Academic literature on the topic 'Long non-coding RNAs (IncRNAs)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Long non-coding RNAs (IncRNAs).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Long non-coding RNAs (IncRNAs)"
Wang, Li, Zhenhong Chen, Li An, Yajuan Wang, Zhijian Zhang, Yinghua Guo, and Changting Liu. "Analysis of Long Non-Coding RNA Expression Profiles in Non-Small Cell Lung Cancer." Cellular Physiology and Biochemistry 38, no. 6 (2016): 2389–400. http://dx.doi.org/10.1159/000445591.
Full textRothzerg, Emel, Xuan Dung Ho, Jiake Xu, David Wood, Aare Märtson, and Sulev Kõks. "Upregulation of 15 Antisense Long Non-Coding RNAs in Osteosarcoma." Genes 12, no. 8 (July 26, 2021): 1132. http://dx.doi.org/10.3390/genes12081132.
Full textZong, Zhen, Hui Li, Zhuo-Min Yu, Fu-Xin Tang, Xiao-Jian Zhu, Hua-Kai Tian, Tai-Cheng Zhou, and He Wang. "Prognostic thirteen-long non-coding RNAs (IncRNAs) could improve the survival prediction of gastric cancer." Gastroenterología y Hepatología 43, no. 10 (December 2020): 598–606. http://dx.doi.org/10.1016/j.gastrohep.2020.01.016.
Full textZong, Zhen, Hui Li, Zhuo-Min Yu, Fu-Xin Tang, Xiao-Jian Zhu, Hua-Kai Tian, Tai-Cheng Zhou, and He Wang. "Prognostic thirteen-long non-coding RNAs (IncRNAs) could improve the survival prediction of gastric cancer." Gastroenterología y Hepatología (English Edition) 43, no. 10 (December 2020): 598–606. http://dx.doi.org/10.1016/j.gastre.2020.01.019.
Full textButova, Romana, Petra Vychytilova-Faltejskova, Adela Souckova, Sabina Sevcikova, and Roman Hajek. "Long Non-Coding RNAs in Multiple Myeloma." Non-Coding RNA 5, no. 1 (January 24, 2019): 13. http://dx.doi.org/10.3390/ncrna5010013.
Full textLevakov, S. A., G. Ya Azadova, A. E. Mamedova, Kh R. Movtaeva, M. I. Maslyakova, M. S. Pavlyukov, M. I. Shakhparonov, and N. V. Antipova. "Expression of long non-coding RNAs ROR and MALAT1 in uterine fibroids." Voprosy ginekologii, akušerstva i perinatologii 20, no. 4 (2021): 17–21. http://dx.doi.org/10.20953/1726-1678-2021-4-17-21.
Full textDhingra, Sourabh. "Role of Non-coding RNAs in Fungal Pathogenesis and Antifungal Drug Responses." Current Clinical Microbiology Reports 7, no. 4 (October 2, 2020): 133–41. http://dx.doi.org/10.1007/s40588-020-00151-7.
Full textZhang, Zhuo, Sophia Shi, Jingxia Li, and Max Costa. "Long Non-Coding RNA MEG3 in Metal Carcinogenesis." Toxics 11, no. 2 (February 7, 2023): 157. http://dx.doi.org/10.3390/toxics11020157.
Full textDragomir, Mihnea Paul, Scott Kopetz, Jaffer A. Ajani, and George Adrian Calin. "Non-coding RNAs in GI cancers: from cancer hallmarks to clinical utility." Gut 69, no. 4 (February 7, 2020): 748–63. http://dx.doi.org/10.1136/gutjnl-2019-318279.
Full textChaabane, Mohamed, Robert M. Williams, Austin T. Stephens, and Juw Won Park. "circDeep: deep learning approach for circular RNA classification from other long non-coding RNA." Bioinformatics 36, no. 1 (July 3, 2019): 73–80. http://dx.doi.org/10.1093/bioinformatics/btz537.
Full textDissertations / Theses on the topic "Long non-coding RNAs (IncRNAs)"
Molina, Elsa. "An investigation into the relationships between novel Y chromosome-linked long non-coding RNAs and coronary artery disease." Thesis, Federation University Australia, 2016. http://researchonline.federation.edu.au/vital/access/HandleResolver/1959.17/102986.
Full textDoctor of Philosophy
Merry, Callie R. "Long Non-coding RNAs in Cancer." Case Western Reserve University School of Graduate Studies / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=case1467828387.
Full textCabili, Nataly Moran. "Integrative Characterization of Human Long Non-Coding RNAs." Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11409.
Full textVučićević, Dubravka [Verfasser]. "Diverse regulatory functions of long non-coding RNAs / Dubravka Vučićević." Berlin : Freie Universität Berlin, 2017. http://d-nb.info/1137509899/34.
Full textBussotti, Giovanni 1983. "Detecting and comparing non-coding RNAs." Doctoral thesis, Universitat Pompeu Fabra, 2013. http://hdl.handle.net/10803/128970.
Full textEn los últimos años el interés en el campo de los ARN no codificantes ha crecido mucho a causa del enorme aumento de la cantidad de secuencias no codificantes disponibles y a que muchos de estos transcriptos han dado muestra de ser importantes en varias funciones celulares. En este contexto, es fundamental el desarrollo de métodos para la correcta detección y comparativa de secuencias de ARN. Alinear nucleótidos es uno de los enfoques principales para buscar genes homólogos, identificar relaciones evolutivas, regiones conservadas y en general, patrones biológicos importantes. Sin embargo, comparar moléculas de ARN es una tarea difícil. Esto es debido a que el alfabeto de nucleótidos es más simple y por ello menos informativo que el de las proteínas. Además es probable que para muchos ARN la evolución haya mantenido la estructura en mayor grado que la secuencia, y esto hace que las secuencias sean poco conservadas y difícilmente comparables. Por lo tanto, hacen falta nuevos métodos capaces de utilizar otras fuentes de información para generar mejores alineamientos de ARN. En esta tesis doctoral se ha intentado dar respuesta exactamente a estas temáticas. Por un lado desarrollado un nuevo algoritmo para detectar relaciones de homología entre genes de ARN no codificantes evolutivamente lejanos. Por otro lado se ha hecho minería de datos mediante el uso de datos ya disponibles para descubrir nuevos genes y generar perfiles de ARN no codificantes en todo el genoma.
Schneider, Hugo Wruck. "Distinguishing long non-coding RNAs from protein coding transcripts based on machine learning techniques." reponame:Repositório Institucional da UnB, 2017. http://repositorio.unb.br/handle/10482/31264.
Full textSubmitted by Raquel Almeida (raquel.df13@gmail.com) on 2017-12-18T16:34:15Z No. of bitstreams: 1 2017_HugoWruckSchneider.pdf: 2108041 bytes, checksum: 6be494b560adf8d5114b2439b4b025c0 (MD5)
Approved for entry into archive by Raquel Viana (raquelviana@bce.unb.br) on 2018-02-20T20:23:11Z (GMT) No. of bitstreams: 1 2017_HugoWruckSchneider.pdf: 2108041 bytes, checksum: 6be494b560adf8d5114b2439b4b025c0 (MD5)
Made available in DSpace on 2018-02-20T20:23:11Z (GMT). No. of bitstreams: 1 2017_HugoWruckSchneider.pdf: 2108041 bytes, checksum: 6be494b560adf8d5114b2439b4b025c0 (MD5) Previous issue date: 2018-02-20
Dentre as análises que devem ser realizadas nos projetos de sequenciamento, um problema importante é a distinção entre transcritos codificadores de proteinas (PCTs) e RNAs nãocodificadores longos (lncRNAs). Esse trabalho investiga potenciais características dos lncRNAs e propõe dois métodos para distinção dessas duas classes de transcritos (PCTs e lncRNAs). O primeiro método foi proposto com base em máquinas de vetores de suporte (SVM), enquanto o segundo utilizou técnicas de aprendizado semi-supervisionado. O mé- todo utilizando SVM obteve excelentes resultados, quando comparados a outras propostas existentes na literatura. Esse método foi treinado e testado com dados de humanos, camundongos e peixe-zebra, tendo atingido uma acurácia de ≈ 98% com dados de humanos e camundongos, e de ≈ 96% para os dados do peixe-zebra. Ainda, foram criados modelos utilizando várias espécies, que mostraram classificações melhores para outras espécies diferentes daquelas do treinamento, ou seja, mostraram boa capacidade de generalização. Para validar esse método, foram utilizados dados de ratos, porcos e drosófilas, além de dados de RNA-seq de humanos, gorilas e macacos. Essa validação atingiu uma acurácia de mais de 85%, em todos os casos. Por fim, esse método foi capaz de identificar duas sequências dentro do Swiss-Prot que puderam ser reanotadas. O método baseado em aprendizado semi-supervisionado foi treinado e testado com dados de humanos, camundongos, ornitorrincos, galinhas, gambás, orangotangos e rãs, tendo sido utilizadas cinco técnicas de aprendizado semi-supervisionado. A contribuição desse método foi que ele permitiu a redução do tamanho do conjunto de dados classificados, utilizados no treinamento. No melhor caso, somente 2 sequências bem anotadas foram usadas no treinamento, o que, comparado com outras ferramentas disponíveis na literatura, indica um ganho expressivo. A acurácia obtida pelo método nos melhores casos foram de ≈ 95% para dados de humanos e camundongos, ≈ 90% para dados de galinhas, gambás e orangutangos, e ≈ 80% para dados de ornitorrincos e rãs. Dados de RNA-seq foram utilizados para teste, tendo sido obtida acurácia de mais de 95%. Esses dados foram utilizados para treinamento dos modelos de orangotango e de rã, que também apresentaram acurácias excelentes.
Among the analyses that have to be performed in sequencing projects, an important problem to be addressed is the distinction of protein coding transcripts (PCTs) and long non-coding RNAs (lncRNA). This work investigates potential characteristics of the lncRNAs and proposes two methods for distinguishing these two classes of transcripts (PCTs and lncRNAs). The first methods was based on Support Vector Machine (SVM), while the second one used semi-supervised learning techniques. The SVM based method obtained excellent results when compared to other methods in the literature. This method was trained and tested with data from human, mouse and zebrafish, and reached accuracy of ≈ 98% for human and mouse data, and ≈ 96% for zebrafish data. Besides, models with multiple species were created, which improved the classification for species different from those used in the training phase, i.e., these models could also be used in the classification of species different from those that were used in the training phase. To validate this method, data from rat, pig and drosophila, and RNA-seq data from humans, gorillas and macaque were used. This validation reached an accuracy of more than 85% for all the species. Finally, this method was able to identify two sequences within the Swiss-Prot database that were reannotated. The semi-supervised based method was trained and tested with data from human, mouse, platypus, chicken, opossum, orangutan and xenopus, in five semi-supervised learning techniques. The contribution of this method was the reduction of the size of the classified training data set. In the best scenario, only two annotated sequences were used in the training phase, which is an expressive gain when compared to other tools available in the literature. Accuracies obtained by the method in the best cases were ≈ 95% for human and mouse datasets, ≈ 90% for chicken, opossum and orangutan datasets, and ≈ 80% for data platypus and xenopus datasets. RNA-seq data were used for testing, having obtained more than 95% of accuracy. This data was used to train the orangutan and xenopus models, also leading to an excellent accuracy.
de, Bony Eric James. "Novel insights into the function and regulation of coding and long non-coding RNAs." Doctoral thesis, Universite Libre de Bruxelles, 2018. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/268600.
Full textDoctorat en Sciences biomédicales et pharmaceutiques (Médecine)
info:eu-repo/semantics/nonPublished
Alvarez, Juan (Juan Rene Alvarez Dominguez). "Modulation of lineage-specific cell differentiation by long non-coding RNAs." Thesis, Massachusetts Institute of Technology, 2015. http://hdl.handle.net/1721.1/97280.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student submitted PDF version of thesis.
Includes bibliographical references.
Mammalian genomes comprise thousands of non-protein-coding genes. These can produce small non-coding RNAs (such as rRNAs and tRNAs), as well as long non-coding RNAs (lncRNAs), which are >200nt and resemble mRNAs in their biogenesis. Although the functions of the vast majority of lncRNAs remain unknown, many are tissue- and developmental stage-specific, suggesting roles in lineage-specific development. We generated deep transcriptome surveys from differentiating mouse red blood cells, and implemented a computational strategy for de novo lncRNA discovery to comprehensively catalog erythroid-expressed lncRNAs. We found >100 previously unannotated loci, many of which are erythroid-specific and are induced by key erythroid transcription factors during differentiation. We exploited these features to select 12 candidates for loss-of-function studies, and found that depleting 10 out of 12 impaired red cell maturation, inhibiting cell size reduction and subsequent enucleation. To study how lncRNAs regulate erythropoiesis, we focused on EC6, an unpolyadenylated lncRNA needed for silencing neighboring loci encoding NF-kB activators. De-repression of these genes upon EC6 knockdown leads to activation of NF-kB and other immune pathways that antagonize erythropoiesis, resulting in impaired proliferation and elevated apoptosis during differentiation. We showed that EC6 is retained in chromatin and binds the nuclear matrix factor hnRNP U, which may enable co-localization with its targets to mediate their repression. Extending our work to a different lineage, we reconstructed transcriptomes from distinct mouse adipose tissues and identified ~1500 lncRNAs. These included many brown fat-specific loci induced during differentiation which are targets of key adipogenic factors. Inhibiting one of them, lnc-BATE1, compromised brown adipocyte development, impairing activation of brown fat genes, mitochondrial biogenesis, and thermogenic function. We showed that lnc-BATE1 acts in trans and binds hnRNP U, which is also required for proper brown adipocyte maturation. This work demonstrates that lncRNAs modulate lineage-specific cell differentiation by promoting or suppressing competing gene expression programs controlling cell fate.
by Juan Alvarez.
Ph. D.
Chen, Li. "Functional and evolutionary characterization of flowering-related long non-coding RNAs." Doctoral thesis, Humboldt-Universität zu Berlin, 2021. http://dx.doi.org/10.18452/22833.
Full textGenome-wide efforts have identified a large number of long non-coding RNAs (lncRNAs), although their potential functions remain largely enigmatic. Here, we used a system for synchronized floral induction in Arabidopsis to identify 4106 flower-related long intergenic RNAs (lincRNAs). Flower-related lincRNAs are typically associated with functional enhancers which are bi-directionally transcribed and are associated with diverse functional gene modules related to floral organ development revealed by co-expression network analysis. The master regulatory transcription factors (TFs) APETALA1 (AP1) and SEPALLATA3 (SEP3) bind to lincRNA-associated enhancers. The binding of these TFs is correlated with the increase in lincRNA transcription and potentially promotes chromatin accessibility at enhancers, followed by activation of a subset of target genes. Furthermore, the evolutionary dynamics of lincRNAs in plants including non-flowering plants still remain to be elusive and the expression pattern in different plant species was quite unknown. Here, we identified thousands of lincRNAs in 26 plant species including non-flowering plants, and allow us to infer sequence conserved and synteny based homolog lincRNAs, and explore conserved characteristics of lincRNAs during plants evolution. Direct comparison of lincRNAs reveals most lincRNAs are species-specific and the expression pattern of lincRNAs suggests their high evolutionary gain and loss. Moreover, conserved lincRNAs show active regulation by transcriptional factors such as AP1 and SEP3. Conserved lincRNAs demonstrate conserved flower related functionality in both the Brassicaceae and grass family. The evolutionary landscape of lincRNAs in plants provide important insights into the conservation and functionality of lincRNAs.
Coyne, Victoria. "Characterization of long non-coding RNAs in the Hox complex of Drosophila." Thesis, University of Manchester, 2017. https://www.research.manchester.ac.uk/portal/en/theses/characterization-of-long-noncoding-rnas-in-the-hox-complex-of-drosophila(733e3dec-3f7b-4d6e-a1bc-674a8786246d).html.
Full textBooks on the topic "Long non-coding RNAs (IncRNAs)"
Zhang, Lin, and Xiaowen Hu, eds. Long Non-Coding RNAs. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1697-0.
Full textUgarkovic, Durdica, ed. Long Non-Coding RNAs. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-16502-3.
Full textFeng, Yi, and Lin Zhang, eds. Long Non-Coding RNAs. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3378-5.
Full textChekanova, Julia A., and Hsiao-Lin V. Wang, eds. Plant Long Non-Coding RNAs. New York, NY: Springer New York, 2019. http://dx.doi.org/10.1007/978-1-4939-9045-0.
Full textNavarro, Alfons, ed. Long Non-Coding RNAs in Cancer. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1581-2.
Full textMorris, Kevin V., ed. Long Non-coding RNAs in Human Disease. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-23907-1.
Full textKhalil, Ahmad M., and Jeff Coller, eds. Molecular Biology of Long Non-coding RNAs. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8621-3.
Full textKhalil, Ahmad M., ed. Molecular Biology of Long Non-coding RNAs. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-17086-8.
Full textCao, Haiming, ed. Functional Analysis of Long Non-Coding RNAs. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1158-6.
Full textSong, Erwei, ed. The Long and Short Non-coding RNAs in Cancer Biology. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-1498-7.
Full textBook chapters on the topic "Long non-coding RNAs (IncRNAs)"
Zhang, Yang, Li Yang, and Ling-Ling Chen. "Characterization of Circular RNAs." In Long Non-Coding RNAs, 215–27. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3378-5_17.
Full textWang, Yueying, Mu Xu, Jiao Yuan, Zhongyi Hu, Youyou Zhang, Lin Zhang, and Xiaowen Hu. "Detection of Long Non-coding RNA Expression by Non-radioactive." In Long Non-Coding RNAs, 145–56. New York, NY: Springer US, 2021. http://dx.doi.org/10.1007/978-1-0716-1697-0_13.
Full textZhao, Yi, Jiao Yuan, and Runsheng Chen. "NONCODEv4: Annotation of Noncoding RNAs with Emphasis on Long Noncoding RNAs." In Long Non-Coding RNAs, 243–54. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3378-5_19.
Full textXing, Zhen, Chunru Lin, and Liuqing Yang. "LncRNA Pulldown Combined with Mass Spectrometry to Identify the Novel LncRNA-Associated Proteins." In Long Non-Coding RNAs, 1–9. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3378-5_1.
Full textOrjalo, Arturo V., and Hans E. Johansson. "Stellaris® RNA Fluorescence In Situ Hybridization for the Simultaneous Detection of Immature and Mature Long Noncoding RNAs in Adherent Cells." In Long Non-Coding RNAs, 119–34. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3378-5_10.
Full textLai, Lan-Tian, Zhenyu Meng, Fangwei Shao, and Li-Feng Zhang. "Simultaneous RNA–DNA FISH." In Long Non-Coding RNAs, 135–45. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3378-5_11.
Full textHinten, Michael, Emily Maclary, Srimonta Gayen, Clair Harris, and Sundeep Kalantry. "Visualizing Long Noncoding RNAs on Chromatin." In Long Non-Coding RNAs, 147–64. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3378-5_12.
Full textMaqsodi, Botoul, and Corina Nikoloff. "Non-isotopic Method for In Situ LncRNA Visualization and Quantitation." In Long Non-Coding RNAs, 165–76. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3378-5_13.
Full textHu, Xiaowen, Yi Feng, Zhongyi Hu, Youyou Zhang, Chao-Xing Yuan, Xiaowei Xu, and Lin Zhang. "Detection of Long Noncoding RNA Expression by Nonradioactive Northern Blots." In Long Non-Coding RNAs, 177–88. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3378-5_14.
Full textHatakeyama, Hiroto, Sherry Y. Wu, Lingegowda S. Mangala, Gabriel Lopez-Berestein, and Anil K. Sood. "Assessment of In Vivo siRNA Delivery in Cancer Mouse Models." In Long Non-Coding RNAs, 189–97. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-3378-5_15.
Full textConference papers on the topic "Long non-coding RNAs (IncRNAs)"
Gozukirmizi, Nermin, and Elif Karlik. "New gene expression regulators: Long non-coding RNAs." In PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON BIOSCIENCES AND MEDICAL ENGINEERING (ICBME2019): Towards innovative research and cross-disciplinary collaborations. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5125523.
Full textOpattova, Alena, Fábio Miguel Ferreira, Jozef Horak, Sona Vodenkova, and Pavel Vodicka. "Abstract 3496: Long non-coding RNAs in colorectal cancer." In Proceedings: AACR Annual Meeting 2017; April 1-5, 2017; Washington, DC. American Association for Cancer Research, 2017. http://dx.doi.org/10.1158/1538-7445.am2017-3496.
Full textCristiano, Francesca, Pierangelo Veltri, Mattia Prosperi, and Giuseppe Tradigo. "On the identification of long non-coding RNAs from RNA-seq." In 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2016. http://dx.doi.org/10.1109/bibm.2016.7822675.
Full textNiknafs, Yashar S., Matthew K. Iyer, and Arul M. Chinnaiyan. "Abstract 2992: The landscape of long non-coding RNAs in cancer." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-2992.
Full textShen, Jing, Abby B. Siegel, Helen Remotti, Qiao Wang, Yueyue Shen, and Regina M. Santella. "Abstract 3818: Deregulated long non-coding RNAs in hepatocellular carcinoma (HCC)." In Proceedings: AACR 106th Annual Meeting 2015; April 18-22, 2015; Philadelphia, PA. American Association for Cancer Research, 2015. http://dx.doi.org/10.1158/1538-7445.am2015-3818.
Full textRodriguez, Daniel A., Jeffim N. Kuznetsov, Margaret I. Sanchez, Stefan Kurtenbach, and J. William Harbour. "Abstract 4244: Novel expressed long non-coding RNAs in uveal melanoma." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-4244.
Full textRodriguez, Daniel A., Jeffim N. Kuznetsov, Margaret I. Sanchez, Stefan Kurtenbach, and J. William Harbour. "Abstract 4244: Novel expressed long non-coding RNAs in uveal melanoma." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-4244.
Full textZhao, Pengfei, Qinke Peng, Zhibo Zhu, Tian Han, Rida Dong, and Huijun Huang. "lncDML: Identification of long non-coding RNAs by Deep Metric Learning." In 2018 Chinese Automation Congress (CAC). IEEE, 2018. http://dx.doi.org/10.1109/cac.2018.8623112.
Full textNath, Aritro, and R. Stephanie Huang. "Abstract 3897: Pharmacogenomic landscape of long non-coding RNAs in human cancers." In Proceedings: AACR Annual Meeting 2018; April 14-18, 2018; Chicago, IL. American Association for Cancer Research, 2018. http://dx.doi.org/10.1158/1538-7445.am2018-3897.
Full textMamun, Abdullah Al, Wenrui Duan, and Ananda Mohan Mondal. "Pan-cancer Feature Selection and Classification Reveals Important Long Non-coding RNAs." In 2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2020. http://dx.doi.org/10.1109/bibm49941.2020.9313332.
Full textReports on the topic "Long non-coding RNAs (IncRNAs)"
Tianzi, Zhang. The Emerging Roles of Long Non-coding RNAs in the Pathogenesis of Breast Cancer. Envirarxiv, November 2022. http://dx.doi.org/10.55800/envirarxiv488.
Full textZhong, Xiaoling, Qin Guo, Jing Zhao, Yinyue Li, Xue Li, Min Ren, and Min Shu. Diagnostic significance of long non-coding RNAs expression in TB patients: a systematic review and meta-analysis. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, July 2020. http://dx.doi.org/10.37766/inplasy2020.7.0043.
Full textZhou, Xuefeng, Wenjing Liu, Zhenhuan Yang, Wei'e Zhou, and Ping Li. Long non-coding RNAs, one of candidate biomarkers in diabetic kidney disease A systematic review protocol of profiling studies. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, November 2020. http://dx.doi.org/10.37766/inplasy2020.11.0136.
Full textWu, Zilong, Zihao Xu, Boyao Yu, Jing tao Zhang, and Bentong Yu. The potential diagnostic value of exosomal long non-coding RNAs in solid tumours: a meta-analysis and systematic review. INPLASY - International Platform of Registered Systematic Review and Meta-analysis Protocols, June 2020. http://dx.doi.org/10.37766/inplasy2020.6.0083.
Full textDubcovsky, Jorge, Tzion Fahima, Ann Blechl, and Phillip San Miguel. Validation of a candidate gene for increased grain protein content in wheat. United States Department of Agriculture, January 2007. http://dx.doi.org/10.32747/2007.7695857.bard.
Full textVanderGheynst, Jean, Michael Raviv, Jim Stapleton, and Dror Minz. Effect of Combined Solarization and in Solum Compost Decomposition on Soil Health. United States Department of Agriculture, October 2013. http://dx.doi.org/10.32747/2013.7594388.bard.
Full text