To see the other types of publications on this topic, follow the link: Long-haul transmission.

Journal articles on the topic 'Long-haul transmission'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Long-haul transmission.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Midwinter, J. E. "Monomode fibres for long haul transmission systems." BT Technology Journal 25, no. 3-4 (2007): 15–20. http://dx.doi.org/10.1007/s10550-007-0053-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bergano, N. S., and C. R. Davidson. "Wavelength division multiplexing in long-haul transmission systems." Journal of Lightwave Technology 14, no. 6 (1996): 1299–308. http://dx.doi.org/10.1109/50.511662.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Suzuki, M., and N. Edagawa. "Dispersion-managed high-capacity ultra-long-haul transmission." Journal of Lightwave Technology 21, no. 4 (2003): 916–29. http://dx.doi.org/10.1109/jlt.2003.810098.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Juárez-Campos, Beatriz, Elena I. Kaikina, Pavel I. Naumkin, and Héctor Francisco Ruiz-Paredes. "High-Speed Transmission in Long-Haul Electrical Systems." International Journal of Differential Equations 2018 (2018): 1–13. http://dx.doi.org/10.1155/2018/8236942.

Full text
Abstract:
We study the equations governing the high-speed transmission in long-haul electrical systems i∂tu-1/3∂x3u=iλ∂xu2u, t,x∈R+×R, u0,x=u0x, x∈R, where λ∈R, ∂xα=F-1ξαF, and F is the Fourier transformation. Our purpose in this paper is to obtain the large time asymptotics for the solutions under the nonzero mass condition ∫u0xdx≠0.
APA, Harvard, Vancouver, ISO, and other styles
5

Watanabe, Shigeki, Shinichi Kaneko, and Terumi Chikama. "Long-Haul Fiber Transmission Using Optical Phase Conjugation." Optical Fiber Technology 2, no. 2 (1996): 169–78. http://dx.doi.org/10.1006/ofte.1996.0018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

CAI, Yi, Jin-Xing CAI, Carl R. DAVIDSON, et al. "Ultra-Long-Haul WDM Transmission with High Spectral Efficiency." IEICE Transactions on Communications E94-B, no. 2 (2011): 392–99. http://dx.doi.org/10.1587/transcom.e94.b.392.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Khanh, Nguyen Cong, Pham Quang Thai, Ha-Linh Quach, et al. "Transmission of SARS-CoV 2 During Long-Haul Flight." Emerging Infectious Diseases 26, no. 11 (2020): 2617–24. http://dx.doi.org/10.3201/eid2611.203299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

MORITA, Itsuro, Sander JANSEN, Hidenori TAKAHASHI, Abdullah Al AMIN, and Hideaki TANAKA. "Optical OFDM for High-Speed Long-Haul Transmission Systems." Review of Laser Engineering 37, no. 3 (2009): 182–87. http://dx.doi.org/10.2184/lsj.37.182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jansen, S. L., D. van den Borne, P. M. Krummrich, S. Spalter, G. D. Khoe, and H. de Waardt. "Long-haul DWDM transmission systems employing optical phase conjugation." IEEE Journal of Selected Topics in Quantum Electronics 12, no. 4 (2006): 505–20. http://dx.doi.org/10.1109/jstqe.2006.876621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sasaki, Yusuke, Katsuhiro Takenaga, Shoichiro Matsuo, Kazuhiko Aikawa, and Kunimasa Saitoh. "Few-mode multicore fibers for long-haul transmission line." Optical Fiber Technology 35 (February 2017): 19–27. http://dx.doi.org/10.1016/j.yofte.2016.09.017.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Alic, Nikola, Evgeny Myslivets, and Stojan Radic. "Non-Coherent High Spectral Efficiency Long Haul Waveband Transmission." IEEE Photonics Technology Letters 24, no. 2 (2012): 113–15. http://dx.doi.org/10.1109/lpt.2011.2173328.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Bergano, N. S. "Wavelength division multiplexing in long-haul transoceanic transmission systems." Journal of Lightwave Technology 23, no. 12 (2005): 4125–39. http://dx.doi.org/10.1109/jlt.2005.858255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Park, Y. K., and S. W. Granlund. "Optical Preamplifier Receivers: Application to Long-Haul Digital Transmission." Optical Fiber Technology 1, no. 1 (1994): 59–71. http://dx.doi.org/10.1006/ofte.1994.1006.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

KAUR, GURMEET, M. L. SINGH, and M. S. PATTERH. "INVESTIGATIONS OF FIBER NONLINEARITIES IN LONG-HAUL OPTICAL WDM TRANSMISSION SYSTEMS." Journal of Nonlinear Optical Physics & Materials 18, no. 02 (2009): 301–8. http://dx.doi.org/10.1142/s0218863509004567.

Full text
Abstract:
Wavelength division multiplexing (WDM) has been emerging as an effective technique for making use of the full bandwidth offered by optical fiber. To achieve long-haul transmission, erbium-doped fiber amplifiers (EDFAs) are employed to compensate for signal attenuation without using optoelectronic/electro-optic conversions. Transmission in these systems is limited by fiber nonlinearities and amplified spontaneous emission noise from amplifiers. In this paper, the long-haul optical WDM system with EDFAs is investigated theoretically. The noise and bit error rate (BER) characteristics of the syst
APA, Harvard, Vancouver, ISO, and other styles
15

Adhikari, Susmita, Sander Jansen, Maxim Kuschnerov, Beril Inan, Marc Bohn, and Werner Rosenkranz. "Investigation of spectrally shaped DFTS-OFDM for long haul transmission." Optics Express 20, no. 26 (2012): B608. http://dx.doi.org/10.1364/oe.20.00b608.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Qin, Cui, Xiangrong Ma, Tao Hua, Jing Zhao, Huilong Yu, and Jian Zhang. "Golay sequences coded coherent optical OFDM for long-haul transmission." Optics Communications 399 (September 2017): 52–55. http://dx.doi.org/10.1016/j.optcom.2017.04.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Golovchenko, E. A., V. J. Mazurczyk, D. G. Duff, and S. M. Abbott. "Four-wave mixing penalties in long-haul WDM transmission links." IEEE Photonics Technology Letters 11, no. 7 (1999): 821–23. http://dx.doi.org/10.1109/68.769719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Murakami, M., T. Matsuda, H. Maeda, and T. Imai. "Long-haul WDM transmission using higher order fiber dispersion management." Journal of Lightwave Technology 18, no. 9 (2000): 1197–204. http://dx.doi.org/10.1109/50.871695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Heismann, F., D. A. Gray, B. H. Lee, and R. W. Smith. "Electrooptic polarization scramblers for optically amplified long-haul transmission systems." IEEE Photonics Technology Letters 6, no. 9 (1994): 1156–58. http://dx.doi.org/10.1109/68.324697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Zhang, Hongbin, Hussam G. Batshon, Carl R. Davidson, Dmitri G. Foursa, and Alexei Pilipetskii. "Multi-Dimensional Coded Modulation in Long-Haul Fiber Optic Transmission." Journal of Lightwave Technology 33, no. 13 (2015): 2876–83. http://dx.doi.org/10.1109/jlt.2015.2419821.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

YANG, Qi, and ShaoHua YU. "Tb/s ultra long haul transmission of coherent optical OFDM." Chinese Science Bulletin 59, no. 16 (2014): 1497–507. http://dx.doi.org/10.1360/972013-216.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Djordjevic, I. B., B. Vasic, M. Ivkovic, and I. Gabitov. "Achievable information rates for high-speed long-haul optical transmission." Journal of Lightwave Technology 23, no. 11 (2005): 3755–63. http://dx.doi.org/10.1109/jlt.2005.857751.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Biberman, Aleksandr, Sasikanth Manipatruni, Noam Ophir, Long Chen, Michal Lipson, and Keren Bergman. "First demonstration of long-haul transmission using silicon microring modulators." Optics Express 18, no. 15 (2010): 15544. http://dx.doi.org/10.1364/oe.18.015544.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Matsuda, T., M. Murakami, and T. Imai. "Experiments on long-haul broadband WDM transmission with Raman amplification." Electronics Letters 37, no. 4 (2001): 237. http://dx.doi.org/10.1049/el:20010180.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Hamaide, J. P., O. Leclerc, E. Brun, O. Audouin, and B. Biotteau. "Second-order average soliton jitter in long-haul transmission systems." Pure and Applied Optics: Journal of the European Optical Society Part A 4, no. 4 (1995): 327–32. http://dx.doi.org/10.1088/0963-9659/4/4/007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Karásek, Miroslav, Pavel Peterka, and Jan Radil. "10 gigabit Ethernet long-haul transmission without in-line EDFAs." annals of telecommunications - annales des télécommunications 61, no. 3-4 (2006): 478–88. http://dx.doi.org/10.1007/bf03219918.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Sano, Akihide, and Katsuya Ura. "Long-haul transmission using counter-pumped distributed Raman ring laser amplification." IEICE Communications Express 10, no. 1 (2021): 1–6. http://dx.doi.org/10.1587/comex.2020xbl0122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Rademacher, Georg, Roland Ryf, Nicolas K. Fontaine, et al. "Long-Haul Transmission Over Few-Mode Fibers With Space-Division Multiplexing." Journal of Lightwave Technology 36, no. 6 (2018): 1382–88. http://dx.doi.org/10.1109/jlt.2017.2786671.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Jenojasmine, J., and J. Sutha. "Efficient Data Transmission for Long-Haul Using Alternate Path Decision Algorithm." Journal of Medical Imaging and Health Informatics 6, no. 8 (2016): 1997–99. http://dx.doi.org/10.1166/jmihi.2016.1963.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Luis, Ruben S., Benjamin J. Puttnam, Georg Rademacher, Yoshinari Awaji, Hideaki Furukawa, and Naoya Wada. "Digital Back Propagation in Long-Haul, MIMO-Supported, Multicore Fiber Transmission." IEEE Photonics Technology Letters 32, no. 12 (2020): 730–32. http://dx.doi.org/10.1109/lpt.2020.2993621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Amari, Abdelkerim, Philippe Ciblat, and Yves Jaouen. "Inter-Subcarrier Nonlinear Interference Canceler for Long-Haul Nyquist-WDM Transmission." IEEE Photonics Technology Letters 28, no. 23 (2016): 2760–63. http://dx.doi.org/10.1109/lpt.2016.2616174.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Pelouch, Wayne S. "Raman Amplification: An Enabling Technology for Long-Haul Coherent Transmission Systems." Journal of Lightwave Technology 34, no. 1 (2016): 6–19. http://dx.doi.org/10.1109/jlt.2015.2458771.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Okhrimchuk, A. G., G. Onishchukov та F. Lederer. "Long-haul soliton transmission at 1.3 μm using distributed Raman amplification". Journal of Lightwave Technology 19, № 6 (2001): 837–41. http://dx.doi.org/10.1109/50.927513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Jansen, S. L., D. van den Borne, B. Spinnler, et al. "Optical phase conjugation for ultra long-haul phase-shift-keyed transmission." Journal of Lightwave Technology 24, no. 1 (2006): 54–64. http://dx.doi.org/10.1109/jlt.2005.862481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Morita, Itsuro, Koji Igarashi, Hidenori Takahashi, Takehiro Tsuritani, and Masatoshi Suzuki. "Trans-oceanic class ultra-long-haul transmission using multi-core fiber." Optics Express 22, no. 26 (2014): 31761. http://dx.doi.org/10.1364/oe.22.031761.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Nagarajan, Radhakrishnan, Masaki Kato, Jacco Pleumeekers, et al. "Large-scale photonic integrated circuits for long-haul transmission and switching." Journal of Optical Networking 6, no. 2 (2007): 102. http://dx.doi.org/10.1364/jon.6.000102.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Hasegawa, Takemi, Yoshinori Yamamoto, and Masaaki Hirano. "Optimal fiber design for large capacity long haul coherent transmission [Invited]." Optics Express 25, no. 2 (2017): 706. http://dx.doi.org/10.1364/oe.25.000706.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Smith, N. J., and N. J. Doran. "Evaluating the Capacity of Phase Modulator-Controlled Long-Haul Soliton Transmission." Optical Fiber Technology 1, no. 3 (1995): 218–35. http://dx.doi.org/10.1006/ofte.1995.1012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Yuan, Jian Guo, Chan Yuan Li, and Qing Zhen Tong. "Analysis on a Novel Concatenated Code for Optical Transmission Systems." Advanced Materials Research 710 (June 2013): 474–78. http://dx.doi.org/10.4028/www.scientific.net/amr.710.474.

Full text
Abstract:
A novel RS(255,239)+BCH(3860,3824) concatenated code with 7.70% redundancy for long-haul optical transmission systems is constructed and analyzed through the theoretical analysis of the relevant concatenated code. The simulation analysis shows that the novel concatenated code, compared with the RS(255,239)+CSOC(k0/n0=6/7,J=8) code in ITU-T G.75.1, has a lower redundancy and better error-correction performance. In addition, the net coding gain (NCG) of the novel concatenated code is respectively more 0.44dB and 0.47dB than that of BCH(3860,3824)+ BCH(2040,1930) code and RS(255,239)+CSOC(k0/n0 =
APA, Harvard, Vancouver, ISO, and other styles
40

Jiang, Xiaohong, and Chun Jiang. "Transmission Performance Analysis of Fiber Optical Parametric Amplifiers for WDM System." Advances in OptoElectronics 2009 (June 11, 2009): 1–9. http://dx.doi.org/10.1155/2009/924340.

Full text
Abstract:
A numerical analysis is presented on the long-haul wavelength-division multiplexing (WDM) transmission system employing fiber-optic parametric amplifier (FOPA) cascades based on one-pump FOPA model with Raman Effect taken into account. The end-to-end equalization scheme is applied to optimize the system features in terms of proper output powers and signal-to-noise ratios (SNRs) in all the channels. The numerical results show that—through adjusting the fiber spans along with the number of FOPAs as well as the channel powers at the terminals in a prescribed way—the transmission distance and syst
APA, Harvard, Vancouver, ISO, and other styles
41

Huszaník, Tomáš, Ján Turán, and Ľuboš Ovseník. "Realization of a Long-haul Optical Link with Erbium Doped Fiber Amplifier." Carpathian Journal of Electronic and Computer Engineering 11, no. 2 (2018): 44–49. http://dx.doi.org/10.2478/cjece-2018-0018.

Full text
Abstract:
Abstract The need for high capacity and bandwidth in broadband communication systems increased rapidly in a few past years. Optical fiber is now the major transmission medium for fast and reliable communication replacing the old copper-based connections. However, with the deployment of optical networks, number of problems arise. The main problem of optical networks is the amplification in the long-distance transmission. Erbium doped fiber amplifier (EDFA) is the leading technology in the field of optical amplifiers. It uses erbium doped fiber to amplify optical signal. The importance of amplif
APA, Harvard, Vancouver, ISO, and other styles
42

Dhawan, Divya, and Neena Gupta. "Performance Analysis of Post Compensated Long Haul High Speed Coherent Optical OFDM System." International Journal of Electrical and Computer Engineering (IJECE) 7, no. 1 (2017): 160. http://dx.doi.org/10.11591/ijece.v7i1.pp160-168.

Full text
Abstract:
<p>This paper addresses the performance analysis of OFDM transmission system based on coherent detection over high speed long haul optical links with high spectral efficiency modulation formats such as Quadrature Amplitude Modulation (QAM) as a mapping method prior to the OFDM multicarrier representation. Post compensation is used to compensate for phase noise effects. Coherent detection for signal transmitted at bit rate of 40 Gbps is successfully achieved up to distance of 3200km. Performance is analyzed in terms of Symbol Error Rate and Error Vector Magnitude by varying Optical Signal
APA, Harvard, Vancouver, ISO, and other styles
43

Hadjadji, Narimane, and R. Hamdi. "COMPENSATION OF FIBER NONLINEARITY IN 40×32 GBAUD LONG-HAUL DWDM TRANSMISSION." Telecommunications and Radio Engineering 79, no. 1 (2020): 29–38. http://dx.doi.org/10.1615/telecomradeng.v79.i1.30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Visintin, M., P. Poggiolini, and G. Bosco. "Long-Haul Optically Uncompensated IMDD Transmission With MLSE Using the M-Method." IEEE Photonics Technology Letters 19, no. 16 (2007): 1230–32. http://dx.doi.org/10.1109/lpt.2007.902169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

El-Fiqi, Abdulaziz E., Ahmed E. Morra, Salem F. Hegazy, Hossam M. H. Shalaby, Kazutoshi Kato, and Salah S. A. Obayya. "Performance evaluation of hybrid DPSK-MPPM techniques in long-haul optical transmission." Applied Optics 55, no. 21 (2016): 5614. http://dx.doi.org/10.1364/ao.55.005614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Fan, Sujie, Hui Wang, Yan Li, et al. "Optimal 16-Ary APSK Encoded Coherent Optical OFDM for Long-Haul Transmission." IEEE Photonics Technology Letters 25, no. 13 (2013): 1199–202. http://dx.doi.org/10.1109/lpt.2013.2262042.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Bergadà, P., R. M. Alsina-Pagès, J. L. Pijoan, et al. "Digital transmission techniques for a long haul HF link: DSSS versus OFDM." Radio Science 49, no. 7 (2014): 518–30. http://dx.doi.org/10.1002/2013rs005203.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Li, Cai, Qi Yang, Tao Jiang, et al. "Investigation of Coherent Optical Multiband DFT-S OFDM in Long Haul Transmission." IEEE Photonics Technology Letters 24, no. 19 (2012): 1704–7. http://dx.doi.org/10.1109/lpt.2012.2212882.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Reichmann, K. C. "Directly modulated DBR lasers for long-haul transmission at 1.7 Gbit/s." Fiber and Integrated Optics 12, no. 2 (1993): 209–13. http://dx.doi.org/10.1080/01468039308204223.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Moller, L., Y. Su, G. Raybon, and Xiang Liu. "Polarization-mode-dispersion-supported transmission in 40-Gb/s long haul systems." IEEE Photonics Technology Letters 15, no. 2 (2003): 335–37. http://dx.doi.org/10.1109/lpt.2002.806841.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!