a bivariate logistic regression model." Diss., Virginia Tech, 1993. http://hdl.handle.net/10919/38538.
Full textPh. D.
Richmond, James Howard. "Bayesian Logistic Regression Models for Software Fault Localization." Case Western Reserve University School of Graduate Studies / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=case1326658577.
Full textByrne, Evan Michael. "Sparse Multinomial Logistic Regression via Approximate Message Passing." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1437416281.
Full textShi, Shujing. "Tuning Parameter Selection in L1 Regularized Logistic Regression." VCU Scholars Compass, 2012. http://scholarscompass.vcu.edu/etd/2940.
Full textMo, Lijia. "Examining the reliability of logistic regression estimation software." Diss., Kansas State University, 2010. http://hdl.handle.net/2097/7059.
Full textDepartment of Agricultural Economics
Allen M. Featherstone
Bryan W. Schurle
The reliability of nine software packages using the maximum likelihood estimator for the logistic regression model were examined using generated benchmark datasets and models. Software packages tested included: SAS (Procs Logistic, Catmod, Genmod, Surveylogistic, Glimmix, and Qlim), Limdep (Logit, Blogit), Stata (Logit, GLM, Binreg), Matlab, Shazam, R, Minitab, Eviews, and SPSS for all available algorithms, none of which have been previously tested. This study expands on the existing literature in this area by examination of Minitab 15 and SPSS 17. The findings indicate that Matlab, R, Eviews, Minitab, Limdep (BFGS), and SPSS provided consistently reliable results for both parameter and standard error estimates across the benchmark datasets. While some packages performed admirably, shortcomings did exist. SAS maximum log-likelihood estimators do not always converge to the optimal solution and stop prematurely depending on starting values, by issuing a ``flat" error message. This drawback can be dealt with by rerunning the maximum log-likelihood estimator, using a closer starting point, to see if the convergence criteria are actually satisfied. Although Stata-Binreg provides reliable parameter estimates, there is no way to obtain standard error estimates in Stata-Binreg as of yet. Limdep performs relatively well, but did not converge due to a weakness of the algorithm. The results show that solely trusting the default settings of statistical software packages may lead to non-optimal, biased or erroneous results, which may impact the quality of empirical results obtained by applied economists. Reliability tests indicate severe weaknesses in SAS Procs Glimmix and Genmod. Some software packages fail reliability tests under certain conditions. The finding indicates the need to use multiple software packages to solve econometric models.
Blahut, Steven Albert. "Latent Class Logistic Regression with Complex Sample Survey Data." College Park, Maryland : University of Maryland, 2004. http://hdl.handle.net/1903/2000.
Full textThesis research directed by: Measurement, Statistics and Evaluation. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Lin, Shan. "Simultaneous confidence bands for linear and logistic regression models." Thesis, University of Southampton, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.443030.
Full textJia, Yan. "Optimal experimental designs for two-variable logistic regression models." Diss., This resource online, 1996. http://scholar.lib.vt.edu/theses/available/etd-06062008-152028/.
Full textROCHA, PEDRO ANTONIO CYRNE DA. "PUBLIC COMPANIES BANKRUPTCY PREDICTION IN BRAZIL WITH LOGISTIC REGRESSION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2017. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=30720@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE SUPORTE À PÓS-GRADUAÇÃO DE INSTS. DE ENSINO
Desde a década de 1930, a tentativa de previsão de falência de empresas chama a atenção dos acadêmicos, e diversas técnicas já foram empregadas para o desenvolvimento de modelos preditivos compostos por variáveis financeiras, tais como análise estatística, modelos teóricos e de inteligência artificial. Posto isso, o referido estudo compõe um modelo de regressão logística para a previsão de falência de empresas de capital aberto no Brasil com um ano de antecedência. Para tal, apresenta uma revisão literária com as principais técnicas usadas na área, para fundamentar a escolha metodológica e as variáveis integrantes do estudo. Ademais, o modelo é testado com uma nova amostra; comparado com resultados obtidos através de outras técnicas e executado com dados anteriores a um ano do momento de falência - de tal forma que sua capacidade preditiva seja atestada.
Since the thirties, academicians try to forecast bankruptcy and have been applying several techniques, such as: statistical, artificial intelligence and theoretical using financial ratios to do so. Therefore, this study presents a logistic regression model to forecast public companies bankruptcy in Brazil one year before failure. Hence, it presents a literature review with the main models used so far in order to support its methodological choice and financial ratios applied. In addition, the model is tested with a new sample, compared with another techniques results and executed with data older than one year before failure, so its predictive capacity is attested.
Wei, Jinglun. "Classification of Bone Cements Using Multinomial Logistic Regression Method." Digital WPI, 2018. https://digitalcommons.wpi.edu/etd-theses/520.
Full textLindroth, Henriksson Amelia, and Simon Koller. "Logistic Regression Analysis of Patent Approval Rate in Sweden." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-230143.
Full textDenna avhandling utfördes för att undersöka vilka faktorer som påverkar utfallen av patentansökningar för den svenska marknaden. Metoden som användes var logistisk re- gression, och datan är hämtad från Patent- och Registreringsverkets, PRVs, databas. Analysen i avhandlingen utfördes på 47 kovariat, inklusive IPOs 35 teknikområden. Detta resulterade i en modell som består av fem kovariat. De viktigaste kovariaten beräknades vara antalet skick mellan PRV och sökanden, huruvida man nyttjat sig av ett patentombud eller ej samt om sökande var en privatperson eller juridisk person. Antalet skick hade en positiv påverkan på sannolikheten för en godkänd patentansökan. Företag och sökanden som använde sig av ett patentombud hade också högre sannolikhet att få sina patent godkända. Den härledda slutgiltiga modellen visade sig ha hög förutsägningsförmåga och ger en insikt om signifikanta faktorer för en framgångsrik patentansökan.
SINGH, KEVIN. "Comparing Variable Selection Algorithms On Logistic Regression – A Simulation." Thesis, Uppsala universitet, Statistiska institutionen, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-446090.
Full textNamburi, Sruthi. "Logistic regression with conjugate gradient descent for document classification." Kansas State University, 2016. http://hdl.handle.net/2097/32658.
Full textDepartment of Computing and Information Sciences
William H. Hsu
Logistic regression is a model for function estimation that measures the relationship between independent variables and a categorical dependent variable, and by approximating a conditional probabilistic density function using a logistic function, also known as a sigmoidal function. Multinomial logistic regression is used to predict categorical variables where there can be more than two categories or classes. The most common type of algorithm for optimizing the cost function for this model is gradient descent. In this project, I implemented logistic regression using conjugate gradient descent (CGD). I used the 20 Newsgroups data set collected by Ken Lang. I compared the results with those for existing implementations of gradient descent. The conjugate gradient optimization methodology outperforms existing implementations.
Lund, Anton. "Two-Stage Logistic Regression Models for Improved Credit Scoring." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-160551.
Full textDenna uppsats har undersökt tvåstegs regulariserade logistiska regressioner för att estimera credit score hos konsumenter. Credit score är ett mått på kreditvärdighet och mäter sannolikheten att en person inte betalar tillbaka sin kredit. Data kommer från Klarna AB och innehåller fler observationer än mycket annan forskning om kreditvärdighet. Med tvåstegsregressioner menas i denna uppsats en regressionsmodell bestående av två steg där information från det första steget används i det andra steget för att förbättra den totala prestandan. De bäst presterande modellerna använder i det första steget en alternativ förklaringsvariabel, betalningsstatus vid en tidigare tidpunkt än den konventionella, för att segmentera eller som variabel i det andra steget. Detta gav en giniökning på approximativt 0,01. Användandet av enklare segmenteringsmetoder så som score-gränser eller avstånd till en beslutsgräns visade sig inte förbättra prestandan.
Badi, Nuri H. Salem. "Mis-specification and goodness-of-fit in logistic regression." Thesis, University of Newcastle upon Tyne, 2014. http://hdl.handle.net/10443/2376.
Full textLópez, García Fernando. "Real-time surface grading of ceramic tiles." Doctoral thesis, Universitat Politècnica de València, 2008. http://hdl.handle.net/10251/1909.
Full textLópez García, F. (2005). Real-time surface grading of ceramic tiles [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/1909
Palancia
Caster, Ola. "Mining the WHO Drug Safety Database Using Lasso Logistic Regression." Thesis, Uppsala University, Department of Mathematics, 2007. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-120981.
Full textOzturk, Olcay. "Bayesian Semiparametric Models For Nonignorable Missing Datamechanisms In Logistic Regression." Master's thesis, METU, 2011. http://etd.lib.metu.edu.tr/upload/12613241/index.pdf.
Full textThompson, Gavin Kenneth. "Logistic regression for the modeling of low-dose radiation effects." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp03/MQ57164.pdf.
Full textJann, Dominic 1983. "Bayesian Logistic Regression with Jaro-Winkler String Comparator Scores Provides Sizable Improvement in Probabilistic Record Matching." Thesis, 2012. http://hdl.handle.net/1969.1/148078.
Full text