Dissertations / Theses on the topic 'Long Short-Term Memory network ( LSTM)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Long Short-Term Memory network ( LSTM).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Valluru, Aravind-Deshikh. "Realization of LSTM Based Cognitive Radio Network." Thesis, University of North Texas, 2019. https://digital.library.unt.edu/ark:/67531/metadc1538697/.
Full textPaschou, Michail. "ASIC implementation of LSTM neural network algorithm." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254290.
Full textLSTM neurala nätverk har använts för taligenkänning, bildigenkänning och andra artificiella intelligensapplikationer i många år. De flesta applikationer utför LSTM-algoritmen och de nödvändiga beräkningarna i digitala moln. Offline lösningar inkluderar användningen av FPGA och GPU men de mest lovande lösningarna inkluderar ASIC-acceleratorer utformade för endast dettaändamål. Denna rapport presenterar en ASIC-design som kan utföra multipla iterationer av LSTM-algoritmen på en enkelriktad neural nätverksarkitetur utan peepholes. Den föreslagna designed ger aritmetrisk nivå-parallellismalternativ som block som är instansierat baserat på parametrar. Designens inre konstruktion implementerar pipelinerade, parallella, eller seriella lösningar beroende på vilket anternativ som är optimalt till alla fall. Konsekvenserna för dessa beslut diskuteras i detalj i rapporten. Designprocessen beskrivs i detalj och utvärderingen av designen presenteras också för att mäta noggrannheten och felmarginal i designutgången. Resultatet av arbetet från denna rapport är en fullständig syntetiserbar ASIC design som har implementerat ett LSTM-lager, ett fullständigt anslutet lager och ett Softmax-lager som kan utföra klassificering av data baserat på tränade viktmatriser och biasvektorer. Designen använder huvudsakligen 16bitars fast flytpunktsformat med 5 heltal och 11 fraktions bitar men ökade precisionsrepresentationer används i vissa block för att minska felmarginal. Till detta har även en verifieringsmiljö utformats som kan utföra simuleringar, utvärdera designresultatet genom att jämföra det med resultatet som produceras från att utföra samma operationer med 64-bitars flytpunktsprecision på en SystemVerilog testbänk och mäta uppstådda felmarginal. Resultaten avseende noggrannheten och designutgångens felmarginal presenteras i denna rapport.Designen gick genom Logisk och Fysisk syntes och framgångsrikt resulterade i en funktionell nätlista för varje testad konfiguration. Timing, area och effektmätningar på den genererade nätlistorna av olika konfigurationer av designen visar konsistens och rapporteras i denna rapport.
Shojaee, Ali B. S. "Bacteria Growth Modeling using Long-Short-Term-Memory Networks." University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1617105038908441.
Full textvan, der Westhuizen Jos. "Biological applications, visualizations, and extensions of the long short-term memory network." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/287476.
Full textGustafsson, Anton, and Julian Sjödal. "Energy Predictions of Multiple Buildings using Bi-directional Long short-term Memory." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-43552.
Full textCorni, Gabriele. "A study on the applicability of Long Short-Term Memory networks to industrial OCR." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Find full textNawaz, Sabeen. "Analysis of Transactional Data with Long Short-Term Memory Recurrent Neural Networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281282.
Full textObehöriga transaktioner och bedrägerier i betalningar kan leda till stora ekonomiska förluster för banker och myndigheter. Inom maskininlärning har detta problem tidigare hanterats med hjälp av klassifierare via supervised learning. I detta examensarbete föreslår vi en modell som kan användas i ett system för att upptäcka bedrägerier. Modellen appliceras på omärkt data med många olika variabler. Modellen som används är en Long Short-term memory i en auto-encoder decoder nätverk. Datan transformeras med PCA och klustras med K-means. Modellen tränas till att rekonstruera en sekvens av betalningar med hög noggrannhet. Vår resultat visar att LSTM-AED presterar bättre än en modell som endast gissar nästa punkt i sekvensen. Resultatet visar också att mycket information i datan går förlorad när den förbehandlas och transformeras.
Racette, Olsén Michael. "Electrocardiographic deviation detection : Using long short-term memory recurrent neural networks to detect deviations within electrocardiographic records." Thesis, Linnéuniversitetet, Institutionen för datavetenskap (DV), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-76411.
Full textVerner, Alexander. "LSTM Networks for Detection and Classification of Anomalies in Raw Sensor Data." Diss., NSUWorks, 2019. https://nsuworks.nova.edu/gscis_etd/1074.
Full textSvanberg, John. "Anomaly detection for non-recurring traffic congestions using Long short-term memory networks (LSTMs)." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-234465.
Full textI den här masteruppsatsen implementerar vi en tvåstegsalgoritm för avvikelsedetektering för icke återkommande trafikstockningar. Data är insamlad från kollektivtrafikbussarna i Stockholm. Vi undersöker användningen av maskininlärning för att modellerna tidsseriedata med hjälp av LSTM-nätverk och evaluerar sedan dessa resultat med en grundmodell. Avvikelsedetekteringsalgoritmen inkluderar både kollektiv och kontextuell uttrycksfullhet, vilket innebär att kollektiva förseningar kan hittas och att även temporaliteten hos datan beaktas. Resultaten visar att prestandan hos avvikelsedetekteringen förbättras av mindre prediktionsfel genererade av LSTM-nätverket i jämförelse med grundmodellen. En regel för avvikelser baserad på snittet av två andra regler reducerar märkbart antalet falska positiva medan den höll kvar antalet sanna positiva på en tillräckligt hög nivå. Prestandan hos avvikelsedetekteringsalgoritmen har setts bero av vilken vägsträcka den tillämpas på, där några vägsträckor är svårare medan andra är lättare för avvikelsedetekteringen. Den bästa varianten av algoritmen hittade 84.3 % av alla avvikelser och 96.0 % av all avvikelsefri data blev markerad som normal data.
Hernandez, Villapol Jorge Luis. "Spectrum Analysis and Prediction Using Long Short Term Memory Neural Networks and Cognitive Radios." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc1062877/.
Full textLarsson, Joel. "Optimizing text-independent speaker recognition using an LSTM neural network." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-26312.
Full textMealey, Thomas C. "Binary Recurrent Unit: Using FPGA Hardware to Accelerate Inference in Long Short-Term Memory Neural Networks." University of Dayton / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1524402925375566.
Full textHolm, Noah, and Emil Plynning. "Spatio-temporal prediction of residential burglaries using convolutional LSTM neural networks." Thesis, KTH, Geoinformatik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229952.
Full textChowdhury, Muhammad Iqbal Hasan. "Question-answering on image/video content." Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/205096/1/Muhammad%20Iqbal%20Hasan_Chowdhury_Thesis.pdf.
Full textDíaz, González Fernando. "Federated Learning for Time Series Forecasting Using LSTM Networks: Exploiting Similarities Through Clustering." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254665.
Full textFederated Learning utgör en statistisk utmaning vid träning med starkt heterogen sekvensdata. Till exempel så uppvisar tidsseriedata inom telekomdomänen blandade variationer och mönster över längre tidsintervall. Dessa distinkta fördelningar utgör en utmaning när en nod inte bara ska bidra till skapandet av en global modell utan även ämnar applicera denna modell på sin lokala datamängd. Att i detta scenario införa en global modell som ska passa alla kan visa sig vara otillräckligt, även om vi använder oss av de mest framgångsrika modellerna inom maskininlärning för tidsserieprognoser, Long Short-Term Memory (LSTM) nätverk, vilka visat sig kunna fånga komplexa mönster och generalisera väl till nya mönster. I detta arbete visar vi att genom att klustra klienterna med hjälp av dessa mönster och selektivt aggregera deras uppdateringar i olika globala modeller kan vi uppnå förbättringar av den lokal prestandan med minimala kostnader, vilket vi demonstrerar genom experiment med riktigt tidsseriedata och en grundläggande LSTM-modell.
Stark, Love. "Outlier detection with ensembled LSTM auto-encoders on PCA transformed financial data." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-296161.
Full textFinansinstitut genererar idag en stor mängd data, data som kan innehålla intressant information värd att undersöka för att främja den ekonomiska tillväxten för nämnda institution. Det finns ett intresse för att analysera dessa informationspunkter, särskilt om de är avvikande från det normala dagliga arbetet. Att upptäcka dessa avvikelser är dock inte en lätt uppgift och ej möjligt att göra manuellt på grund av de stora mängderna data som genereras dagligen. Tidigare arbete för att lösa detta har undersökt användningen av maskininlärning för att upptäcka avvikelser i finansiell data. Tidigare studier har visat på att förbehandlingen av datan vanligtvis står för en stor del i förlust av emphinformation från datan. Detta arbete syftar till att studera om det finns en korrekt balans i hur förbehandlingen utförs för att behålla den högsta mängden information samtidigt som datan inte förblir för komplex för maskininlärnings-modellerna. Det emphdataset som användes bestod av valutatransaktioner som tillhandahölls av värdföretaget och förbehandlades genom användning av Principal Component Analysis (PCA). Huvudsyftet med detta arbete är att undersöka om en ensemble av Long Short-Term Memory Recurrent Neural Networks (LSTM), konfigurerad som autoenkodare, kan användas för att upptäcka avvikelser i data och om ensemblen är mer precis i sina predikteringar än en ensam LSTM-autoenkodare. Tidigare studier har visat att en ensembel avautoenkodare kan visa sig vara mer precisa än en singel autokodare, särskilt när SkipCells har implementerats (en konfiguration som hoppar över vissa av LSTM-cellerna för att göra modellerna mer varierade). En datapunkt kommer att betraktas som en avvikelse om LSTM-modellen har problem med att återskapa den väl, dvs ett mönster som nätverket har svårt att återskapa, vilket gör datapunkten tillgänglig för vidare undersökningar. Resultaten visar att en ensemble av LSTM-modeller predikterade mer precist än en singel LSTM-modell när det gäller att återskapa datasetet, och då enligt vår definition av avvikelser, mer precis avvikelse detektering. Resultaten från förbehandlingen visar olika metoder för att uppnå ett optimalt antal komponenter för dina data genom att studera bibehållen varians och precision för PCA-transformation jämfört med modellprestanda. En av slutsatserna från arbetet är att en ensembel av LSTM-nätverk kan visa sig vara mycket kraftfulla, men att alternativ till förbehandling bör undersökas, såsom categorical embedding istället för PCA.
Fors, Johansson Christoffer. "Arrival Time Predictions for Buses using Recurrent Neural Networks." Thesis, Linköpings universitet, Artificiell intelligens och integrerade datorsystem, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-165133.
Full textAndersson, Aron, and Shabnam Mirkhani. "Portfolio Performance Optimization Using Multivariate Time Series Volatilities Processed With Deep Layering LSTM Neurons and Markowitz." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273617.
Full textAktiemarknaden är en icke-linjär marknad, men många av de mest kända portföljoptimerings algoritmerna är baserad på linjära modeller. Under de senaste åren har den snabba utvecklingen inom maskininlärning skapat flexibla modeller som kan extrahera information ur komplexa mönster. I det här examensarbetet föreslår vi två sätt att optimera en portfölj, ett där ett neuralt nätverk utvecklas med avseende på multivariata tidsserier och ett annat där vi använder den linjära Markowitz modellen, där vi även lägger ett exponentiellt rörligt medelvärde på prisdatan. Ingångsdatan till vårt neurala nätverk är de dagliga slutpriserna, volymerna och marknadsindikatorer som t.ex. volatilitetsindexet VIX. Utgångsvariablerna kommer vara de predikterade priserna för nästa dag, som sedan bearbetas ytterligare för att producera mätvärden såsom förväntad avkastning, volatilitet och Sharpe ratio. LSTM-modellen producerar en portfölj med avkastning och risk som ligger närmre de verkliga marknadsförhållandena, men däremot gav resultatet ett högt felvärde och det visar att vår LSTM-modell är otillräckligt för att använda som ensamt predikteringssverktyg. Med det sagt så gav det ändå en bättre prediktion när det gäller trender än vad vi antog den skulle göra. Vår slutsats är därför att man bör använda flera neurala nätverk som indikatorer, där var och en är ansvarig för någon specifikt aspekt man vill analysera, och baserat på dessa dra en slutsats. Vårt resultat tyder också på att inmatningsdatan bör övervägas mera noggrant, eftersom predikteringsnoggrannheten.
Capshaw, Riley. "Relation Classification using Semantically-Enhanced Syntactic Dependency Paths : Combining Semantic and Syntactic Dependencies for Relation Classification using Long Short-Term Memory Networks." Thesis, Linköpings universitet, Interaktiva och kognitiva system, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-153877.
Full textForslund, John, and Jesper Fahlén. "Predicting customer purchase behavior within Telecom : How Artificial Intelligence can be collaborated into marketing efforts." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279575.
Full textDenna studie undersöker implementeringen av en AI-modell som förutspår kunders köp, inom telekombranschen. Studien syftar även till att påvisa hur en sådan AI-modell kan understödja beslutsfattande i marknadsföringsstrategier. Genom att designa AI-modellen med en Recurrent Neural Network (RNN) arkitektur med ett Long Short-Term Memory (LSTM) lager, drar studien slutsatsen att en sådan design möjliggör en framgångsrik implementering med tillfredsställande modellprestation. Instruktioner erhålls stegvis för att konstruera modellen i studiens metodikavsnitt. RNN-LSTM-modellen kan med fördel användas som ett hjälpande verktyg till marknadsförare för att bedöma hur en kunds beteendemönster på en hemsida påverkar deras köpbeteende över tiden, på ett kvantitativt sätt - genom att observera det ramverk som författarna kallar för Kundköpbenägenhetsresan, på engelska Customer Purchase Propensity Journey (CPPJ). Den empiriska grunden av CPPJ kan hjälpa organisationer att förbättra allokeringen av marknadsföringsresurser, samt gynna deras digitala närvaro genom att möjliggöra mer relevant personalisering i kundupplevelsen.
Sibelius, Parmbäck Sebastian. "HMMs and LSTMs for On-line Gesture Recognition on the Stylaero Board : Evaluating and Comparing Two Methods." Thesis, Linköpings universitet, Artificiell intelligens och integrerade datorsystem, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-162237.
Full textTalár, Ondřej. "Redukce šumu audionahrávek pomocí hlubokých neuronových sítí." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-317118.
Full textJansson, Anton. "Predicting trajectories of golf balls using recurrent neural networks." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210552.
Full textDetta examensarbete har studerat problemet att förutspå den fullständiga bollbanan för en golfboll när den flyger i luften där endast den tredimensionella positionen av bollen observerades. Den typ av metod som användes för att lösa problemet använde sig av recurrent neural networks, i form av long short-term memory nätverk (LSTM). Motivationen bakom detta var att denna typ av nätverk hade lett till goda resultatet för liknande problem. Resultatet visar att använda sig av LSTM nätverk leder i genomsnitt till en 36.6 % förminskning av felet i den förutspådda nedslagsplatsen för bollen jämfört mot tidigare metoder som använder sig av numeriska simuleringar av en fysikalisk modell, om modellen användes på samma golfbana som den tränades på. Att använda en modell som var tränad på en annan golfbana leder till förbättringar i allmänhet, men inte om modellen användes på en golfbana där bollen fångades in med en annan frekvens. Detta problem löstes till en viss mån genom att träna om modellen med lite data från den nya golfbanan.
Bonato, Tommaso. "Time Series Predictions With Recurrent Neural Networks." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018.
Find full textRidhagen, Markus, and Petter Lind. "A comparative study of Neural Network Forecasting models on the M4 competition data." Thesis, Uppsala universitet, Statistiska institutionen, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-445568.
Full textMohammadisohrabi, Ali. "Design and implementation of a Recurrent Neural Network for Remaining Useful Life prediction." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.
Find full textKeisala, Simon. "Using a Character-Based Language Model for Caption Generation." Thesis, Linköpings universitet, Interaktiva och kognitiva system, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-163001.
Full textNorgren, Eric. "Pulse Repetition Interval Modulation Classification using Machine Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-241152.
Full textRadarsignaler används för att uppskatta plats, hastighet och riktning av objekt. Vissa radarer sänder ut signaler i form av pulser, medan andra sänder ut en kontinuerlig våg. Båda typer av radarer avger signaler enligt ett visst mönster, till exempel avger en pulsradar pulser med ett specifikt tidsintervall mellan pulserna. Detta tidsintervall kan antingen vara konstant, förändras linjärt, eller följa ett annat mönster. Intervallet mellan två pulser benämns ofta pulsrepetitionsintervall (PRI), och mönstret som definierar PRIn benämns ofta modulering. Att klassificera vilken PRI-modulering som används i en radarsignal är en viktig del i processen att identifiera vem som skickade ut signalen. Felaktig klassificering av den använda moduleringen kan leda till en felaktig gissning av identiteten av agenten som skickade ut signalen, vilket kan leda till ett dödligt utfall. Detta arbete undersöker hur väl det framtagna neurala nätverket som består av ett långt korttidsminne (LSTM) kan klassificera PRI-modulering i förhållande till en modern modell som använder särskilt utvalda beräknade särdrag från data och klassificerar dessa särdrag med ett neuralt nätverk. Resultaten indikerar att LSTM-modellen konsekvent klassificerar med högre träffsäkerhet än modellen som använder särdrag, vilket gäller för alla testade brusnivåer. Nackdelen med LSTM-modellen är att den är mer komplex än modellen som använder särdrag. Framtida arbete kan undersöka om LSTM-modellen är för komplex för att använda i ett verkligt scenario där beräkningskraften kan vara begränsad. Dessutom skulle framtida arbete kunna utvärdera hur väl LSTM-modellen kan klassificera PRI-moduleringar när stöd för fler moduleringar än de som testats i detta arbete läggs till, detta då stöd för ytterligare PRI-moduleringar kan läggas till i LSTM-modellen på ett trivialt sätt.
Sasse, Jonathan Patrick. "Distinguishing Behavior from Highly Variable Neural Recordings Using Machine Learning." Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case1522755406249275.
Full textJavid, Gelareh. "Contribution à l’estimation de charge et à la gestion optimisée d’une batterie Lithium-ion : application au véhicule électrique." Thesis, Mulhouse, 2021. https://www.learning-center.uha.fr/.
Full textThe State Of Charge (SOC) estimation is a significant issue for safe performance and the lifespan of Lithium-ion (Li-ion) batteries, which is used to power the Electric Vehicles (EVs). In this thesis, the accuracy of SOC estimation is investigated using Deep Recurrent Neural Network (DRNN) algorithms. To do this, for a one cell Li-ion battery, three new SOC estimator based on different DRNN algorithms are proposed: a Bidirectional LSTM (BiLSTM) method, Robust Long-Short Term Memory (RoLSTM) algorithm, and a Gated Recurrent Units (GRUs) technique. Using these, one is not dependent on precise battery models and can avoid complicated mathematical methods especially in a battery pack. In addition, these models are able to precisely estimate the SOC at varying temperature. Also, unlike the traditional recursive neural network where content is re-written at each time, these networks can decide on preserving the current memory through the proposed gateways. In such case, it can easily transfer the information over long paths to receive and maintain long-term dependencies. Comparing the results indicates the BiLSTM network has a better performance than the other two. Moreover, the BiLSTM model can work with longer sequences from two direction, the past and the future, without gradient vanishing problem. This feature helps to select a sequence length as much as a discharge period in one drive cycle, and to have more accuracy in the estimation. Also, this model well behaved against the incorrect initial value of SOC. Finally, a new BiLSTM method introduced to estimate the SOC of a pack of batteries in an Ev. IPG Carmaker software was used to collect data and test the model in the simulation. The results showed that the suggested algorithm can provide a good SOC estimation without using any filter in the Battery Management System (BMS)
Singh, Akash. "Anomaly Detection for Temporal Data using Long Short-Term Memory (LSTM)." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215723.
Full textVi undersöker Long short-term memory (LSTM) för avvikelsedetektion i tidsseriedata. På grund av svårigheterna i att hitta data med etiketter så har ett oövervakat an-greppssätt använts. Vi tränar rekursiva neuronnät (RNN) med LSTM-noder för att lära modellen det normala tidsseriemönstret och prediktera framtida värden. Vi undersö-ker olika sätt av att behålla LSTM-tillståndet och effekter av att använda ett konstant antal tidssteg på LSTM-prediktionen och avvikelsedetektionsprestandan. LSTM är också jämförda med vanliga neuronnät med fasta tidsfönster över indata. Våra experiment med tre verkliga datasetvisar att även om LSTM RNN är tillämpbara för generell tidsseriemodellering och avvikelsedetektion så är det avgörande att behålla LSTM-tillståndet för att få de önskaderesultaten. Dessutom är det inte nödvändigt att använda LSTM för enkla tidsserier.
Cifonelli, Antonio. "Probabilistic exponential smoothing for explainable AI in the supply chain domain." Electronic Thesis or Diss., Normandie, 2023. http://www.theses.fr/2023NORMIR41.
Full textThe key role that AI could play in improving business operations has been known for a long time, but the penetration process of this new technology has encountered certain obstacles within companies, in particular, implementation costs. On average, it takes 2.8 years from supplier selection to full deployment of a new solution. There are three fundamental points to consider when developing a new model. Misalignment of expectations, the need for understanding and explanation, and performance and reliability issues. In the case of models dealing with supply chain data, there are five additionally specific issues: - Managing uncertainty. Precision is not everything. Decision-makers are looking for a way to minimise the risk associated with each decision they have to make in the presence of uncertainty. Obtaining an exact forecast is a advantageous; obtaining a fairly accurate forecast and calculating its limits is realistic and appropriate. - Handling integer and positive data. Most items sold in retail cannot be sold in subunits. This simple aspect of selling, results in a constraint that must be satisfied by the result of any given method or model: the result must be a positive integer. - Observability. Customer demand cannot be measured directly, only sales can be recorded and used as a proxy. - Scarcity and parsimony. Sales are a discontinuous quantity. By recording sales by day, an entire year is condensed into just 365 points. What’s more, a large proportion of them will be zero. - Just-in-time optimisation. Forecasting is a key function, but it is only one element in a chain of processes supporting decision-making. Time is a precious resource that cannot be devoted entirely to a single function. The decision-making process and associated adaptations must therefore be carried out within a limited time frame, and in a sufficiently flexible manner to be able to be interrupted and restarted if necessary in order to incorporate unexpected events or necessary adjustments. This thesis fits into this context and is the result of the work carried out at the heart of Lokad, a Paris-based software company aiming to bridge the gap between technology and the supply chain. The doctoral research was funded by Lokad in collaborationwith the ANRT under a CIFRE contract. The proposed work aims to be a good compromise between new technologies and business expectations, addressing the various aspects presented above. We have started forecasting using the exponential smoothing family which are easy to implement and extremely fast to run. As they are widely used in the industry, they have already won the confidence of users. What’s more, they are easy to understand and explain to an unlettered audience. By exploiting more advanced AI techniques, some of the limitations of the models used can be overcome. Cross-learning proved to be a relevant approach for extrapolating useful information when the number of available data was very limited. Since the common Gaussian assumption is not suitable for discrete sales data, we proposed using a model associatedwith either a Poisson distribution or a Negative Binomial one, which better corresponds to the nature of the phenomena we are seeking to model and predict. We also proposed using Monte Carlo simulations to deal with uncertainty. A number of scenarios are generated, sampled and modelled using a distribution. From this distribution, confidence intervals of different and adapted sizes can be deduced. Using real company data, we compared our approach with state-of-the-art methods such as DeepAR model, DeepSSMs and N-Beats. We deduced a new model based on the Holt-Winter method. These models were implemented in Lokad’s work flow
Dametto, Ronaldo César. "Estudo da aplicação de redes neurais artificiais para predição de séries temporais financeiras." Universidade Estadual Paulista (UNESP), 2018. http://hdl.handle.net/11449/157058.
Full textApproved for entry into archive by Lucilene Cordeiro da Silva Messias null (lubiblio@bauru.unesp.br) on 2018-09-20T12:19:07Z (GMT) No. of bitstreams: 1 dametto_rc_me_bauru.pdf: 2877027 bytes, checksum: cee33d724090a01372e1292109af2ce9 (MD5)
Made available in DSpace on 2018-09-20T12:19:07Z (GMT). No. of bitstreams: 1 dametto_rc_me_bauru.pdf: 2877027 bytes, checksum: cee33d724090a01372e1292109af2ce9 (MD5) Previous issue date: 2018-08-06
O aprendizado de máquina vem sendo utilizado em diferentes segmentos da área financeira, como na previsão de preços de ações, mercado de câmbio, índices de mercado e composição de carteira de investimento. Este trabalho busca comparar e combinar três tipos de algoritmos de aprendizagem de máquina, mais especificamente, o método Ensemble de Redes Neurais Artificias com as redes Multilayer Perceptrons (MLP), auto-regressiva com entradas exógenas (NARX) e Long Short-Term Memory (LSTM) para predição do Índice Bovespa. A amostra da série do Ibovespa foi obtida pelo Yahoo!Finance no período de 04 de janeiro de 2010 a 28 de dezembro de 2017, de periodicidade diária. Foram utilizadas as séries temporais referentes a cotação do Dólar, além de indicadores numéricos da Análise Técnica como variáveis independentes para compor a predição. Os algoritmos foram desenvolvidos através da linguagem Python usando framework Keras. Para avaliação dos algoritmos foram utilizadas as métricas de desempenho MSE, RMSE e MAPE, além da comparação entre as previsões obtidas e os valores reais. Os resultados das métricas indicam bom desempenho de predição pelo modelo Ensemble proposto, obtendo 70% de acerto no movimento do índice, porém, não conseguiu atingir melhores resultados que as redes MLP e NARX, ambas com 80% de acerto.
Different segments of the financial area, such as the forecast of stock prices, the foreign exchange market, the market indices and the composition of investment portfolio, use machine learning. This work aims to compare and combine two types of machine learning algorithms, the Artificial Neural Network Ensemble method with Multilayer Perceptrons (MLP), auto-regressive with exogenous inputs (NARX) and Long Short-Term Memory (LSTM) for prediction of the Bovespa Index. The Bovespa time series samples were obtained daily, using Yahoo! Finance, from January 4th, 2010 to December 28th, 2017. Dollar quotation, Google trends and numerical indicators of the Technical Analysis were used as independent variables to compose the prediction. The algorithms were developed using Python and Keras framework. Finally, in order to evaluate the algorithms, the MSE, RMSE and MAPE performance metrics, as well as the comparison between the obtained predictions and the actual values, were used. The results of the metrics indicate good prediction performance by the proposed Ensemble model, obtaining a 70% accuracy in the index movement, but failed to achieve better results than the MLP and NARX networks, both with 80% accuracy.
Dobiš, Lukáš. "Detekce osob a hodnocení jejich pohlaví a věku v obrazových datech." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-413019.
Full textGattoni, Giacomo. "Improving the reliability of recurrent neural networks while dealing with bad data." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.
Find full textMax, Lindblad. "The impact of parsing methods on recurrent neural networks applied to event-based vehicular signal data." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-223966.
Full textDenna avhandling jämför två olika tillvägagångssätt vad gäller parsningen av händelsebaserad signaldata från fordon för att producera indata till en förutsägelsemodell i form av ett neuronnät, nämligen händelseparsning, där datan förblir ojämnt fördelad över tidsdomänen, och skivparsning, där datan är omgjord till att istället vara jämnt fördelad över tidsdomänen. Det dataset som används för dessa experiment är ett antal signalloggar från fordon som kommer från Scania. Jämförelser mellan parsningsmetoderna gjordes genom att först träna ett lång korttidsminne (LSTM) återkommande neuronnät (RNN) på vardera av de skapade dataseten för att sedan mäta utmatningsfelet och resurskostnader för varje modell efter att de validerats på en delad uppsättning av valideringsdata. Resultaten från dessa tester visar tydligt på att skivparsning står sig väl mot händelseparsning.
Yangyang, Wen. "Sensor numerical prediction based on long-term and short-term memory neural network." Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-39165.
Full textNilsson, Mathias, and Corswant Sophie von. "How Certain Are You of Getting a Parking Space? : A deep learning approach to parking availability prediction." Thesis, Linköpings universitet, Institutionen för datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-166989.
Full textBailey, Tony J. "Neuromorphic Architecture with Heterogeneously Integrated Short-Term and Long-Term Learning Paradigms." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1554217105047975.
Full textКит, М. О. "Математичні методи прогнозування забруднення повітря на основі нейронних мереж." Thesis, ХНУРЕ, 2021. https://openarchive.nure.ua/handle/document/16434.
Full textBediako, Peter Ken. "Long Short-Term Memory Recurrent Neural Network for detecting DDoS flooding attacks within TensorFlow Implementation framework." Thesis, Luleå tekniska universitet, Datavetenskap, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-66802.
Full textAnkaräng, Fredrik, and Fabian Waldner. "Evaluating Random Forest and a Long Short-Term Memory in Classifying a Given Sentence as a Question or Non-Question." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-262209.
Full textSpråkteknologi och textklassificering är vetenskapliga områden som tillägnats mycket uppmärksamhet av forskare inom maskininlärning. Nya metoder och modeller presenteras årligen, men mindre fokus riktas på att jämföra modeller av olika karaktär. Den här uppsatsen jämför Random Forest med ett Long Short-Term Memory neuralt nätverk genom att undersöka hur väl modellerna klassificerar meningar som frågor eller icke-frågor, utan att ta hänsyn till skiljetecken. Modellerna tränades och optimerades på användardata från ett svenskt försäkringsbolag, samt kommentarer från nyhetsartiklar. Resultaten visade att LSTM-modellen presterade bättre än Random Forest. Skillnaden var dock liten, vilket innebär att Random Forest fortfarande kan vara ett bättre alternativ i vissa situationer tack vare dess enkelhet. Modellernas prestanda förbättrades inte avsevärt efter hyperparameteroptimering. En litteraturstudie genomfördes även med målsättning att undersöka hur arbetsuppgifter inom kundsupport kan automatiseras genom införandet av en chatbot, samt vilka funktioner som bör prioriteras av ledningen inför en sådan implementation. Resultaten av studien visade att en data-driven approach var att föredra, där funktionaliteten bestämdes av användarnas och organisationens specifika behov. Tre funktioner var dock tillräckligt generella för att presenteras personligheten av chatboten, dess trovärdighet och i vilket steg av värdekedjan den implementeras.
Pavai, Arumugam Thendramil. "SENSOR-BASED HUMAN ACTIVITY RECOGNITION USING BIDIRECTIONAL LSTM FOR CLOSELY RELATED ACTIVITIES." CSUSB ScholarWorks, 2018. https://scholarworks.lib.csusb.edu/etd/776.
Full textCerna, Ñahuis Selene Leya. "Comparative analysis of XGBoost, MLP and LSTM techniques for the problem of predicting fire brigade Iiterventions /." Ilha Solteira, 2019. http://hdl.handle.net/11449/190740.
Full textAbstract: Many environmental, economic and societal factors are leading fire brigades to be increasingly solicited, and, as a result, they face an ever-increasing number of interventions, most of the time on constant resource. On the other hand, these interventions are directly related to human activity, which itself is predictable: swimming pool drownings occur in summer while road accidents due to ice storms occur in winter. One solution to improve the response of firefighters on constant resource is therefore to predict their workload, i.e., their number of interventions per hour, based on explanatory variables conditioning human activity. The present work aims to develop three models that are compared to determine if they can predict the firefighters' response load in a reasonable way. The tools chosen are the most representative from their respective categories in Machine Learning, such as XGBoost having as core a decision tree, a classic method such as Multi-Layer Perceptron and a more advanced algorithm like Long Short-Term Memory both with neurons as a base. The entire process is detailed, from data collection to obtaining the predictions. The results obtained prove a reasonable quality prediction that can be improved by data science techniques such as feature selection and adjustment of hyperparameters.
Resumo: Muitos fatores ambientais, econômicos e sociais estão levando as brigadas de incêndio a serem cada vez mais solicitadas e, como consequência, enfrentam um número cada vez maior de intervenções, na maioria das vezes com recursos constantes. Por outro lado, essas intervenções estão diretamente relacionadas à atividade humana, o que é previsível: os afogamentos em piscina ocorrem no verão, enquanto os acidentes de tráfego, devido a tempestades de gelo, ocorrem no inverno. Uma solução para melhorar a resposta dos bombeiros com recursos constantes é prever sua carga de trabalho, isto é, seu número de intervenções por hora, com base em variáveis explicativas que condicionam a atividade humana. O presente trabalho visa desenvolver três modelos que são comparados para determinar se eles podem prever a carga de respostas dos bombeiros de uma maneira razoável. As ferramentas escolhidas são as mais representativas de suas respectivas categorias em Machine Learning, como o XGBoost que tem como núcleo uma árvore de decisão, um método clássico como o Multi-Layer Perceptron e um algoritmo mais avançado como Long Short-Term Memory ambos com neurônios como base. Todo o processo é detalhado, desde a coleta de dados até a obtenção de previsões. Os resultados obtidos demonstram uma previsão de qualidade razoável que pode ser melhorada por técnicas de ciência de dados, como seleção de características e ajuste de hiperparâmetros.
Mestre
Andersson, Joakim. "Evaluating Environmental Sensor Value Prediction using Machine Learning : Long Short-Term Memory Neural Networks for Smart Building Applications." Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-42852.
Full textThe IoT is becoming an increasing producer of big data. Big data can be used to optimize operations, realizing this depends on being able to extract useful information from big data. With the use of neural networks and machine learning this can be achieved and can enable smart applications that use this information. This thesis focuses on answering the question how good are neural networks at predicting sensor values and is the predictions reliable and useful in a real-life application? Sensory boxes were used to gather data from rooms, and several neural networks based on LSTM were used to predict the future values of the sensors. The absolute mean error of the predictions along with the standard deviation was calculated. The time needed to produce a prediction was measured as an absolute mean values with standard deviation. The LSTM models were then evaluated based on their performance and prediction accuracy. The single-step model, which only predicts the next timestep was the most accurate. The models loose accuracy when they need to predict longer periods of time. The results shows that simple models can predict the sensory values with some accuracy, while they may not be useful in areas where exact climate control is needed the models can be applicable in work areas such as schools or offices.
Nakayama, Masataka. "The problems of serial order in language:Clustering, context discrimination, temporal distance, and edges." Kyoto University, 2015. http://hdl.handle.net/2433/200480.
Full textAbrishami, Hedayat. "Deep Learning Based Electrocardiogram Delineation." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1563525992210273.
Full textKomol, Md Mostafizur Rahman. "C-ITS based prediction of driver red light running and turning behaviours." Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/227694/1/Md%20Mostafizur%20Rahman_Komol_Thesis.pdf.
Full textGyawali, Sanij. "Dynamic Load Modeling from PSSE-Simulated Disturbance Data using Machine Learning." Thesis, Virginia Tech, 2020. http://hdl.handle.net/10919/100591.
Full textMaster of Science
Independent system Operators (ISO) and Distribution system operators (DSO) have a responsibility to provide uninterrupted power supply to consumers. That along with the longing to keep operating cost minimum, engineers and planners study the system beforehand and seek to find the optimum capacity for each of the power system elements like generators, transformers, transmission lines, etc. Then they test the overall system using power system models, which are mathematical representation of the real components, to verify the stability and strength of the system. However, the verification is only as good as the system models that are used. As most of the power systems components are controlled by the operators themselves, it is easy to develop a model from their perspective. The load is the only component controlled by consumers. Hence, the necessity of better load models. Several studies have been made on static load modeling and the performance is on par with real behavior. But dynamic loading, which is a load behavior dependent on time, is rather difficult to model. Some attempts on dynamic load modeling can be found already. Physical component-based and mathematical transfer function based dynamic models are quite widely used for the study. These load structures are largely accepted as a good representation of the systems dynamic behavior. With a load structure in hand, the next task is estimating their parameters. In this research, we tested out some new machine learning methods to accurately estimate the parameters. Thousands of simulated data are used to train machine learning models. After training, we validated the models on some other unseen data. This study finally goes on to recommend better methods to load modeling.