Dissertations / Theses on the topic 'Logistic regression analysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Logistic regression analysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Lo, Sau Yee. "Measurement error in logistic regression model /." View abstract or full-text, 2004. http://library.ust.hk/cgi/db/thesis.pl?MATH%202004%20LO.
Full textIncludes bibliographical references (leaves 82-83). Also available in electronic version. Access restricted to campus users.
Olsén, Johan. "Logistic regression modelling for STHR analysis." Thesis, KTH, Matematisk statistik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-148971.
Full textHu, ChungLynn. "Nonignorable nonresponse in the logistic regression analysis /." The Ohio State University, 1998. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487950153601414.
Full textEmfevid, Lovisa, and Hampus Nyquist. "Financial Risk Profiling using Logistic Regression." Thesis, KTH, Matematisk statistik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229821.
Full textI samband med en ökad automatiseringstrend har digital investeringsrådgivning dykt upp som ett nytt fenomen. Av central betydelse är tjänstens förmåga att bedöma en investerares förmåga till att bära finansiell risk. Logistik regression tillämpas för att bedöma en icke- professionell investerares vilja att bära finansiell risk. Målet med uppsatsen är således att identifiera ett antal faktorer med signifikant förmåga till att bedöma en icke-professionell investerares riskprofil. Med andra ord, så syftar denna uppsats till att studera förmågan hos ett antal socioekonomiska- och psykometriska variabler. För att därigenom utveckla en prediktiv modell som kan skatta en individs finansiella riskprofil. Analysen genomförs med hjälp av en enkätstudie hos respondenter bosatta i Sverige. Den huvudsakliga slutsatsen är att en individs inkomst, konsumtionstakt, tidigare erfarenheter av abnorma marknadsförhållanden, och diverse psykometriska komponenter besitter en betydande förmåga till att avgöra en individs finansiella risktolerans
Webster, Gregg. "Bayesian logistic regression models for credit scoring." Thesis, Rhodes University, 2011. http://hdl.handle.net/10962/d1005538.
Full textPan, Tianshu. "Using the multivariate multilevel logistic regression model to detect DIF a comparison with HGLM and logistic regression DIF detection methods /." Diss., Connect to online resource - MSU authorized users, 2008.
Find full textTitle from PDF t.p. (viewed on Sept. 8, 2009) Includes bibliographical references (p. 85-89). Also issued in print.
McGlothlin, Anna E. Stamey James D. Seaman John Weldon. "Logistic regression with misclassified response and covariate measurement error a Bayesian approach /." Waco, Tex. : Baylor University, 2007. http://hdl.handle.net/2104/5101.
Full textLindroth, Henriksson Amelia, and Simon Koller. "Logistic Regression Analysis of Patent Approval Rate in Sweden." Thesis, KTH, Skolan för teknikvetenskap (SCI), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-230143.
Full textDenna avhandling utfördes för att undersöka vilka faktorer som påverkar utfallen av patentansökningar för den svenska marknaden. Metoden som användes var logistisk re- gression, och datan är hämtad från Patent- och Registreringsverkets, PRVs, databas. Analysen i avhandlingen utfördes på 47 kovariat, inklusive IPOs 35 teknikområden. Detta resulterade i en modell som består av fem kovariat. De viktigaste kovariaten beräknades vara antalet skick mellan PRV och sökanden, huruvida man nyttjat sig av ett patentombud eller ej samt om sökande var en privatperson eller juridisk person. Antalet skick hade en positiv påverkan på sannolikheten för en godkänd patentansökan. Företag och sökanden som använde sig av ett patentombud hade också högre sannolikhet att få sina patent godkända. Den härledda slutgiltiga modellen visade sig ha hög förutsägningsförmåga och ger en insikt om signifikanta faktorer för en framgångsrik patentansökan.
Heise, Mark A. "Optimal designs for a bivariate logistic regression model." Diss., Virginia Tech, 1993. http://hdl.handle.net/10919/38538.
Full textPh. D.
Jin, Yi. "Regression Analysis of University Giving Data." Digital WPI, 2007. https://digitalcommons.wpi.edu/etd-theses/1.
Full textGuo, Ruijuan. "Sample comparisons using microarrays: - Application of False Discovery Rate and quadratic logistic regression." Digital WPI, 2008. https://digitalcommons.wpi.edu/etd-theses/28.
Full textSimmons, Carol Ivy. "A Logistic Regression Analysis of Multiple Independent Variables Impacting Psychiatric Readmissions." Thesis, Capella University, 2018. http://pqdtopen.proquest.com/#viewpdf?dispub=10289773.
Full textThis dissertation explored several internal and external factors in relation to psychiatric readmissions. Internal factors are directly related to the individual i.e., demographic information, diagnosis, admission history and status. External factors are factors outside of the individuals control i.e., length of hospital stay and reimbursement processes. The goal of the study was to explore the impact of multiple factors in relation to the phenomenon of psychiatric readmissions. Dynamic Systems Theory (1994) was used as a theoretical foundation to understand the complexities associated with psychiatric readmissions. The study utilized state archival data provided by the Maryland Health Services Cost Review Commission; an agency charged with collecting statewide hospital data on hospital admissions.
A quasi experimental study was conducted using a logistic regression design to answer the research question: When taken together do age, sex, ethnicity, diagnosis, insurance type, admission status and length of stay predict psychiatric readmission? This researcher predicted that the null hypothesis will be rejected. The sample included a large state-wide data set of over 130,000 individuals who fell under the criteria of being over the age of 18 when readmitted for psychiatric care in Maryland in 2015. The research methodology includes a logistic regression research design, exploring multiple factors, simultaneously, that impact psychiatric readmissions.
The results of the study indicate that length of stay is the most important factor impacting psychiatric readmissions. The second most important factor associated with psychiatric readmission, is a psychiatric readmission within 30 days. Medicare and Medicaid were also found to be significant factors associated with psychiatric readmission. Additionally, affective disorders were found to be the primary diagnosis associated with psychiatric readmissions. Lastly, individuals at greatest risk for psychiatric readmissions are between the age of 18-39, are non-Hispanic, are enrolled in Medicare, most likely to be disabled, are diagnosed with an affective disorder and have had a previous psychiatric readmission.
Adnan, Arisman. "Analysis of taste-panel data using ANOVA and ordinal logistic regression." Thesis, University of Newcastle Upon Tyne, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.402150.
Full textChen, Wei. "Analysis of Rheumatoid Arthritis Data using Logistic Regression and Penalized Approach." Scholar Commons, 2015. http://scholarcommons.usf.edu/etd/5923.
Full textWu, Songfei. "A combination procedure of universal kriging and logistic regression a thesis presented to the faculty of the Graduate School, Tennessee Technological University /." Click to access online, 2008. http://proquest.umi.com/pqdweb?index=31&sid=1&srchmode=1&vinst=PROD&fmt=6&startpage=-1&clientid=28564&vname=PQD&RQT=309&did=1679675411&scaling=FULL&ts=1251312326&vtype=PQD&rqt=309&TS=1251312380&clientId=28564.
Full textWhitmore, Marjorie Lee Threet. "A Comparison of Two Differential Item Functioning Detection Methods: Logistic Regression and an Analysis of Variance Approach Using Rasch Estimation." Thesis, University of North Texas, 1995. https://digital.library.unt.edu/ark:/67531/metadc278366/.
Full textAlexander, Erika D. "Comparisons of Improvement-Over-Chance Effect Sizes for Two Groups Under Variance Heterogeneity and Prior Probabilities." Thesis, University of North Texas, 2003. https://digital.library.unt.edu/ark:/67531/metadc4242/.
Full textJunek, William N. "Forecasting Volcanic Activity Using An Event Tree Analysis System and Logistic Regression." Doctoral diss., University of Central Florida, 2012. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/5333.
Full textID: 031001329; System requirements: World Wide Web browser and PDF reader.; Mode of access: World Wide Web.; Adviser: W. Linwood Jones.; Title from PDF title page (viewed April 8, 2013).; Thesis (Ph.D.)--University of Central Florida, 2012.; Includes bibliographical references (p. 314-324).
Ph.D.
Doctorate
Electrical Engineering and Computer Science
Engineering and Computer Science
Electrical Engineering
Weng, Chin-Fang. "Fixed versus mixed parameterization in logistic regression models application to meta-analysis /." College Park, Md.: University of Maryland, 2008. http://hdl.handle.net/1903/8985.
Full textThesis research directed by: Dept. of Mathematics. Title from t.p. of PDF. Includes bibliographical references. Published by UMI Dissertation Services, Ann Arbor, Mich. Also available in paper.
Crixell, JoAnna Christine Seaman John Weldon Stamey James D. "Logistic regression with covariate measurement error in an adaptive design a Bayesian approach /." Waco, Tex. : Baylor University, 2008. http://hdl.handle.net/2104/5229.
Full textLouw, Nelmarie. "Aspects of the pre- and post-selection classification performance of discriminant analysis and logistic regression." Thesis, Stellenbosch : Stellenbosch University, 1997. http://hdl.handle.net/10019.1/55402.
Full textOne copy microfiche.
ENGLISH ABSTRACT: Discriminani analysis and logistic regression are techniques that can be used to classify entities of unknown origin into one of a number of groups. However, the underlying models and assumptions for application of the two techniques differ. In this study, the two techniques are compared with respect to classification of entities. Firstly, the two techniques were compared in situations where no data dependent variable selection took place. Several underlying distributions were studied: the normal distribution, the double exponential distribution and the lognormal distribution. The number of variables, sample sizes from the different groups and the correlation structure between the variables were varied to' obtain a large number of different configurations. .The cases of two and three groups were studied. The most important conclusions are: "for normal and double' exponential data linear discriminant analysis outperforms logistic regression, especially in cases where the ratio of the number of variables to the total sample size is large. For lognormal data, logistic regression should be preferred, except in cases where the ratio of the number of variables to the total sample size is large. " Variable selection is frequently the first step in statistical analyses. A large number of potenti8.Ily important variables are observed, and an optimal subset has to be selected for use in further analyses. Despite the fact that variable selection is often used, the influence of a selection step on further analyses of the same data, is often completely ignored. An important aim of this study was to develop new selection techniques for use in discriminant analysis and logistic regression. New estimators of the postselection error rate were also developed. A new selection technique, cross model validation (CMV) that can be applied both in discriminant analysis and logistic regression, was developed. ."This technique combines the selection of variables and the estimation of the post-selection error rate. It provides a method to determine the optimal model dimension, to select the variables for the final model and to estimate the post-selection error rate of the discriminant rule. An extensive Monte Carlo simulation study comparing the CMV technique to existing procedures in the literature, was undertaken. In general, this technique outperformed the other methods, especially with respect to the accuracy of estimating the post-selection error rate. Finally, pre-test type variable selection was considered. A pre-test estimation procedure was adapted for use as selection technique in linear discriminant analysis. In a simulation study, this technique was compared to CMV, and was found to perform well, especially with respect to correct selection. However, this technique is only valid for uncorrelated normal variables, and its applicability is therefore limited. A numerically intensive approach was used throughout the study, since the problems that were investigated are not amenable to an analytical approach.
AFRIKAANSE OPSOMMING: Lineere diskriminantanaliseen logistiese regressie is tegnieke wat gebruik kan word vir die Idassifikasie van items van onbekende oorsprong in een van 'n aantal groepe. Die agterliggende modelle en aannames vir die gebruik van die twee tegnieke is egter verskillend. In die studie is die twee tegnieke vergelyk ten opsigte van k1assifikasievan items. Eerstens is die twee tegnieke vergelyk in 'n apset waar daar geen data-afhanklike seleksie van veranderlikes plaasvind me. Verskeie onderliggende verdelings is bestudeer: die normaalverdeling, die dubbeleksponensiaal-verdeling,en die lognormaal verdeling. Die aantal veranderlikes, steekproefgroottes uit die onderskeie groepe en die korrelasiestruktuur tussen die veranderlikes is gevarieer om 'n groot aantal konfigurasies te verkry. Die geval van twee en drie groepe is bestudeer. Die belangrikste gevolgtrekkings wat op grond van die studie gemaak kan word is: vir normaal en dubbeleksponensiaal data vaar lineere diskriminantanalise beter as logistiese regressie, veral in gevalle waar die. verhouding van die aantal veranderlikes tot die totale steekproefgrootte groot is. In die geval van data uit 'n lognormaalverdeling, hehoort logistiese regressie die metode van keuse te wees, tensy die verhouding van die aantal veranderlikes tot die totale steekproefgrootte groot is. Veranderlike seleksie is dikwels die eerste stap in statistiese ontledings. 'n Groot aantal potensieel belangrike veranderlikes word waargeneem, en 'n subversamelingwat optimaal is, word gekies om in die verdere ontledings te gebruik. Ten spyte van die feit dat veranderlike seleksie dikwels gebruik word, word die invloed wat 'n seleksie-stap op verdere ontledings van dieselfde data. het, dikwels heeltemal geYgnoreer.'n Belangrike doelwit van die studie was om nuwe seleksietegniekete ontwikkel wat gebruik kan word in diskriminantanalise en logistiese regressie. Verder is ook aandag gegee aan ontwikkeling van beramers van die foutkoers van 'n diskriminantfunksie wat met geselekteerde veranderlikes gevorm word. 'n Nuwe seleksietegniek, kruis-model validasie (KMV) wat gebruik kan word vir die seleksie van veranderlikes in beide diskriminantanalise en logistiese regressie is ontwikkel. Hierdie tegniek hanteer die seleksie van veranderlikes en die beraming van die na-seleksie foutkoers in een stap, en verskaf 'n metode om die optimale modeldimensiete bepaal, die veranderlikes wat in die model bevat moet word te kies, en ook die na-seleksie foutkoers van die diskriminantfunksie te beraam. 'n Uitgebreide simulasiestudie waarin die voorgestelde KMV-tegniek met ander prosedures in die Iiteratuur. vergelyk is, is vir beide diskriminantanaliseen logistiese regressie ondemeem. In die algemeen het hierdie tegniek beter gevaar as die ander metodes wat beskou is, veral ten opsigte van die akkuraatheid waarmee die na-seleksie foutkoers beraam word. Ten slotte is daar ook aandag gegee aan voor-toets tipeseleksie. 'n Tegniek is ontwikkel wat gebruik maak van 'nvoor-toets berarningsmetode om veranderlikes vir insluiting in 'n lineere diskriminantfunksie te selekteer. Die tegniek ISin 'n simulasiestudie met die KMV-tegniek vergelyk, en vaar baie goed, veral t.o.v. korrekte seleksie. Hierdie tegniek is egter slegs geldig vir ongekorreleerde normaalveranderlikes, wat die gebruik darvan beperk. 'n Numeries intensiewe benadering is deurgaans in die studie gebruik. Dit is genoodsaak deur die feit dat die probleme wat ondersoek is, nie deur middel van 'n analitiese benadering hanteer kan word nie.
Guo, Ruijuan. "Sample comparisons using microarrays -- application of false discovery rate and quadratic logistic regression." Worcester, Mass. : Worcester Polytechnic Institute, 2007. http://www.wpi.edu/Pubs/ETD/Available/etd-010808-173747/.
Full textMaxwell, Kori Lloyd Hugh. "Logistic Regression Analysis to Determine the Significant Factors Associated with Substance Abuse in School-Aged Children." Digital Archive @ GSU, 2009. http://digitalarchive.gsu.edu/math_theses/67.
Full textGeroukis, Asterios, and Erik Brorson. "Predicting Insolvency : A comparison between discriminant analysis and logistic regression using principal components." Thesis, Uppsala universitet, Statistiska institutionen, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-243289.
Full textHardin, Patrik, and Sam Tabari. "Modelling Non-life Insurance Policyholder Price Sensitivity : A Statistical Analysis Performed with Logistic Regression." Thesis, KTH, Matematisk statistik, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209773.
Full textDetta kandidatexamensarbete inom matematisk statistik undersöker möjligheten att modellera förnyelsegraden för kommersiella skadeförsärkringskunder. Arbetet utfördes i samarbete med If Skadeförsäkring vid huvudkontoret i Stockholm, Sverige. Uppsatsen innehåller en introduktion till underliggande koncept inom försäkring och matematik samt en utförlig översikt över projektets analytiska process, följt av en diskussion och slutsatser. De huvudsakliga delarna av projektet var insamling och bearbetning av förklarande försäkringsdata samt utvecklandet och tolkningen av en logistisk regressionsmodell för förnyelsegrad. En första modell byggdes och moderna metoder inom matematik och statistik utfördes för att erhålla en slutgiltig regressionsmodell uppbyggd av 9 signifikanta kundkaraktäristika. Regressionsmodellen hade en förklaringsgrad av 61% vilket pekar på att det till en viss grad är möjligt att förklara förnyelsegraden hos försäkringskunder utifrån dessa karaktäristika. Resultaten från den slutgiltiga modellen översattes slutligen till ett priskänslighetsmått vilket möjliggjorde implementering i prissättningsmodeller samt CRM-system. Vi anser att priskänslighetsanalys, om korrekt genomfört, är ett naturligt steg i utvecklingen av dagens prissättningsmodeller inom försäkringsbranschen och detta projekt lägger en grund för fortsatta studier inom detta område.
Sturm, Pamela S. "Knowing when a higher education institution is in trouble." Huntington, WV : [Marshall University Libraries], 2005. http://www.marshall.edu/etd/descript.asp?ref=583.
Full textVizcain, Dorian Charles. "Investigating the Hispanic/Latino Male Dropout Phenomenon: Using Logistic Regression and Survival Analysis." [Tampa, Fla] : University of South Florida, 2005. http://purl.fcla.edu/usf/dc/et/SFE0001322.
Full textWelch, Catherine E. "Factors Affecting Postsecondary Enrollment among Vermont High School Graduates| A Logistic Regression Analysis." Thesis, New England College, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=13859163.
Full textThe State of Vermont has long had one of the highest high school graduation rates in New England, hovering around 87.8% with a lagging college enrollment rate of 52.3% at any 2- or 4-year postsecondary institution in the country (New England Secondary School Consortium, 2015). This research explored the factors that have the greatest effect on the college enrollment patterns of Vermont high school graduates. Specifically, this study explored the relationship between the following factors and 2- and 4-year college enrollment: (a) academic preparation, (b) access to college information, (c) early career exploration and education planning, (d) gender, (e) grade point average, (f) parent educational attainment, (g) parental expectations, (h) student location, and (i) student perception of affordability.
This descriptive, correlational quantitative study used binomial logistic regression to determine which of the factors listed in the preceding section had the greatest impact on the college enrollment patterns of Vermont high school graduates. The dataset for this research was the Class of 2014 Senior Survey from the Vermont Student Assistance Corporation, administered to all students graduating from Vermont high schools in 2014. This research looks to inform work currently being done at the state level to raise the number of adults living in Vermont with a postsecondary credential to 70% by the year 2025
VENUGOPALAN, ARAVIND. "STATISTICAL ANALYSIS OF POSTERIOR FOSSA SURGERIES FOR TRIGEMINAL NEURALGIA USING LOGISTIC REGRESSION MODELS." University of Cincinnati / OhioLINK, 2006. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1155831511.
Full textSpence, Maria A. Stancil. "Successful vocational rehabilitation for persons with significant mental disabilities : a logistic regression analysis /." The Ohio State University, 2000. http://rave.ohiolink.edu/etdc/view?acc_num=osu1488196234910504.
Full textYanik, Todd E. "Detection of erroneous payments utilizing supervised and utilizing supervised and unsupervised data mining techniques." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 2004. http://library.nps.navy.mil/uhtbin/hyperion/04Sep%5FYanik.pdf.
Full textCRISANTI, MARK. "THE PREDICTIVE ACCURACY OF BOOSTED CLASSIFICATION TREES RELATIVE TO DISCRIMINANT ANALYSIS AND LOGISTIC REGRESSION." University of Cincinnati / OhioLINK, 2007. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1178566287.
Full textLee, Michelle Oi San. "Sample size calculation for testing an interaction effect in a logistic regression under measurement error model /." View Abstract or Full-Text, 2003. http://library.ust.hk/cgi/db/thesis.pl?MATH%202003%20LEE.
Full textIncludes bibliographical references (leaves 66-67). Also available in electronic version. Access restricted to campus users.
Whitten, Tyson. "Defining and Measuring Persistent Offending." Thesis, Griffith University, 2018. http://hdl.handle.net/10072/378078.
Full textThesis (PhD Doctorate)
Doctor of Philosophy (PhD)
School of Crim & Crim Justice
Arts, Education and Law
Full Text
Cronstedt, Axel, and Rebecca Andersson. "Readjusting Historical Credit Ratings : using Ordered Logistic Regression and Principal ComponentAnalysis." Thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-148567.
Full textJustering av historiska kreditbetyg med hjälp av ordinal logistiskregression och principialkomponentsanalys När Basel II implementerades introducerades även nya riktlinjer för finan-siella instituts riskhantering och beräkning av kreditrisk, så som möjlighetenför banker att använda interna beräkningar av Probability of Default (PD),Exposure at Default (EAD) och Loss Given Default (LGD), som tillsammansgrundar sig i varje låntagares sannoliket för fallissemang. Dessa tre mått ut-gör grunden för beräkningen av de kapitaltäckningskrav som banker förväntasuppfylla och baseras i sin tur på bankernas interna kreditratingsystem. Detär därmed av stor vikt för banker att bygga stabila kreditratingmodeller medkapacitet att generera pålitliga beräkningar av motparternas kreditrisk. Dessamodeller är vanligtvis baserade på empirisk data och modellens goodness-of-fit,eller passning till datat, beror till stor del på kvalitén och den statistiska sig-nifikansen hos det data som står till förfogande. Därför är en av de viktigasteaspekterna för kreditratingsmodeller att ha tillräckligt många observationeratt träna modellen på, vilket gör modellens utvecklingsskede samt mängdendata avgörande för modellens framgång.Huvudsyftet med detta projekt är att, på ett enkelt och effektivt sätt, skapaen längre, homogen tidsserie genom att justera historisk kreditratingdata i enportfölj med företagslån tillhandahållen av Svenska Handelsbanken AB. Jus-teringen görs genom att utveckla olika ordinala logistiska regressionsmodellermed beroende variabler bestående av makroekonomiska variabler, på olikasätt. En av modellerna använder makroekonomiska variabler i form av princi-palkomponenter skapade med hjälp av en principialkomponentsanalys, medande andra modelelrna använder de makroekonomiska variablerna enskilt i olikakombinationer. Modellerna testas för att utvärdera både deras förmåga attjustera portföljens historiska kreditratings samt för att göra prediktioner.
Stevenson, Clint Wesley. "A logistic regression analysis of utah colleges exit poll response rates using SAS software /." Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1578.pdf.
Full textAranda, Diana Ixchel. "Historical Analysis of Recreational Beach Enterococci Levels; Using Logistic Regression as an Advisory Tool." NSUWorks, 2013. http://nsuworks.nova.edu/occ_stuetd/182.
Full textHonarvar, Pauline. "A spatial approach to mineral potential modelling using decision tree and logistic regression analysis /." Internet access available to MUN users only, 2001. http://collections.mun.ca/u?/theses,51228.
Full textStevenson, Clint W. "A Logistic Regression Analysis of Utah Colleges Exit Poll Response Rates Using SAS Software." BYU ScholarsArchive, 2006. https://scholarsarchive.byu.edu/etd/1116.
Full textOates, Krystle S. "A logistic regression analysis of score sending and college matching among high school students." Diss., University of Iowa, 2015. https://ir.uiowa.edu/etd/1994.
Full textWang, Junhua. "Large-Sample Logistic Regression with Latent Covariates in a Bayesian Networking Context." TopSCHOLAR®, 2009. http://digitalcommons.wku.edu/theses/103.
Full textMATYATIM, Rosliza. "The Classification Model for Corporate Failures in Malaysia." Graduate School of International Development, Nagoya University, 2006. http://hdl.handle.net/2237/7314.
Full textVACCARELLA, SALVATORE. "A multilevel logistic regression model for the analyses of concurrent Human papillomavirus (HPV) infections." Doctoral thesis, Università degli Studi di Milano, 2007. http://hdl.handle.net/2434/33629.
Full textGusnanto, Arief. "Regression on high-dimensional predictor space : with application in chemometrics and microarray data /." Stockholm, 2004. http://diss.kib.ki.se/2004/91-7140-153-9/.
Full textWålinder, Andreas. "Evaluation of logistic regression and random forest classification based on prediction accuracy and metadata analysis." Thesis, Linnéuniversitetet, Institutionen för matematik (MA), 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-35126.
Full textReischman, Diann. "Order restricted inferences on parameters in generalized linear models with emphasis on logistic regression /." free to MU campus, to others for purchase, 1997. http://wwwlib.umi.com/cr/mo/fullcit?p9842560.
Full textFlor, Andrew Douglas. "Evaluating Levee Failure Susceptibility on the Mississippi River Using Logistic Regression Analysis and GPS Surveying." Available to subscribers only, 2009. http://proquest.umi.com/pqdweb?did=1791850971&sid=8&Fmt=2&clientId=1509&RQT=309&VName=PQD.
Full textMitchell, Marlon R. "Participation in adult education activities logistic regression analysis of baby boomers in the United States /." [Bloomington, Ind.] : Indiana University, 2007. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3274281.
Full textSource: Dissertation Abstracts International, Volume: 68-07, Section: A, page: 2763. Adviser: Thomas Schwen. Title from dissertation home page (viewed Apr. 9, 2008).
Kim, Hyun-Joo. "Model selection criteria based on Kullback information measures for Weibull, logistic, and nonlinear regression frameworks /." free to MU campus, to others for purchase, 2000. http://wwwlib.umi.com/cr/mo/fullcit?p9988677.
Full textJian, Wen. "Analysis of Longitudinal Data in the Case-Control Studies via Empirical Likelihood." Digital Archive @ GSU, 2006. http://digitalarchive.gsu.edu/math_theses/8.
Full text