Academic literature on the topic 'Long Short-Term Memory network ( LSTM)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Long Short-Term Memory network ( LSTM).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Long Short-Term Memory network ( LSTM)"
Hochreiter, Sepp, and Jürgen Schmidhuber. "Long Short-Term Memory." Neural Computation 9, no. 8 (November 1, 1997): 1735–80. http://dx.doi.org/10.1162/neco.1997.9.8.1735.
Full textSingh, Arjun, Shashi Kant Dargar, Amit Gupta, Ashish Kumar, Atul Kumar Srivastava, Mitali Srivastava, Pradeep Kumar Tiwari, and Mohammad Aman Ullah. "Evolving Long Short-Term Memory Network-Based Text Classification." Computational Intelligence and Neuroscience 2022 (February 21, 2022): 1–11. http://dx.doi.org/10.1155/2022/4725639.
Full textChen Wang, Chen Wang, Bingchun Liu Chen Wang, Jiali Chen Bingchun Liu, and Xiaogang Yu Jiali Chen. "Air Quality Index Prediction Based on a Long Short-Term Memory Artificial Neural Network Model." 電腦學刊 34, no. 2 (April 2023): 069–79. http://dx.doi.org/10.53106/199115992023043402006.
Full textLiu, Chen. "Long short-term memory (LSTM)-based news classification model." PLOS ONE 19, no. 5 (May 30, 2024): e0301835. http://dx.doi.org/10.1371/journal.pone.0301835.
Full textZhou, Chenze. "Long Short-term Memory Applied on Amazon's Stock Prediction." Highlights in Science, Engineering and Technology 34 (February 28, 2023): 71–76. http://dx.doi.org/10.54097/hset.v34i.5380.
Full textXu, Wei, Yanan Jiang, Xiaoli Zhang, Yi Li, Run Zhang, and Guangtao Fu. "Using long short-term memory networks for river flow prediction." Hydrology Research 51, no. 6 (October 5, 2020): 1358–76. http://dx.doi.org/10.2166/nh.2020.026.
Full textKumar, Naresh, Jatin Bindra, Rajat Sharma, and Deepali Gupta. "Air Pollution Prediction Using Recurrent Neural Network, Long Short-Term Memory and Hybrid of Convolutional Neural Network and Long Short-Term Memory Models." Journal of Computational and Theoretical Nanoscience 17, no. 9 (July 1, 2020): 4580–84. http://dx.doi.org/10.1166/jctn.2020.9283.
Full textSong, Tianyu, Wei Ding, Jian Wu, Haixing Liu, Huicheng Zhou, and Jinggang Chu. "Flash Flood Forecasting Based on Long Short-Term Memory Networks." Water 12, no. 1 (December 29, 2019): 109. http://dx.doi.org/10.3390/w12010109.
Full textZoremsanga, Chawngthu, and Jamal Hussain. "An Evaluation of Bidirectional Long Short-Term Memory Model for Estimating Monthly Rainfall in India." Indian Journal Of Science And Technology 17, no. 18 (April 24, 2024): 1828–37. http://dx.doi.org/10.17485/ijst/v17i18.2505.
Full textMuneer, Amgad, Rao Faizan Ali, Ahmed Almaghthawi, Shakirah Mohd Taib, Amal Alghamdi, and Ebrahim Abdulwasea Abdullah Ghaleb. "Short term residential load forecasting using long short-term memory recurrent neural network." International Journal of Electrical and Computer Engineering (IJECE) 12, no. 5 (October 1, 2022): 5589. http://dx.doi.org/10.11591/ijece.v12i5.pp5589-5599.
Full textDissertations / Theses on the topic "Long Short-Term Memory network ( LSTM)"
Valluru, Aravind-Deshikh. "Realization of LSTM Based Cognitive Radio Network." Thesis, University of North Texas, 2019. https://digital.library.unt.edu/ark:/67531/metadc1538697/.
Full textPaschou, Michail. "ASIC implementation of LSTM neural network algorithm." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254290.
Full textLSTM neurala nätverk har använts för taligenkänning, bildigenkänning och andra artificiella intelligensapplikationer i många år. De flesta applikationer utför LSTM-algoritmen och de nödvändiga beräkningarna i digitala moln. Offline lösningar inkluderar användningen av FPGA och GPU men de mest lovande lösningarna inkluderar ASIC-acceleratorer utformade för endast dettaändamål. Denna rapport presenterar en ASIC-design som kan utföra multipla iterationer av LSTM-algoritmen på en enkelriktad neural nätverksarkitetur utan peepholes. Den föreslagna designed ger aritmetrisk nivå-parallellismalternativ som block som är instansierat baserat på parametrar. Designens inre konstruktion implementerar pipelinerade, parallella, eller seriella lösningar beroende på vilket anternativ som är optimalt till alla fall. Konsekvenserna för dessa beslut diskuteras i detalj i rapporten. Designprocessen beskrivs i detalj och utvärderingen av designen presenteras också för att mäta noggrannheten och felmarginal i designutgången. Resultatet av arbetet från denna rapport är en fullständig syntetiserbar ASIC design som har implementerat ett LSTM-lager, ett fullständigt anslutet lager och ett Softmax-lager som kan utföra klassificering av data baserat på tränade viktmatriser och biasvektorer. Designen använder huvudsakligen 16bitars fast flytpunktsformat med 5 heltal och 11 fraktions bitar men ökade precisionsrepresentationer används i vissa block för att minska felmarginal. Till detta har även en verifieringsmiljö utformats som kan utföra simuleringar, utvärdera designresultatet genom att jämföra det med resultatet som produceras från att utföra samma operationer med 64-bitars flytpunktsprecision på en SystemVerilog testbänk och mäta uppstådda felmarginal. Resultaten avseende noggrannheten och designutgångens felmarginal presenteras i denna rapport.Designen gick genom Logisk och Fysisk syntes och framgångsrikt resulterade i en funktionell nätlista för varje testad konfiguration. Timing, area och effektmätningar på den genererade nätlistorna av olika konfigurationer av designen visar konsistens och rapporteras i denna rapport.
Shojaee, Ali B. S. "Bacteria Growth Modeling using Long-Short-Term-Memory Networks." University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1617105038908441.
Full textvan, der Westhuizen Jos. "Biological applications, visualizations, and extensions of the long short-term memory network." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/287476.
Full textGustafsson, Anton, and Julian Sjödal. "Energy Predictions of Multiple Buildings using Bi-directional Long short-term Memory." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-43552.
Full textCorni, Gabriele. "A study on the applicability of Long Short-Term Memory networks to industrial OCR." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Find full textNawaz, Sabeen. "Analysis of Transactional Data with Long Short-Term Memory Recurrent Neural Networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281282.
Full textObehöriga transaktioner och bedrägerier i betalningar kan leda till stora ekonomiska förluster för banker och myndigheter. Inom maskininlärning har detta problem tidigare hanterats med hjälp av klassifierare via supervised learning. I detta examensarbete föreslår vi en modell som kan användas i ett system för att upptäcka bedrägerier. Modellen appliceras på omärkt data med många olika variabler. Modellen som används är en Long Short-term memory i en auto-encoder decoder nätverk. Datan transformeras med PCA och klustras med K-means. Modellen tränas till att rekonstruera en sekvens av betalningar med hög noggrannhet. Vår resultat visar att LSTM-AED presterar bättre än en modell som endast gissar nästa punkt i sekvensen. Resultatet visar också att mycket information i datan går förlorad när den förbehandlas och transformeras.
Racette, Olsén Michael. "Electrocardiographic deviation detection : Using long short-term memory recurrent neural networks to detect deviations within electrocardiographic records." Thesis, Linnéuniversitetet, Institutionen för datavetenskap (DV), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-76411.
Full textVerner, Alexander. "LSTM Networks for Detection and Classification of Anomalies in Raw Sensor Data." Diss., NSUWorks, 2019. https://nsuworks.nova.edu/gscis_etd/1074.
Full textSvanberg, John. "Anomaly detection for non-recurring traffic congestions using Long short-term memory networks (LSTMs)." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-234465.
Full textI den här masteruppsatsen implementerar vi en tvåstegsalgoritm för avvikelsedetektering för icke återkommande trafikstockningar. Data är insamlad från kollektivtrafikbussarna i Stockholm. Vi undersöker användningen av maskininlärning för att modellerna tidsseriedata med hjälp av LSTM-nätverk och evaluerar sedan dessa resultat med en grundmodell. Avvikelsedetekteringsalgoritmen inkluderar både kollektiv och kontextuell uttrycksfullhet, vilket innebär att kollektiva förseningar kan hittas och att även temporaliteten hos datan beaktas. Resultaten visar att prestandan hos avvikelsedetekteringen förbättras av mindre prediktionsfel genererade av LSTM-nätverket i jämförelse med grundmodellen. En regel för avvikelser baserad på snittet av två andra regler reducerar märkbart antalet falska positiva medan den höll kvar antalet sanna positiva på en tillräckligt hög nivå. Prestandan hos avvikelsedetekteringsalgoritmen har setts bero av vilken vägsträcka den tillämpas på, där några vägsträckor är svårare medan andra är lättare för avvikelsedetekteringen. Den bästa varianten av algoritmen hittade 84.3 % av alla avvikelser och 96.0 % av all avvikelsefri data blev markerad som normal data.
Books on the topic "Long Short-Term Memory network ( LSTM)"
Sangeetha, V., and S. Kevin Andrews. Introduction to Artificial Intelligence and Neural Networks. Magestic Technology Solutions (P) Ltd, Chennai, Tamil Nadu, India, 2023. http://dx.doi.org/10.47716/mts/978-93-92090-24-0.
Full textLampert, Jay. Philosophy of the Short Term. Bloomsbury Publishing Plc, 2023. http://dx.doi.org/10.5040/9781350347991.
Full textNobre, Anna C. (Kia), and M.-Marsel Mesulam. Large-scale Networks for Attentional Biases. Edited by Anna C. (Kia) Nobre and Sabine Kastner. Oxford University Press, 2014. http://dx.doi.org/10.1093/oxfordhb/9780199675111.013.035.
Full textBook chapters on the topic "Long Short-Term Memory network ( LSTM)"
Hvitfeldt, Emil, and Julia Silge. "Long short-term memory (LSTM) networks." In Supervised Machine Learning for Text Analysis in R, 273–302. Boca Raton: Chapman and Hall/CRC, 2021. http://dx.doi.org/10.1201/9781003093459-14.
Full textSalem, Fathi M. "Gated RNN: The Long Short-Term Memory (LSTM) RNN." In Recurrent Neural Networks, 71–82. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-89929-5_4.
Full textNandam, Srinivasa Rao, Adouthu Vamshi, and Inapanuri Sucharitha. "CAN Intrusion Detection Using Long Short-Term Memory (LSTM)." In Lecture Notes in Networks and Systems, 295–302. Singapore: Springer Nature Singapore, 2022. http://dx.doi.org/10.1007/978-981-19-1976-3_36.
Full textBarone, Ben, David Coar, Ashley Shafer, Jinhong K. Guo, Brad Galego, and James Allen. "Interpreting Pilot Behavior Using Long Short-Term Memory (LSTM) Models." In Lecture Notes in Networks and Systems, 60–66. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-80624-8_8.
Full textWüthrich, Mario V., and Michael Merz. "Recurrent Neural Networks." In Springer Actuarial, 381–406. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-12409-9_8.
Full textMyakal, Sabhapathy, Rajarshi Pal, and Nekuri Naveen. "A Novel Pixel Value Predictor Using Long Short Term Memory (LSTM) Network." In Lecture Notes in Computer Science, 324–35. Cham: Springer Nature Switzerland, 2023. http://dx.doi.org/10.1007/978-3-031-36402-0_30.
Full textAnwarsha, A., and T. Narendiranath Babu. "Intelligent Fault Detection of Rotating Machinery Using Long-Short-Term Memory (LSTM) Network." In Lecture Notes in Networks and Systems, 76–83. Cham: Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-031-20429-6_8.
Full textNikhil Chandran, A., Karthik Sreekumar, and D. P. Subha. "EEG-Based Automated Detection of Schizophrenia Using Long Short-Term Memory (LSTM) Network." In Algorithms for Intelligent Systems, 229–36. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-5243-4_19.
Full textSai Charan, P. V., T. Gireesh Kumar, and P. Mohan Anand. "Advance Persistent Threat Detection Using Long Short Term Memory (LSTM) Neural Networks." In Emerging Technologies in Computer Engineering: Microservices in Big Data Analytics, 45–54. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8300-7_5.
Full textZainudin, Zanariah, Siti Mariyam Shamsuddin, and Shafaatunnur Hasan. "Convolutional Neural Network Long Short-Term Memory (CNN + LSTM) for Histopathology Cancer Image Classification." In Machine Intelligence and Signal Processing, 235–45. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-1366-4_19.
Full textConference papers on the topic "Long Short-Term Memory network ( LSTM)"
Lin, Yanbin, Dongliang Duan, Xueming Hong, Xiang Cheng, Liuqing Yang, and Shuguang Cui. "Very-Short-Term Solar Forecasting with Long Short-Term Memory (LSTM) Network." In 2020 Asia Energy and Electrical Engineering Symposium (AEEES). IEEE, 2020. http://dx.doi.org/10.1109/aeees48850.2020.9121512.
Full textSingh, Shubhendu Kumar, Ruoyu Yang, Amir Behjat, Rahul Rai, Souma Chowdhury, and Ion Matei. "PI-LSTM: Physics-Infused Long Short-Term Memory Network." In 2019 18th IEEE International Conference On Machine Learning And Applications (ICMLA). IEEE, 2019. http://dx.doi.org/10.1109/icmla.2019.00015.
Full textPérez, José, Rafael Baez, Jose Terrazas, Arturo Rodríguez, Daniel Villanueva, Olac Fuentes, Vinod Kumar, Brandon Paez, and Abdiel Cruz. "Physics-Informed Long-Short Term Memory Neural Network Performance on Holloman High-Speed Test Track Sled Study." In ASME 2022 Fluids Engineering Division Summer Meeting. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/fedsm2022-86953.
Full textGaurav, Akshat, Varsha Arya, Kwok Tai Chui, Brij B. Gupta, Chang Choi, and O.-Joun Lee. "Long Short-Term Memory Network (LSTM) based Stock Price Prediction." In RACS '23: International Conference on Research in Adaptive and Convergent Systems. New York, NY, USA: ACM, 2023. http://dx.doi.org/10.1145/3599957.3606240.
Full textYu, Wennian, Chris K. Mechefske, and Il Yong Kim. "Cutting Tool Wear Estimation Using a Genetic Algorithm Based Long Short-Term Memory Neural Network." In ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/detc2018-85253.
Full textHuang, Ting, Gehui Shen, and Zhi-Hong Deng. "Leap-LSTM: Enhancing Long Short-Term Memory for Text Categorization." In Twenty-Eighth International Joint Conference on Artificial Intelligence {IJCAI-19}. California: International Joint Conferences on Artificial Intelligence Organization, 2019. http://dx.doi.org/10.24963/ijcai.2019/697.
Full textWang, Junzhe, and Evren M. Ozbayoglu. "Application of Recurrent Neural Network Long Short-Term Memory Model on Early Kick Detection." In ASME 2022 41st International Conference on Ocean, Offshore and Arctic Engineering. American Society of Mechanical Engineers, 2022. http://dx.doi.org/10.1115/omae2022-78739.
Full textObiora, Chibuzor N., Ahmed Ali, and Ali N. Hasan. "Forecasting Hourly Solar Irradiance Using Long Short-Term Memory (LSTM) Network." In 2020 11th International Renewable Energy Congress (IREC). IEEE, 2020. http://dx.doi.org/10.1109/irec48820.2020.9310449.
Full textWang, Kaimao. "Long Short-Term Memory (LSTM) Network Applications in Stock Price Prediction." In 2023 International Conference on Ambient Intelligence, Knowledge Informatics and Industrial Electronics (AIKIIE). IEEE, 2023. http://dx.doi.org/10.1109/aikiie60097.2023.10390445.
Full textShabbir, Noman, Roya Ahmadiahangar, Argo Rosin, Oleksandr Husev, Tanel Jalakas, and Joao Martins. "Residential DC Load Forecasting Using Long Short-term Memory Network (LSTM)." In 2023 IEEE 11th International Conference on Smart Energy Grid Engineering (SEGE). IEEE, 2023. http://dx.doi.org/10.1109/sege59172.2023.10274596.
Full textReports on the topic "Long Short-Term Memory network ( LSTM)"
Cárdenas-Cárdenas, Julián Alonso, Deicy J. Cristiano-Botia, and Nicolás Martínez-Cortés. Colombian inflation forecast using Long Short-Term Memory approach. Banco de la República, June 2023. http://dx.doi.org/10.32468/be.1241.
Full textAnkel, Victoria, Stella Pantopoulou, Matthew Weathered, Darius Lisowski, Anthonie Cilliers, and Alexander Heifetz. One-Step Ahead Prediction of Thermal Mixing Tee Sensors with Long Short Term Memory (LSTM) Neural Networks. Office of Scientific and Technical Information (OSTI), December 2020. http://dx.doi.org/10.2172/1760289.
Full textKumar, Kaushal, and Yupeng Wei. Attention-Based Data Analytic Models for Traffic Flow Predictions. Mineta Transportation Institute, March 2023. http://dx.doi.org/10.31979/mti.2023.2211.
Full textVold, Andrew. Improving Physics Based Electron Neutrino Appearance Identication with a Long Short-Term Memory Network. Office of Scientific and Technical Information (OSTI), January 2018. http://dx.doi.org/10.2172/1529330.
Full text