Journal articles on the topic 'Longevity. Saccharomyces cerevisiae Saccharomyces cerevisiae Proteins Signal Transduction'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Longevity. Saccharomyces cerevisiae Saccharomyces cerevisiae Proteins Signal Transduction.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Santangelo, George M. "Glucose Signaling in Saccharomyces cerevisiae." Microbiology and Molecular Biology Reviews 70, no. 1 (March 2006): 253–82. http://dx.doi.org/10.1128/mmbr.70.1.253-282.2006.

Full text
Abstract:
SUMMARY Eukaryotic cells possess an exquisitely interwoven and fine-tuned series of signal transduction mechanisms with which to sense and respond to the ubiquitous fermentable carbon source glucose. The budding yeast Saccharomyces cerevisiae has proven to be a fertile model system with which to identify glucose signaling factors, determine the relevant functional and physical interrelationships, and characterize the corresponding metabolic, transcriptomic, and proteomic readouts. The early events in glucose signaling appear to require both extracellular sensing by transmembrane proteins and intracellular sensing by G proteins. Intermediate steps involve cAMP-dependent stimulation of protein kinase A (PKA) as well as one or more redundant PKA-independent pathways. The final steps are mediated by a relatively small collection of transcriptional regulators that collaborate closely to maximize the cellular rates of energy generation and growth. Understanding the nuclear events in this process may necessitate the further elaboration of a new model for eukaryotic gene regulation, called “reverse recruitment.” An essential feature of this idea is that fine-structure mapping of nuclear architecture will be required to understand the reception of regulatory signals that emanate from the plasma membrane and cytoplasm. Completion of this task should result in a much improved understanding of eukaryotic growth, differentiation, and carcinogenesis.
APA, Harvard, Vancouver, ISO, and other styles
2

Levin, David E. "Cell Wall Integrity Signaling in Saccharomyces cerevisiae." Microbiology and Molecular Biology Reviews 69, no. 2 (June 2005): 262–91. http://dx.doi.org/10.1128/mmbr.69.2.262-291.2005.

Full text
Abstract:
SUMMARY The yeast cell wall is a highly dynamic structure that is responsible for protecting the cell from rapid changes in external osmotic potential. The wall is also critical for cell expansion during growth and morphogenesis. This review discusses recent advances in understanding the various signal transduction pathways that allow cells to monitor the state of the cell wall and respond to environmental challenges to this structure. The cell wall integrity signaling pathway controlled by the small G-protein Rho1 is principally responsible for orchestrating changes to the cell wall periodically through the cell cycle and in response to various forms of cell wall stress. This signaling pathway acts through direct control of wall biosynthetic enzymes, transcriptional regulation of cell wall-related genes, and polarization of the actin cytoskeleton. However, additional signaling pathways interface both with the cell wall integrity signaling pathway and with the actin cytoskeleton to coordinate polarized secretion with cell wall expansion. These include Ca2+ signaling, phosphatidylinositide signaling at the plasma membrane, sphingoid base signaling through the Pkh1 and -2 protein kinases, Tor kinase signaling, and pathways controlled by the Rho3, Rho4, and Cdc42 G-proteins.
APA, Harvard, Vancouver, ISO, and other styles
3

Alepuz, Paula M., Dina Matheos, Kyle W. Cunningham, and Francisco Estruch. "The Saccharomyces cerevisiae RanGTP-Binding Protein Msn5p Is Involved in Different Signal Transduction Pathways." Genetics 153, no. 3 (November 1, 1999): 1219–31. http://dx.doi.org/10.1093/genetics/153.3.1219.

Full text
Abstract:
Abstract In eukaryotes, control of transcription by extracellular signals involves the translocation to the nucleus of at least one component of the signal transduction pathway. Transport through the nuclear envelope requires the activity of an import or export receptor that interacts with the small GTPase Ran. We have cloned the MSN5 gene of the yeast Saccharomyces cerevisiae that is postulated to encode one of these receptors. Msn5p belongs to a family of proteins with a conserved N-terminal sequence that acts as a RanGTP-binding domain. The results presented here provide genetic data supporting Msn5p involvement in several different signal transduction pathways. All of these pathways include changes in gene expression, and regulated nucleocytoplasmic redistribution of a component in response to external conditions has already been described in some of them. We have cloned MSN5 following two different strategies. Msn5p was constitutively localized in the nucleus. Phenotypic analysis of the msn5 mutant demonstrated that this protein participates in processes such as catabolite repression, calcium signaling, mating, and cell proliferation, as well as being involved in previously characterized phosphate utilization. Therefore, Msn5p could be a receptor for several proteins involved in different signaling pathways.
APA, Harvard, Vancouver, ISO, and other styles
4

Whiteway, Malcolm, Daniel Dignard, and David Y. Thomas. "Mutagenesis of Ste18, a putative Gγ subunit in the Saccharomyces cerevisiae pheromone response pathway." Biochemistry and Cell Biology 70, no. 10-11 (October 1, 1992): 1230–37. http://dx.doi.org/10.1139/o92-169.

Full text
Abstract:
The yeast STE18 gene product has sequence and functional similarity to the γ subunits of G proteins. The cloned STE18 gene was subjected to a saturation mutagenesis using doped oligonucleotides. The populations of mutant genes were screened for two classes of STE18 mutations, those that allowed for increased mating of a strain containing a defective STE4 gene (compensators) and those that inhibited mating even in the presence of a functional STE18 gene (dominant negatives). Three amino acid substitutions that enhanced mating in a specific STE4 (Gβ) point mutant background were identified. These compensatory mutations were allele specific and had no detectable phenotype of their own; they may define residues that mediate an association between the Gβ and Gγ subunits or in the association of the Gβγ subunit with other components of the signalling pathway. Several dominant negative mutations were also identified, including two C terminal truncations. These mutant proteins were unable to function in signal transduction by themselves, but they prevented signal transduction mediated by pheromone, as well as the constitutive signalling which is present in cells defective in the GPAI (Gα) gene. These mutant proteins may sequester Gβ or some other component of the signalling machinery in a nonfunctional complex. Key wordsi yeast, G protein, STE18, mutagenesis, pheromone response.
APA, Harvard, Vancouver, ISO, and other styles
5

Gerst, J. E., K. Ferguson, A. Vojtek, M. Wigler, and J. Field. "CAP is a bifunctional component of the Saccharomyces cerevisiae adenylyl cyclase complex." Molecular and Cellular Biology 11, no. 3 (March 1991): 1248–57. http://dx.doi.org/10.1128/mcb.11.3.1248.

Full text
Abstract:
CAP, a protein from Saccharomyces cerevisiae that copurifies with adenylyl cyclase, appears to be required for yeast cells to be fully responsive to RAS proteins. CAP also appears to be required for normal cell morphology and responsiveness to nutrient deprivation and excess. We describe here a molecular and phenotypic analysis of the CAP protein. The N-terminal domain is necessary and sufficient for cellular response to activated RAS protein, while the C-terminal domain is necessary and sufficient for normal cellular morphology and responses to nutrient extremes. Thus, CAP is a novel example of a bifunctional component involved in the regulation of diverse signal transduction pathways.
APA, Harvard, Vancouver, ISO, and other styles
6

Gerst, J. E., K. Ferguson, A. Vojtek, M. Wigler, and J. Field. "CAP is a bifunctional component of the Saccharomyces cerevisiae adenylyl cyclase complex." Molecular and Cellular Biology 11, no. 3 (March 1991): 1248–57. http://dx.doi.org/10.1128/mcb.11.3.1248-1257.1991.

Full text
Abstract:
CAP, a protein from Saccharomyces cerevisiae that copurifies with adenylyl cyclase, appears to be required for yeast cells to be fully responsive to RAS proteins. CAP also appears to be required for normal cell morphology and responsiveness to nutrient deprivation and excess. We describe here a molecular and phenotypic analysis of the CAP protein. The N-terminal domain is necessary and sufficient for cellular response to activated RAS protein, while the C-terminal domain is necessary and sufficient for normal cellular morphology and responses to nutrient extremes. Thus, CAP is a novel example of a bifunctional component involved in the regulation of diverse signal transduction pathways.
APA, Harvard, Vancouver, ISO, and other styles
7

Mösch, Hans-Ulrich, and Gerald R. Fink. "Dissection of Filamentous Growth by Transposon Mutagenesis in Saccharomyces cerevisiae." Genetics 145, no. 3 (March 1, 1997): 671–84. http://dx.doi.org/10.1093/genetics/145.3.671.

Full text
Abstract:
Diploid Saccharomyces cerevisiae strains starved for nitrogen undergo a developmental transition from growth as single yeast form (YF) cells to a multicellular form consisting of filaments of pseudohyphal (PH) cells. Filamentous growth is regulated by an evolutionarily conserved signaling pathway that includes the small GTP-binding proteins Ras2p and Cdc42p, the protein kinases Ste20p, Ste11p and Ste7p, and the transcription factor Ste12p. Here, we designed a genetic screen for mutant strains defective for filamentous growth (dfg) to identify novel targets of the filamentation signaling pathway, and we thereby identified 16 different genes, CDC39, STE12, TEC1, WH13, NAB1, DBR1, CDC55, SRV2, TPM1, SPA2, BNI1, DFG5, DFG9, DFG10, BUD8 and DFG16, mutations that block filamentous growth. Phenotypic analysis of dfg mutant strains genetically dissects filamentous growth into the cellular processes of signal transduction, bud site selection, cell morphogenesis and invasive growth. Epistasis tests between dfg mutant alleles and dominant activated alleles of the RAS2 and STE11 genes, RAS2Val19 and STE11-4, respectively, identify putative targets for the filamentation signaling pathway. Several of the genes described here have homologues in filamentous fungi, where they also regulate fungal development.
APA, Harvard, Vancouver, ISO, and other styles
8

Miyajima, I., N. Nakayama, M. Nakafuku, Y. Kaziro, K. Arai, and K. Matsumoto. "Suppressors of a gpa1 mutation cause sterility in Saccharomyces cerevisiae." Genetics 119, no. 4 (August 1, 1988): 797–804. http://dx.doi.org/10.1093/genetics/119.4.797.

Full text
Abstract:
Abstract The Saccharomyces cerevisiae GPA1 gene encodes a protein highly homologous to the alpha subunit of mammalian G proteins and is essential for haploid cell growth. We have selected 77 mutants able to suppress the lethality resulting from disruption of GPA1 (gpa1::HIS3). Two strains bearing either of two recessive mutations, sgp1 and sgp2, in combination with the disruption mutation, showed a cell type nonspecific sterile phenotype, yet expressed the major alpha-factor gene (MF alpha 1) as judged by the ability to express a MF alpha 1-lacZ fusion gene. The sgp1 mutation was closely linked to gpa1::HIS3 and probably occurred at the GPA1 locus. The sgp2 mutation was not linked to GPA1 and was different from the previously identified cell type nonspecific sterile mutations (ste4, ste5, ste7, ste11 and ste12). sgp2 GPA1 cells showed a fertile phenotype, indicating that the mating defect caused by sgp2 is associated with the loss of GPA1 function. While expression of a FUS1-lacZ fusion gene was induced in wild-type cells by the addition of alpha-factor, mutants bearing sgp1 or sgp2 as well as gpa1::HIS3 constitutively expressed FUS1-lacZ. These observations suggest that GPA1 (SGP1) and SGP2 are involved in mating factor-mediated signal transduction, which causes both cell cycle arrest in the late G1 phase and induction of genes necessary for mating such as FUS1.
APA, Harvard, Vancouver, ISO, and other styles
9

Sitcheran, Raquel, Roger Emter, Anastasia Kralli, and Keith R. Yamamoto. "A Genetic Analysis of Glucocorticoid Receptor Signaling: Identification and Characterization of Ligand-Effect Modulators in Saccharomyces cerevisiae." Genetics 156, no. 3 (November 1, 2000): 963–72. http://dx.doi.org/10.1093/genetics/156.3.963.

Full text
Abstract:
Abstract To find novel components in the glucocorticoid signal transduction pathway, we performed a yeast genetic screen to identify ligand-effect modulators (LEMs), proteins that modulate the cellular response to hormone. We isolated several mutants that conferred increased glucocorticoid receptor (GR) activity in response to dexamethasone and analyzed two of them in detail. These studies identify two genes, LEM3 and LEM4, which correspond to YNL323w and ERG6, respectively. LEM3 is a putative transmembrane protein of unknown function, and ERG6 is a methyltransferase in the ergosterol biosynthetic pathway. Analysis of null mutants indicates that LEM3 and ERG6 act at different steps in the GR signal transduction pathway.
APA, Harvard, Vancouver, ISO, and other styles
10

Suzuki-Fujimoto, T., M. Fukuma, K. I. Yano, H. Sakurai, A. Vonika, S. A. Johnston, and T. Fukasawa. "Analysis of the galactose signal transduction pathway in Saccharomyces cerevisiae: interaction between Gal3p and Gal80p." Molecular and Cellular Biology 16, no. 5 (May 1996): 2504–8. http://dx.doi.org/10.1128/mcb.16.5.2504.

Full text
Abstract:
The GAL3 gene plays a critical role in galactose induction of the GAL genes that encode galactose- metabolizing enzymes in Saccharomyces cerevisiae. Defects in GAL3 result in a long delay in GAL gene induction, and overproduction of Gal3p causes constitutive expression of GAL. Here we demonstrate that concomitant overproduction of the negative regulator, Gal80p, and Gal3p suppresses this constitutive GAL expression. This interplay between Gal80p and Gal3p is direct, as tagged Gal3p coimmunoprecipitated with Gal80p. The amount of coprecipitated Gal80p increased when GAL80 yeast cells were grown in the presence of galactose. When both GAL80 and GAL3 were overexpressed, the amount of coprecipitated Gal80p was not affected by galactose. Tagged gal3 mutant proteins bound to purified Gal80p, but only poorly in comparison with the wild type, suggesting that formation of the Gal80p-Gal3p complex depends on the normal function of Gal3p. Gal3p appeared larger in Western blots (immunoblots) than predicted by the published nucleic acid sequence. Reexamination of the DNA sequence of GAL3 revealed several mistakes, including an extension at the 3' end of another predicted 97 amino acids.
APA, Harvard, Vancouver, ISO, and other styles
11

Kim, Jeong-Ho, Valérie Brachet, Hisao Moriya, and Mark Johnston. "Integration of Transcriptional and Posttranslational Regulation in a Glucose Signal Transduction Pathway in Saccharomyces cerevisiae." Eukaryotic Cell 5, no. 1 (January 2006): 167–73. http://dx.doi.org/10.1128/ec.5.1.167-173.2006.

Full text
Abstract:
ABSTRACT Expression of the HXT genes encoding glucose transporters in the budding yeast Saccharomyces cerevisiae is regulated by two interconnected glucose-signaling pathways: the Snf3/Rgt2-Rgt1 glucose induction pathway and the Snf1-Mig1 glucose repression pathway. The Snf3 and Rgt2 glucose sensors in the membrane generate a signal in the presence of glucose that inhibits the functions of Std1 and Mth1, paralogous proteins that regulate the function of the Rgt1 transcription factor, which binds to the HXT promoters. It is well established that glucose induces degradation of Mth1, but the fate of its paralogue Std1 has been less clear. We present evidence that glucose-induced degradation of Std1 via the SCFGrr1 ubiquitin-protein ligase and the 26S proteasome is obscured by feedback regulation of STD1 expression. Disappearance of Std1 in response to glucose is accelerated when glucose induction of STD1 expression due to feedback regulation by Rgt1 is prevented. The consequence of relieving feedback regulation of STD1 expression is that reestablishment of repression of HXT1 expression upon removal of glucose is delayed. In contrast, degradation of Mth1 is reinforced by glucose repression of MTH1 expression: disappearance of Mth1 is slowed when glucose repression of MTH1 expression is prevented, and this results in a delay in induction of HXT3 expression in response to glucose. Thus, the cellular levels of Std1 and Mth1, and, as a consequence, the kinetics of induction and repression of HXT gene expression, are closely regulated by interwoven transcriptional and posttranslational controls mediated by two different glucose-sensing pathways.
APA, Harvard, Vancouver, ISO, and other styles
12

Gomez, Shawn M., Shaw-Hwa Lo, and Andrey Rzhetsky. "Probabilistic Prediction of Unknown Metabolic and Signal-Transduction Networks." Genetics 159, no. 3 (November 1, 2001): 1291–98. http://dx.doi.org/10.1093/genetics/159.3.1291.

Full text
Abstract:
Abstract Regulatory networks provide control over complex cell behavior in all kingdoms of life. Here we describe a statistical model, based on representing proteins as collections of domains or motifs, which predicts unknown molecular interactions within these biological networks. Using known protein-protein interactions of Saccharomyces cerevisiae as training data, we were able to predict the links within this network with only 7% false-negative and 10% false-positive error rates. We also use Markov chain Monte Carlo simulation for the prediction of networks with maximum probability under our model. This model can be applied across species, where interaction data from one (or several) species can be used to infer interactions in another. In addition, the model is extensible and can be analogously applied to other molecular data (e.g., DNA sequences).
APA, Harvard, Vancouver, ISO, and other styles
13

Neiman, A. M., B. J. Stevenson, H. P. Xu, G. F. Sprague, I. Herskowitz, M. Wigler, and S. Marcus. "Functional homology of protein kinases required for sexual differentiation in Schizosaccharomyces pombe and Saccharomyces cerevisiae suggests a conserved signal transduction module in eukaryotic organisms." Molecular Biology of the Cell 4, no. 1 (January 1993): 107–20. http://dx.doi.org/10.1091/mbc.4.1.107.

Full text
Abstract:
We present genetic evidence that three presumptive protein kinases of Schizosaccharomyces pombe, byr2, byr1, and spk1 that are structurally related to protein kinases of Saccharomyces cerevisiae, STE11, STE7, and FUS3, respectively, are also functionally related. In some cases, introduction of the heterologous protein kinase into a mutant was sufficient for complementation. In other cases (as in a ste11- mutant of S. cerevisiae), expression of two S. pombe protein kinases (byr2 and byr1) was required to observe complementation, suggesting that byr2 and byr1 act cooperatively. Complementation in S. pombe mutants is observed as restoration of sporulation and conjugation and in S. cerevisiae as restoration of conjugation, pheromone-induced cell cycle arrest, and pheromone-induced transcription of the FUS1 gene. We also show that the S. pombe kinases bear a similar relationship to the mating pheromone receptor apparatus as do their S. cerevisiae counterparts. Our results indicate that pheromone-induced signal transduction employs a conserved set of kinases in these two evolutionarily distant yeasts despite an apparently significant difference in function of the heterotrimeric G proteins. We suggest that the STE11/byr2, STE7/byr1, and FUS3/spk1 kinases comprise a signal transduction module that may be conserved in higher eukaryotes. Consistent with this hypothesis, we show that a mammalian mitogen-activated protein (MAP) kinase, ERK2, can partially replace spk1 function in S. pombe.
APA, Harvard, Vancouver, ISO, and other styles
14

Yoon, Je-Hyun, Eui-Ju Choi, and Roy Parker. "Dcp2 phosphorylation by Ste20 modulates stress granule assembly and mRNA decay in Saccharomyces cerevisiae." Journal of Cell Biology 189, no. 5 (May 31, 2010): 813–27. http://dx.doi.org/10.1083/jcb.200912019.

Full text
Abstract:
Translation and messenger RNA (mRNA) degradation are important sites of gene regulation, particularly during stress where translation and mRNA degradation are reprogrammed to stabilize bulk mRNAs and to preferentially translate mRNAs required for the stress response. During stress, untranslating mRNAs accumulate both in processing bodies (P-bodies), which contain some translation repressors and the mRNA degradation machinery, and in stress granules, which contain mRNAs stalled in translation initiation. How signal transduction pathways impinge on proteins modulating P-body and stress granule formation and function is unknown. We show that during stress in Saccharomyces cerevisiae, Dcp2 is phosphorylated on serine 137 by the Ste20 kinase. Phosphorylation of Dcp2 affects the decay of some mRNAs and is required for Dcp2 accumulation in P-bodies and specific protein interactions of Dcp2 and for efficient formation of stress granules. These results demonstrate that Ste20 has an unexpected role in the modulation of mRNA decay and translation and that phosphorylation of Dcp2 is an important control point for mRNA decapping.
APA, Harvard, Vancouver, ISO, and other styles
15

Fujimura, H. A. "The yeast G-protein homolog is involved in the mating pheromone signal transduction system." Molecular and Cellular Biology 9, no. 1 (January 1989): 152–58. http://dx.doi.org/10.1128/mcb.9.1.152.

Full text
Abstract:
I have isolated a new type of sterile mutant of Saccharomyces cerevisiae, carrying a single mutant allele, designated dac1, which was mapped near the centromere on chromosome VIII. The dac1 mutation caused specific defects in the pheromone responsiveness of both a and alpha cells and did not seem to be associated with any pleiotropic phenotypes. Thus, in contrast to the ste4, ste5, ste7, ste11, and ste12 mutations, the dac1 mutation had no significant effect on such constitutive functions of haploid cells as pheromone production and alpha-factor destruction. The characteristics of this phenotype suggest that the DAC1 gene encodes a component of the pheromone response pathway common to both a and alpha cells. Introduction of the GPA1 gene encoding an S. cerevisiae homolog of the alpha subunit of mammalian guanine nucleotide-binding regulatory proteins (G proteins) into sterile dac1 mutants resulted in restoration of pheromone responsiveness and mating competence to both a and alpha cells. These results suggest that the dac1 mutation is an allele of the GPA1 gene and thus provide genetic evidence that the yeast G protein homolog is directly involved in the mating pheromone signal transduction pathway.
APA, Harvard, Vancouver, ISO, and other styles
16

Fujimura, H. A. "The yeast G-protein homolog is involved in the mating pheromone signal transduction system." Molecular and Cellular Biology 9, no. 1 (January 1989): 152–58. http://dx.doi.org/10.1128/mcb.9.1.152-158.1989.

Full text
Abstract:
I have isolated a new type of sterile mutant of Saccharomyces cerevisiae, carrying a single mutant allele, designated dac1, which was mapped near the centromere on chromosome VIII. The dac1 mutation caused specific defects in the pheromone responsiveness of both a and alpha cells and did not seem to be associated with any pleiotropic phenotypes. Thus, in contrast to the ste4, ste5, ste7, ste11, and ste12 mutations, the dac1 mutation had no significant effect on such constitutive functions of haploid cells as pheromone production and alpha-factor destruction. The characteristics of this phenotype suggest that the DAC1 gene encodes a component of the pheromone response pathway common to both a and alpha cells. Introduction of the GPA1 gene encoding an S. cerevisiae homolog of the alpha subunit of mammalian guanine nucleotide-binding regulatory proteins (G proteins) into sterile dac1 mutants resulted in restoration of pheromone responsiveness and mating competence to both a and alpha cells. These results suggest that the dac1 mutation is an allele of the GPA1 gene and thus provide genetic evidence that the yeast G protein homolog is directly involved in the mating pheromone signal transduction pathway.
APA, Harvard, Vancouver, ISO, and other styles
17

Schrick, Kathrin, Barbara Garvik, and Leland H. Hartwell. "Mating in Saccharomyces cerevisiae: The Role of the Pheromone Signal Transduction Pathway in the Chemotropic Response to Pheromone." Genetics 147, no. 1 (September 1, 1997): 19–32. http://dx.doi.org/10.1093/genetics/147.1.19.

Full text
Abstract:
Abstract The mating process in yeast has two distinct aspects. One is the induction and activation of proteins required for cell fusion in response to a pheromone signal; the other is chemotropism, i.e., detection of a pheromone gradient and construction of a fusion site available to the signaling cell. To determine whether components of the signal transduction pathway necessary for transcriptional activation also play a role in chemotropism, we examined strains with null mutations in components of the signal transduction pathway for diploid formation, prezygote formation and the chemotropic process of mating partner discrimination when transcription was induced downstream of the mutation. Cells mutant for components of the mitogen-activated protein (MAP) kinase cascade (ste5, ste20, ste11, ste7 or fus3 kss1) formed diploids at a frequency 1% that of the wild-type control, but formed prezygotes as efficiently as the wild-type control and showed good mating partner discrimination, suggesting that the MAP kinase cascade is not essential for chemotropism. In contrast, cells mutant for the receptor (ste2) or the β or γ subunit (ste4 and stel8) of the G protein were extremely defective in both diploid and prezygote formation and discriminated poorly between signaling and nonsignaling mating partners, implying that these components are important for chemotropism.
APA, Harvard, Vancouver, ISO, and other styles
18

Catlett, Natalie L., Olen C. Yoder, and B. Gillian Turgeon. "Whole-Genome Analysis of Two-Component Signal Transduction Genes in Fungal Pathogens." Eukaryotic Cell 2, no. 6 (December 2003): 1151–61. http://dx.doi.org/10.1128/ec.2.6.1151-1161.2003.

Full text
Abstract:
ABSTRACT Two-component phosphorelay systems are minimally comprised of a histidine kinase (HK) component, which autophosphorylates in response to an environmental stimulus, and a response regulator (RR) component, which transmits the signal, resulting in an output such as activation of transcription, or of a mitogen-activated protein kinase cascade. The genomes of the yeasts Saccharomyces cerevisiae, Schizosaccharomyces pombe, and Candida albicans encode one, three, and three HKs, respectively. In contrast, the genome sequences of the filamentous ascomycetes Neurospora crassa, Cochliobolus heterostrophus (Bipolaris maydis), Gibberella moniliformis (Fusarium verticillioides), and Botryotinia fuckeliana (Botrytis cinerea) encode an extensive family of two-component signaling proteins. The putative HKs fall into 11 classes. Most of these classes are represented in each filamentous ascomycete species examined. A few of these classes are significantly more prevalent in the fungal pathogens than in the saprobe N. crassa, suggesting that these groups contain paralogs required for virulence. Despite the larger numbers of HKs in filamentous ascomycetes than in yeasts, all of the ascomycetes contain virtually the same downstream histidine phosphotransfer proteins and RR proteins, suggesting extensive cross talk or redundancy among HKs.
APA, Harvard, Vancouver, ISO, and other styles
19

Schmidt, A., M. N. Hall, and A. Koller. "Two FK506 resistance-conferring genes in Saccharomyces cerevisiae, TAT1 and TAT2, encode amino acid permeases mediating tyrosine and tryptophan uptake." Molecular and Cellular Biology 14, no. 10 (October 1994): 6597–606. http://dx.doi.org/10.1128/mcb.14.10.6597.

Full text
Abstract:
The macrocyclic lactone FK506 exerts immunosuppressive effects on T lymphocytes by interfering with signal transduction leading to T-cell activation and also inhibits the growth of eukaryotic microorganisms, including Saccharomyces cerevisiae. We reported previously that an FK506-sensitive target in S. cerevisiae is required for amino acid import and that overexpression of two new genes, TAT1 and TAT2 (formerly called TAP1 and TAP2), confers resistance to the drug. Here we report that TAT1 and TAT2 encode novel members of the yeast amino acid permease family composed of integral membrane proteins that share 30 to 40% identity. TAT1 is the tyrosine high-affinity transporter, which also mediates low-affinity or low-capacity uptake of tryptophan. TAT2 is the tryptophan high-affinity transporter. FK506 does not reduce the levels of TAT1 and TAT2 transcripts, indicating that the inhibition of amino acid transport by the drug is posttranscriptional.
APA, Harvard, Vancouver, ISO, and other styles
20

Schmidt, A., M. N. Hall, and A. Koller. "Two FK506 resistance-conferring genes in Saccharomyces cerevisiae, TAT1 and TAT2, encode amino acid permeases mediating tyrosine and tryptophan uptake." Molecular and Cellular Biology 14, no. 10 (October 1994): 6597–606. http://dx.doi.org/10.1128/mcb.14.10.6597-6606.1994.

Full text
Abstract:
The macrocyclic lactone FK506 exerts immunosuppressive effects on T lymphocytes by interfering with signal transduction leading to T-cell activation and also inhibits the growth of eukaryotic microorganisms, including Saccharomyces cerevisiae. We reported previously that an FK506-sensitive target in S. cerevisiae is required for amino acid import and that overexpression of two new genes, TAT1 and TAT2 (formerly called TAP1 and TAP2), confers resistance to the drug. Here we report that TAT1 and TAT2 encode novel members of the yeast amino acid permease family composed of integral membrane proteins that share 30 to 40% identity. TAT1 is the tyrosine high-affinity transporter, which also mediates low-affinity or low-capacity uptake of tryptophan. TAT2 is the tryptophan high-affinity transporter. FK506 does not reduce the levels of TAT1 and TAT2 transcripts, indicating that the inhibition of amino acid transport by the drug is posttranscriptional.
APA, Harvard, Vancouver, ISO, and other styles
21

Barr, M. M., H. Tu, L. Van Aelst, and M. Wigler. "Identification of Ste4 as a potential regulator of Byr2 in the sexual response pathway of Schizosaccharomyces pombe." Molecular and Cellular Biology 16, no. 10 (October 1996): 5597–603. http://dx.doi.org/10.1128/mcb.16.10.5597.

Full text
Abstract:
A conserved MAP kinase cascade is central to signal transduction in both simple and complex eukaryotes. In the yeast Schizosaccharomyces pombe, Byr2, a homolog of mammalian MAPK/ERK kinase kinase and Saccharomyces cerevisiae STE11, is required for pheromone-induced sexual differentiation. A screen for S. pombe proteins that interact with Byr2 in a two-hybrid system led to the isolation of Ste4, a protein that is known to be required for sexual function. Ste4 binds to the regulatory region of Byr2. This binding site is separable from the binding site for Ras1. Both Ste4 and Ras1 act upstream of Byr2 and act at least partially independently. Ste4 contains a leucine zipper and is capable of homotypic interaction. Ste4 has regions of homology with STE50, an S. cerevisiae protein required for sexual differentiation that we show can bind to STE11.
APA, Harvard, Vancouver, ISO, and other styles
22

Blondel, Marc, Jean-Marc Galan, and Matthias Peter. "Isolation and Characterization of HRT1 Using a Genetic Screen for Mutants Unable to Degrade Gic2p in Saccharomyces cerevisiae." Genetics 155, no. 3 (July 1, 2000): 1033–44. http://dx.doi.org/10.1093/genetics/155.3.1033.

Full text
Abstract:
Abstract Skp1p-cullin-F-box (SCF) protein complexes are ubiquitin ligases required for degradation of many regulatory proteins involved in cell cycle progression, morphogenesis, and signal transduction. Using a genetic screen, we have isolated a novel allele of the HRT1/RBX1 gene in budding yeast (hrt1-C81Y). hrt1-C81Y mutant cells exhibited an aberrant morphology but were viable at all temperatures. The cells displayed multiple genetic interactions with mutations in known SCF components and were defective for the degradation of several SCF targets including Gic2p, Far1p, Sic1p, and Cln2p. In addition, they also failed to degrade the F-box proteins Grr1p, Cdc4p, and Met30p. Wild-type Hrt1p but not Hrt1p-C81Y was able to bind multiple F-box proteins in an F-box-dependent manner. Hrt1p-C81Y harbors a single mutation in its ring-finger domain, which is conserved in subunits of distinct E3 ligases. Finally, Hrt1p was localized in both nucleus and cytoplasm and despite a short half-life was expressed constitutively throughout the cell cycle. Taken together, these results suggest that Hrt1p is a core subunit of multiple SCF complexes.
APA, Harvard, Vancouver, ISO, and other styles
23

Jethmalani, Yogita, and Erin M. Green. "Using Yeast to Define the Regulatory Role of Protein Lysine Methylation." Current Protein & Peptide Science 21, no. 7 (September 23, 2020): 690–98. http://dx.doi.org/10.2174/1389203720666191023150727.

Full text
Abstract:
The post-translational modifications (PTM) of proteins are crucial for cells to survive under diverse environmental conditions and to respond to stimuli. PTMs are known to govern a broad array of cellular processes including signal transduction and chromatin regulation. The PTM lysine methylation has been extensively studied within the context of chromatin and the epigenetic regulation of the genome. However, it has also emerged as a critical regulator of non-histone proteins important for signal transduction pathways. While the number of known non-histone protein methylation events is increasing, the molecular functions of many of these modifications are not yet known. Proteomic studies of the model system Saccharomyces cerevisiae suggest lysine methylation may regulate a diversity of pathways including transcription, RNA processing, translation, and signal transduction cascades. However, there has still been relatively little investigation of lysine methylation as a broad cellular regulator beyond chromatin and transcription. Here, we outline our current state of understanding of non-histone protein methylation in yeast and propose ways in which the yeast system can be leveraged to develop a much more complete picture of molecular mechanisms through which lysine methylation regulates cellular functions.
APA, Harvard, Vancouver, ISO, and other styles
24

Poulsen, Peter, Boqian Wu, Richard F. Gaber, and Morten C. Kielland-Brandt. "Constitutive Signal Transduction by Mutant Ssy5p and Ptr3p Components of the SPS Amino Acid Sensor System in Saccharomyces cerevisiae." Eukaryotic Cell 4, no. 6 (June 2005): 1116–24. http://dx.doi.org/10.1128/ec.4.6.1116-1124.2005.

Full text
Abstract:
ABSTRACT Amino acids in the environment of Saccharomyces cerevisiae can transcriptionally activate a third of the amino acid permease genes through a signal that originates from the interaction between the extracellular amino acids and an integral plasma membrane protein, Ssy1p. Two plasma membrane-associated proteins, Ptr3p and Ssy5p, participate in the sensing, which results in cleavage of the transcription factors Stp1p and Stp2p, removing 10 kDa of the N terminus of each of them. This confers the transcription factors with the ability to gain access to the nucleus and activate transcription of amino acid permease genes. To extend our understanding of the role of Ptr3p and Ssy5p in this amino acid sensing process, we have isolated constitutive gain-of-function mutants in these two components by using a genetic screening in which potassium uptake is made dependent on amino acid signaling. Mutants which exhibit inducer-independent processing of Stp1p and activation of the amino acid permease gene AGP1 were obtained. For each component of the SPS complex, constitutive signaling by a mutant allele depended on the presence of wild-type alleles of the other two components. Despite the signaling in the absence of inducer, the processing of Stp1p was more complete in the presence of inducer. Dose response assays showed that the median effective concentration for Stp1p processing in the mutant cells was decreased; i.e., a lower inducer concentration is needed for signaling in the mutant cells. These results suggest that the three sensor components interact intimately in a complex rather than in separate reactions and support the notion that the three components function as a complex.
APA, Harvard, Vancouver, ISO, and other styles
25

McBride, Anne E., Cecilia Zurita-Lopez, Anthony Regis, Emily Blum, Ana Conboy, Shannon Elf, and Steven Clarke. "Protein Arginine Methylation in Candida albicans: Role in Nuclear Transport." Eukaryotic Cell 6, no. 7 (May 4, 2007): 1119–29. http://dx.doi.org/10.1128/ec.00074-07.

Full text
Abstract:
ABSTRACT Protein arginine methylation plays a key role in numerous eukaryotic processes, such as protein transport and signal transduction. In Candida albicans, two candidate protein arginine methyltransferases (PRMTs) have been identified from the genome sequencing project. Based on sequence comparison, C. albicans candidate PRMTs display similarity to Saccharomyces cerevisiae Hmt1 and Rmt2. Here we demonstrate functional homology of Hmt1 between C. albicans and S. cerevisiae: CaHmt1 supports growth of S. cerevisiae strains that require Hmt1, and CaHmt1 methylates Npl3, a major Hmt1 substrate, in S. cerevisiae. In C. albicans strains lacking CaHmt1, asymmetric dimethylarginine and ω-monomethylarginine levels are significantly decreased, indicating that Hmt1 is the major C. albicans type I PRMT1. Given the known effects of type I PRMTs on nuclear transport of RNA-binding proteins, we tested whether Hmt1 affects nuclear transport of a putative Npl3 ortholog in C. albicans. CaNpl3 allows partial growth of S. cerevisiae npl3Δ strains, but its arginine-glycine-rich C terminus can fully substitute for that of ScNpl3 and also directs methylation-sensitive association with ScNpl3. Expression of green fluorescent protein-tagged CaNpl3 proteins in C. albicans strains with and without CaHmt1 provides evidence for CaHmt1 facilitating export of CaNpl3 in this fungus. We have also identified the C. albicans Rmt2, a type IV fungus- and plant-specific PRMT, by amino acid analysis of an rmt2Δ/rmt2Δ strain, as well as biochemical evidence for additional cryptic PRMTs.
APA, Harvard, Vancouver, ISO, and other styles
26

Holtzman, DA, S. Yang, and DG Drubin. "Synthetic-lethal interactions identify two novel genes, SLA1 and SLA2, that control membrane cytoskeleton assembly in Saccharomyces cerevisiae." Journal of Cell Biology 122, no. 3 (August 1, 1993): 635–44. http://dx.doi.org/10.1083/jcb.122.3.635.

Full text
Abstract:
Abplp is a yeast cortical actin-binding protein that contains an SH3 domain similar to those found in signal transduction proteins that function at the membrane/cytoskeleton interface. Although no detectable phenotypes are associated with a disruption allele of ABP1, mutations that create a requirement for this protein have now been isolated in the previously identified gene SAC6 and in two new genes, SLA1 and SLA2. The SAC6 gene encodes yeast fimbrin, an actin filament-bundling protein. Null mutations in SLA1 and SLA2 cause temperature-sensitive growth defects. Sla1p contains three SH3 domains and is essential for the proper formation of the cortical actin cytoskeleton. The COOH terminus of Sla2p contains a 200 amino acid region with homology to the COOH terminus of talin, a membrane cytoskeletal protein which is a component of fibroblast focal adhesions. Sla2p is required for cellular morphogenesis and polarization of the cortical cytoskeleton. In addition, synthetic-lethal interactions were observed for double-mutants containing null alleles of SLA2 and SAC6. In total, the mutant phenotypes, sequences, and genetic interactions indicate that we have identified novel proteins that cooperate to control the dynamic cytoskeletal rearrangements that are required for the development of cell polarity in budding yeast.
APA, Harvard, Vancouver, ISO, and other styles
27

Chautard, Hélène, Michel Jacquet, Françoise Schoentgen, Nicole Bureaud, and Hélène Bénédetti. "Tfs1p, a Member of the PEBP Family, Inhibits the Ira2p but Not the Ira1p Ras GTPase-Activating Protein in Saccharomyces cerevisiae." Eukaryotic Cell 3, no. 2 (April 2004): 459–70. http://dx.doi.org/10.1128/ec.3.2.459-470.2004.

Full text
Abstract:
ABSTRACT Ras proteins are guanine nucleotide-binding proteins that are highly conserved among eukaryotes. They are involved in signal transduction pathways and are tightly regulated by two sets of antagonistic proteins: GTPase-activating proteins (GAPs) inhibit Ras proteins, whereas guanine exchange factors activate them. In this work, we describe Tfs1p, the first physiological inhibitor of a Ras GAP, Ira2p, in Saccharomyces cerevisiae. TFS1 is a multicopy suppressor of the cdc25-1 mutation in yeast and corresponds to the so-called Ic CPY cytoplasmic inhibitor. Moreover, Tfs1p belongs to the phosphatidylethanolamine-binding protein (PEBP) family, one member of which is RKIP, a kinase and serine protease inhibitor and a metastasis inhibitor in prostate cancer. In this work, the results of (i) a two-hybrid screen of a yeast genomic library, (ii) glutathione S-transferase pulldown experiments, (iii) multicopy suppressor tests of cdc25-1 mutants, and (iv) stress resistance tests to evaluate the activation level of Ras demonstrate that Tfs1p interacts with and inhibits Ira2p. We further show that the conserved ligand-binding pocket of Tfs1—the hallmark of the PEBP family—is important for its inhibitory activity.
APA, Harvard, Vancouver, ISO, and other styles
28

Kolb, Alexander R., Teresa M. Buck, and Jeffrey L. Brodsky. "Saccharomyces cerivisiae as a model system for kidney disease: what can yeast tell us about renal function?" American Journal of Physiology-Renal Physiology 301, no. 1 (July 2011): F1—F11. http://dx.doi.org/10.1152/ajprenal.00141.2011.

Full text
Abstract:
Ion channels, solute transporters, aquaporins, and factors required for signal transduction are vital for kidney function. Because mutations in these proteins or in associated regulatory factors can lead to disease, an investigation into their biogenesis, activities, and interplay with other proteins is essential. To this end, the yeast, Saccharomyces cerevisiae , represents a powerful experimental system. Proteins expressed in yeast include the following: 1) ion channels, including the epithelial sodium channel, members of the inward rectifying potassium channel family, and cystic fibrosis transmembrane conductance regulator; 2) plasma membrane transporters, such as the Na+-K+-ATPase, the Na+-phosphate cotransporter, and the Na+-H+ ATPase; 3) aquaporins 1–4; and 4) proteins such as serum/glucocorticoid-induced kinase 1, phosphoinositide-dependent kinase 1, Rh glycoprotein kidney, and trehalase. The variety of proteins expressed and studied emphasizes the versatility of yeast, and, because of the many available tools in this organism, results can be obtained rapidly and economically. In most cases, data gathered using yeast have been substantiated in higher cell types. These attributes validate yeast as a model system to explore renal physiology and suggest that research initiated using this system may lead to novel therapeutics.
APA, Harvard, Vancouver, ISO, and other styles
29

Abeliovich, Hagai, William A. Dunn, John Kim, and Daniel J. Klionsky. "Dissection of Autophagosome Biogenesis into Distinct Nucleation and Expansion Steps." Journal of Cell Biology 151, no. 5 (November 27, 2000): 1025–34. http://dx.doi.org/10.1083/jcb.151.5.1025.

Full text
Abstract:
Rapamycin, an antifungal macrolide antibiotic, mimics starvation conditions in Saccharomyces cerevisiae through activation of a general G0 program that includes widespread effects on translation and transcription. Macroautophagy, a catabolic membrane trafficking phenomenon, is a prominent part of this response. Two views of the induction of autophagy may be considered. In one, up-regulation of proteins involved in autophagy causes its induction, implying that autophagy is the result of a signal transduction mechanism leading from Tor to the transcriptional and translational machinery. An alternative hypothesis postulates the existence of a dedicated signal transduction mechanism that induces autophagy directly. We tested these possibilities by assaying the effects of cycloheximide and specific mutations on the induction of autophagy. We find that induction of autophagy takes place in the absence of de novo protein synthesis, including that of specific autophagy-related proteins that are up-regulated in response to rapamycin. We also find that dephosphorylation of Apg13p, a signal transduction event that correlates with the onset of autophagy, is also independent of new protein synthesis. Finally, our data indicate that autophagosomes that form in the absence of protein synthesis are significantly smaller than normal, indicating a role for de novo protein synthesis in the regulation of autophagosome expansion. Our results define the existence of a signal transduction-dependent nucleation step and a separate autophagosome expansion step that together coordinate autophagosome biogenesis.
APA, Harvard, Vancouver, ISO, and other styles
30

Kao, L. R., J. Peterson, R. Ji, L. Bender, and A. Bender. "Interactions between the ankyrin repeat-containing protein Akr1p and the pheromone response pathway in Saccharomyces cerevisiae." Molecular and Cellular Biology 16, no. 1 (January 1996): 168–78. http://dx.doi.org/10.1128/mcb.16.1.168.

Full text
Abstract:
Akr1p, which contains six ankyrin repeats, was identified during a screen for mutations that displayed synthetic lethality with a mutant allele of the bud emergence gene BEM1. Cells from which AKR1 had been deleted were alive but misshapen at 30 degrees C and inviable at 37 degrees C. During a screen for mutants that required one or more copies of wild-type AKR1 for survival at 30 degrees C, we isolated mutations in GPA1, which encodes the G alpha subunit of the pheromone receptor-coupled G protein. (The active subunit of this G protein is G beta gamma, and G alpha plays an inhibitory role in G beta gamma-mediated signal transduction.) AKR1 could serve as a multicopy suppressor of the lethality caused by either loss of GPA1 or overexpression of STE4, which encodes the G beta subunit of this G protein, suggesting that pheromone signaling is inhibited by overexpression of Akr1p. Mutations in AKR1 displayed synthetic lethality with a weak allele of GPA1 and led to increased expression of the pheromone-inducible gene FUS1, suggesting that Akr1p normally (and not just when overexpressed) inhibits signaling. In contrast, deletion of BEM1 resulted in decreased expression of FUS1, suggesting that Bem1p normally facilitates pheromone signaling. During a screen for proteins that displayed two-hybrid interactions with Akr1p, we identified Ste4p, raising the possibility that an interaction between Akr1p and Ste4p contributes to proper regulation of the pheromone response pathway.
APA, Harvard, Vancouver, ISO, and other styles
31

Davenport, K. D., K. E. Williams, B. D. Ullmann, and M. C. Gustin. "Activation of the Saccharomyces cerevisiae Filamentation/Invasion Pathway by Osmotic Stress in High-Osmolarity Glycogen Pathway Mutants." Genetics 153, no. 3 (November 1, 1999): 1091–103. http://dx.doi.org/10.1093/genetics/153.3.1091.

Full text
Abstract:
Abstract Mitogen-activated protein kinase (MAPK) cascades are frequently used signal transduction mechanisms in eukaryotes. Of the five MAPK cascades in Saccharomyces cerevisiae, the high-osmolarity glycerol response (HOG) pathway functions to sense and respond to hypertonic stress. We utilized a partial loss-of-function mutant in the HOG pathway, pbs2-3, in a high-copy suppressor screen to identify proteins that modulate growth on high-osmolarity media. Three high-copy suppressors of pbs2-3 osmosensitivity were identified: MSG5, CAK1, and TRX1. Msg5p is a dual-specificity phosphatase that was previously demonstrated to dephosphorylate MAPKs in yeast. Deletions of the putative MAPK targets of Msg5p revealed that kss1Δ could suppress the osmosensitivity of pbs2-3. Kss1p is phosphorylated in response to hyperosmotic shock in a pbs2-3 strain, but not in a wild-type strain nor in a pbs2-3 strain overexpressing MSG5. Both TEC1 and FRE::lacZ expressions are activated in strains lacking a functional HOG pathway during osmotic stress in a filamentation/invasion-pathway-dependent manner. Additionally, the cellular projections formed by a pbs2-3 mutant on high osmolarity are absent in strains lacking KSS1 or STE7. These data suggest that the loss of filamentation/invasion pathway repression contributes to the HOG mutant phenotype.
APA, Harvard, Vancouver, ISO, and other styles
32

Traincard, F., E. Ponte, J. Pun, B. Coukell, and M. Veron. "Evidence for the presence of an NF-kappaB signal transduction system in Dictyostelium discoideum." Journal of Cell Science 112, no. 20 (October 15, 1999): 3529–35. http://dx.doi.org/10.1242/jcs.112.20.3529.

Full text
Abstract:
The Rel/NF-kappaB family of transcription factors and regulators has so far only been described in vertebrates and arthropods, where they mediate responses to many extracellular signals. No counterparts of genes coding for such proteins have been identified in the Caenorhabditis elegans genome and no NF-kappaB activity was found in Saccharomyces cerevisiae. We describe here the presence of an NF-kappaB transduction pathway in the lower eukaryote Dictyostelium discoideum. Using antibodies raised against components of the mammalian NF-kappaB pathway, we demonstrate in Dictyostelium cells extracts the presence of proteins homologous to Rel/NF-kappaB, IkappaB and IKK components. Using gel-shift experiments in nuclear extracts of developing Dictyostelium cells, we demonstrate the presence of proteins binding to kappaB consensus oligonucleotides and to a GC-rich kappaB-like sequence, lying in the promoter of cbpA, a developmentally regulated Dictyostelium gene encoding the Ca(2+)-binding protein CBP1. Using immunofluorescence, we show specific nuclear translocation of the p65 and p50 homologues of the NF-kappaB transcription factors as vegetatively growing cells develop to the slug stage. Taken together, our results strongly indicate the presence of a complete NF-kappaB signal transduction system in Dictyostelium discoideum that could be involved in the developmental process.
APA, Harvard, Vancouver, ISO, and other styles
33

Elion, E. A., B. Satterberg, and J. E. Kranz. "FUS3 phosphorylates multiple components of the mating signal transduction cascade: evidence for STE12 and FAR1." Molecular Biology of the Cell 4, no. 5 (May 1993): 495–510. http://dx.doi.org/10.1091/mbc.4.5.495.

Full text
Abstract:
The mitogen-activated protein (MAP) kinase homologue FUS3 mediates both transcription and G1 arrest in a pheromone-induced signal transduction cascade in Saccharomyces cerevisiae. We report an in vitro kinase assay for FUS3 and its use in identifying candidate substrates. The assay requires catalytically active FUS3 and pheromone induction. STE7, a MAP kinase kinase homologue, is needed for maximal activity. At least seven proteins that specifically associate with FUS3 are phosphorylated in the assay. Many of these substrates are physiologically relevant and are affected by in vivo levels of numerous signal transduction components. One substrate is likely to be the transcription factor STE12. A second is likely to be FAR1, a protein required for G1 arrest. FAR1 was isolated as a multicopy suppressor of a nonarresting fus3 mutant and interacts with FUS3 in a two hybrid system. Consistent with this FAR1 is a good substrate in vitro and generates a FUS3-associated substrate of expected size. These data support a model in which FUS3 mediates transcription and G1 arrest by direct activation of STE12 and FAR1 and phosphorylates many other proteins involved in the response to pheromone.
APA, Harvard, Vancouver, ISO, and other styles
34

Li, Fang, and Sean P. Palecek. "EAP1, a Candida albicans Gene Involved in Binding Human Epithelial Cells." Eukaryotic Cell 2, no. 6 (December 2003): 1266–73. http://dx.doi.org/10.1128/ec.2.6.1266-1273.2003.

Full text
Abstract:
ABSTRACT Candida albicans adhesion to host tissues contributes to its virulence and adhesion to medical devices permits biofilm formation, but we know relatively little about the molecular mechanisms governing C. albicans adhesion to materials or mammalian cells. Saccharomyces cerevisiae provides an attractive model system for studying adhesion in yeast because of its well-characterized genetics and gene expression systems and the conservation of signal transduction pathways among the yeasts. In this study, we used a parallel plate flow chamber to screen and characterize attachment of a flo8Δ S. cerevisiae strain expressing a C. albicans genomic library to a polystyrene surface. The gene EAP1 was isolated as a putative cell wall adhesin. Sequence analysis of EAP1 shows that it contains a signal peptide, a glycosylphosphatidylinositol anchor site, and possesses homology to many other yeast genes encoding cell wall proteins. In addition to increasing adhesion to polystyrene, heterologous expression of EAP1 in S. cerevisiae and autonomous expression of EAP1 in a C. albicans efg1 homozygous null mutant significantly enhanced attachment to HEK293 kidney epithelial cells. EAP1 expression also restored invasive growth to haploid flo8Δ and flo11Δ strains as well as filamentous growth to diploid flo8/flo8 and flo11/flo11 strains. Transcription of EAP1 in C. albicans is regulated by the transcription factor Efg1p, suggesting that EAP1 expression is activated by the cyclic AMP-dependent protein kinase pathway.
APA, Harvard, Vancouver, ISO, and other styles
35

Rodicio, Rosaura, Sabrina Koch, Hans-Peter Schmitz, and Jürgen J. Heinisch. "KlRHO1 and KlPKC1 are essential for cell integrity signalling in Kluyveromyces lactis." Microbiology 152, no. 9 (September 1, 2006): 2635–49. http://dx.doi.org/10.1099/mic.0.29105-0.

Full text
Abstract:
Cell integrity in yeasts is ensured by a rigid cell wall whose synthesis is triggered by a MAP kinase-mediated signal-transduction cascade. Upstream regulatory components of this pathway in Saccharomyces cerevisiae involve a single protein kinase C, which is regulated by interaction with the small GTPase Rho1. Here, two genes were isolated which encode these proteins from Kluyveromyces lactis (KlPKC1 and KlRHO1). Sequencing showed ORFs which encode proteins of 1161 and 208 amino acids, respectively. The deduced proteins shared 59 and 85 % overall amino acid identities, respectively, with their homologues from S. cerevisiae. Null mutants in both genes were non-viable, as shown by tetrad analyses of the heterozygous diploid strains. Overexpression of the KlRHO1 gene under the control of the ScGAL1 promoter severely impaired growth in both S. cerevisiae and K. lactis. On the other hand, a similar construct with KlPKC1 did not show a pronounced phenotype. Two-hybrid analyses showed interaction between Rho1 and Pkc1 for the K. lactis proteins and their S. cerevisiae homologues. A green fluorescent protein (GFP) fusion to the C-terminal end of KlPkc1 located the protein to patches in the growing bud, and at certain stages of the division process also to the bud neck. N-terminal GFP fusions to KlRho1 localized mainly to the cell surface (presumably the cytoplasmic side of the plasma membrane) and to the vacuole, with some indications of traffic from the former to the latter. Thus, KlPkc1 and KlRho1 have been shown to serve vital functions in K. lactis, to interact in cell integrity signalling and to traffic between the plasma membrane and the vacuole.
APA, Harvard, Vancouver, ISO, and other styles
36

Winters, Matthew J., and Peter M. Pryciak. "Interaction with the SH3 Domain Protein Bem1 Regulates Signaling by the Saccharomyces cerevisiae p21-Activated Kinase Ste20." Molecular and Cellular Biology 25, no. 6 (March 15, 2005): 2177–90. http://dx.doi.org/10.1128/mcb.25.6.2177-2190.2005.

Full text
Abstract:
ABSTRACT The Saccharomyces cerevisiae PAK (p21-activated kinase) family kinase Ste20 functions in several signal transduction pathways, including pheromone response, filamentous growth, and hyperosmotic resistance. The GTPase Cdc42 localizes and activates Ste20 by binding to an autoinhibitory motif within Ste20 called the CRIB domain. Another factor that functions with Ste20 and Cdc42 is the protein Bem1. Bem1 has two SH3 domains, but target ligands for these domains have not been described. Here we identify an evolutionarily conserved binding site for Bem1 between the CRIB and kinase domains of Ste20. Mutation of tandem proline-rich (PxxP) motifs in this region disrupts Bem1 binding, suggesting that it serves as a ligand for a Bem1 SH3 domain. These PxxP motif mutations affect signaling additively with CRIB domain mutations, indicating that Bem1 and Cdc42 make separable contributions to Ste20 function, which cooperate to promote optimal signaling. This PxxP region also binds another SH3 domain protein, Nbp2, but analysis of bem1Δ versus nbp2Δ strains shows that the signaling defects of PxxP mutants result from impaired binding to Bem1 rather than from impaired binding to Nbp2. Finally, the PxxP mutations also reduce signaling by constitutively active Ste20, suggesting that postactivation functions of PAKs can be promoted by SH3 domain proteins, possibly by colocalizing PAKs with their substrates. The overall results also illustrate how the final signaling function of a protein can be governed by combinatorial addition of multiple, independent protein-protein interaction modules.
APA, Harvard, Vancouver, ISO, and other styles
37

Huang, Sidong, Douglas A. Jeffery, Malcolm D. Anthony, and Erin K. O'Shea. "Functional Analysis of the Cyclin-Dependent Kinase Inhibitor Pho81 Identifies a Novel Inhibitory Domain." Molecular and Cellular Biology 21, no. 19 (October 1, 2001): 6695–705. http://dx.doi.org/10.1128/mcb.21.19.6695-6705.2001.

Full text
Abstract:
ABSTRACT In response to phosphate limitation, Saccharomyces cerevisiae induces transcription of a set of genes important for survival. A phosphate-responsive signal transduction pathway mediates this response by controlling the activity of the transcription factor Pho4. Three components of this signal transduction pathway resemble those used to regulate the eukaryotic cell cycle: a cyclin-dependent kinase (CDK), Pho85; a cyclin, Pho80; and a CDK inhibitor (CKI), Pho81. Pho81 forms a stable complex with Pho80-Pho85 under both high- and low-phosphate conditions, but it only inhibits the kinase when cells are starved for phosphate. Pho81 contains six tandem repeats of the ankyrin consensus domain homologous to the INK4 family of mammalian CKIs. INK4 proteins inhibit kinase activity through an interaction of the ankyrin repeats and the CDK subunits. Surprisingly, we find that a region of Pho81 containing 80 amino acids C terminal to the ankyrin repeats is necessary and sufficient for Pho81's CKI function. The ankyrin repeats of Pho81 appear to have no significant role in Pho81 inhibition. Our results suggest that Pho81 inhibits Pho80-Pho85 with a novel motif.
APA, Harvard, Vancouver, ISO, and other styles
38

Abeliovich, Hagai, Chao Zhang, William A. Dunn, Kevan M. Shokat, and Daniel J. Klionsky. "Chemical Genetic Analysis of Apg1 Reveals A Non-kinase Role in the Induction of Autophagy." Molecular Biology of the Cell 14, no. 2 (February 2003): 477–90. http://dx.doi.org/10.1091/mbc.e02-07-0413.

Full text
Abstract:
Macroautophagy is a catabolic membrane trafficking phenomenon that is observed in all eukaryotic cells in response to various stimuli, such as nitrogen starvation and challenge with specific hormones. In the yeast Saccharomyces cerevisiae, the induction of autophagy involves a direct signal transduction mechanism that affects membrane dynamics. In this system, the induction process modifies a constitutive trafficking pathway called the cytoplasm-to-vacuole targeting (Cvt) pathway, which transports the vacuolar hydrolase aminopeptidase I, from the formation of small Cvt vesicles to the formation of autophagosomes. Apg1 is one of the proteins required for the direct signal transduction cascade that modifies membrane dynamics. Although Apg1 is required for both the Cvt pathway and autophagy, we find that Apg1 kinase activity is required only for Cvt trafficking of aminopeptidase I but not for import via autophagy. In addition, the data support a novel role for Apg1 in nucleation of autophagosomes that is distinct from its catalytic kinase activity and imply a qualitative difference in the mechanism of autophagosome and Cvt vesicle formation.
APA, Harvard, Vancouver, ISO, and other styles
39

Xu, Wenjie, Frank J. Smith, Ryan Subaran, and Aaron P. Mitchell. "Multivesicular Body-ESCRT Components Function in pH Response Regulation inSaccharomyces cerevisiaeandCandida albicans." Molecular Biology of the Cell 15, no. 12 (December 2004): 5528–37. http://dx.doi.org/10.1091/mbc.e04-08-0666.

Full text
Abstract:
The ESCRT-I, -II, and -III protein complexes function to create multivesicular bodies (MVBs) for sorting of proteins destined for the lysosome or vacuole. Prior studies with Saccharomyces cerevisiae have shown that the ESCRT-III protein Snf7p interacts with the MVB pathway protein Bro1p as well as its homolog Rim20p. Rim20p has no role in MVB formation, but functions in the Rim101p pH-response pathway; Rim20p interacts with transcription factor Rim101p and is required for the activation of Rim101p by C-terminal proteolytic cleavage. We report here that ESCRT-III proteins Snf7p and Vps20p as well as all ESCRT-I and -II proteins are required for Rim101p proteolytic activation in S. cerevisiae. Mutational analysis indicates that the Rim20p N-terminal region interacts with Snf7p, and an insertion in the Rim20p “Bro1 domain” abolishes this interaction, as determined with two-hybrid assays. Disruption of the MVB pathway through mutations affecting non-ESCRT proteins does not impair Rim101p processing. The relationship between the MVB pathway and Rim101p pathway is conserved in Candida albicans, because mutations in four ESCRT subunit genes abolish alkaline pH-induced filamentation, a phenotype previously seen for rim101 and rim20 mutants. The defect is suppressed by expression of C-terminally truncated Rim101-405p, as expected for mutations that block Rim101p proteolytic activation. These results indicate that the ESCRT complexes govern a specific signal transduction pathway and suggest that the MVB pathway may provide a signal that regulates pH-responsive transcription.
APA, Harvard, Vancouver, ISO, and other styles
40

Howard, Susie C., Ya-Wen Chang, Yelena V. Budovskaya, and Paul K. Herman. "The Ras/PKA Signaling Pathway of Saccharomyces cerevisiae Exhibits a Functional Interaction With the Sin4p Complex of the RNA Polymerase II Holoenzyme." Genetics 159, no. 1 (September 1, 2001): 77–89. http://dx.doi.org/10.1093/genetics/159.1.77.

Full text
Abstract:
Abstract Saccharomyces cerevisiae cells enter into the G0-like resting state, stationary phase, in response to specific types of nutrient limitation. We have initiated a genetic analysis of this resting state and have identified a collection of rye mutants that exhibit a defective transcriptional response to nutrient deprivation. These transcriptional defects appear to disrupt the control of normal growth because the rye mutants are unable to enter into a normal stationary phase upon nutrient deprivation. In this study, we examined the mutants in the rye1 complementation group and found that rye1 mutants were also defective for stationary phase entry. Interestingly, the RYE1 gene was found to be identical to SIN4, a gene that encodes a component of the yeast Mediator complex within the RNA polymerase II holoenzyme. Moreover, mutations that affected proteins within the Sin4p module of the Mediator exhibited specific genetic interactions with the Ras protein signaling pathway. For example, mutations that elevated the levels of Ras signaling, like RAS2val19, were synthetic lethal with sin4. In all, our data suggest that specific proteins within the RNA polymerase II holoenzyme might be targets of signal transduction pathways that are responsible for coordinating gene expression with cell growth.
APA, Harvard, Vancouver, ISO, and other styles
41

Janiak-Spens, Fabiola, Jeffrey M. Sparling, Michael Gurfinkel, and Ann H. West. "Differential Stabilities of Phosphorylated Response Regulator Domains Reflect Functional Roles of the Yeast Osmoregulatory SLN1 and SSK1 Proteins." Journal of Bacteriology 181, no. 2 (January 15, 1999): 411–17. http://dx.doi.org/10.1128/jb.181.2.411-417.1999.

Full text
Abstract:
ABSTRACT Osmoregulation in Saccharomyces cerevisiae involves a multistep phosphorelay system requiring three proteins, SLN1, YPD1, and SSK1, that are related to bacterial two-component signaling proteins, in particular, those involved in regulating sporulation inBacillus subtilis and anaerobic respiration inEscherichia coli. The SLN1-YPD1-SSK1 phosphorelay regulates a downstream mitogen-activated protein kinase cascade which ultimately controls the concentration of glycerol within the cell under hyperosmotic stress conditions. The C-terminal response regulator domains of SLN1 and SSK1 and full-length YPD1 have been overexpressed and purified from E. coli. A heterologous system consisting of acetyl phosphate, the bacterial chemotaxis response regulator CheY, and YPD1 has been developed as an efficient means of phosphorylating SLN1 and SSK1 in vitro. The homologous regulatory domains of SLN1 and SSK1 exhibit remarkably different phosphorylated half-lives, a finding that provides insight into the distinct roles that these phosphorylation-dependent regulatory domains play in the yeast osmosensory signal transduction pathway.
APA, Harvard, Vancouver, ISO, and other styles
42

Sahu, Mahima Sagar, Sandip Patra, Kundan Kumar, and Rupinder Kaur. "SUMOylation in Human Pathogenic Fungi: Role in Physiology and Virulence." Journal of Fungi 6, no. 1 (March 4, 2020): 32. http://dx.doi.org/10.3390/jof6010032.

Full text
Abstract:
The small ubiquitin-related modifier (SUMO) protein is an important component of the post-translational protein modification systems in eukaryotic cells. It is known to modify hundreds of proteins involved in diverse cellular processes, ranging from nuclear pore dynamics to signal transduction pathways. Owing to its reversible nature, the SUMO-conjugation of proteins (SUMOylation) holds a prominent place among mechanisms that regulate the functions of a wide array of cellular proteins. The dysfunctional SUMOylation system has been associated with many human diseases, including neurodegenerative and autoimmune disorders. Furthermore, the non-pathogenic yeast Saccharomyces cerevisiae has served as an excellent model to advance our understanding of enzymes involved in SUMOylation and proteins modified by SUMOylation. Taking advantage of the tools and knowledge obtained from the S. cerevisiae SUMOylation system, research on fungal SUMOylation is beginning to gather pace, and new insights into the role of SUMOylation in the pathobiology of medically important fungi are emerging. Here, we summarize the known information on components of the SUMOylation machinery, and consequences of overexpression or deletion of these components in the human pathogenic fungi, with major focus on two prevalent Candida bloodstream pathogens, C. albicans and C. glabrata. Additionally, we have identified SUMOylation components, through in silico analysis, in four medically relevant fungi, and compared their sequence similarity with S. cerevisiae counterparts. SUMOylation modulates the virulence of C. albicans and C. glabrata, while it is required for conidia production in Aspergillus nidulans and A. flavus. In addition to highlighting these recent developments, we discuss how SUMOylation fine tunes the expression of virulence factors, and influences survival of fungal cells under diverse stresses in vitro and in the mammalian host.
APA, Harvard, Vancouver, ISO, and other styles
43

Liu, Zhengchang, Janet Thornton, Mário Spírek, and Ronald A. Butow. "Activation of the SPS Amino Acid-Sensing Pathway in Saccharomyces cerevisiae Correlates with the Phosphorylation State of a Sensor Component, Ptr3." Molecular and Cellular Biology 28, no. 2 (November 5, 2007): 551–63. http://dx.doi.org/10.1128/mcb.00929-07.

Full text
Abstract:
ABSTRACT Cells of the budding yeast Saccharomyces cerevisiae sense extracellular amino acids and activate expression of amino acid permeases through the SPS-sensing pathway, which consists of Ssy1, an amino acid sensor on the plasma membrane, and two downstream factors, Ptr3 and Ssy5. Upon activation of SPS signaling, two transcription factors, Stp1 and Stp2, undergo Ssy5-dependent proteolytic processing that enables their nuclear translocation. Here we show that Ptr3 is a phosphoprotein whose hyperphosphorylation is increased by external amino acids and is dependent on Ssy1 but not on Ssy5. A deletion mutation in GRR1, encoding a component of the SCFGrr1 E3 ubiquitin ligase, blocks amino acid-induced hyperphosphorylation of Ptr3. We found that two casein kinase I (CKI) proteins, Yck1 and Yck2, previously identified as positive regulators of SPS signaling, are required for hyperphosphorylation of Ptr3. Loss- and gain-of-function mutations in PTR3 result in decreased and increased Ptr3 hyperphosporylation, respectively. We found that a defect in PP2A phosphatase activity leads to the hyperphosphorylation of Ptr3 and constitutive activation of SPS signaling. Two-hybrid analysis revealed interactions between the N-terminal signal transduction domain of Ssy1 with Ptr3 and Yck1. Our findings reveal that CKI and PP2A phosphatase play antagonistic roles in SPS sensing by regulating Ptr3 phosphorylation.
APA, Harvard, Vancouver, ISO, and other styles
44

Nocero, M., T. Isshiki, M. Yamamoto, and C. S. Hoffman. "Glucose repression of fbp1 transcription of Schizosaccharomyces pombe is partially regulated by adenylate cyclase activation by a G protein alpha subunit encoded by gpa2 (git8)." Genetics 138, no. 1 (September 1, 1994): 39–45. http://dx.doi.org/10.1093/genetics/138.1.39.

Full text
Abstract:
Abstract In the fission yeast Schizosaccharomyces pombe, genetic studies have identified genes that are required for glucose repression of fbp1 transcription. The git2 gene, also known as cyr1, encodes adenylate cyclase. Adenylate cyclase converts ATP into the second messenger cAMP as part of many eukaryotic signal transduction pathways. The git1, git3, git5, git7, git8 and git10 genes act upstream of adenylate cyclase, presumably encoding an adenylate cyclase activation pathway. In mammalian cells, adenylate cyclase enzymatic activity is regulated by heterotrimeric guanine nucleotide-binding proteins (G proteins). In the budding yeast Saccharomyces cerevisiae, adenylate cyclase enzymatic activity is regulated by monomeric, guanine nucleotide-binding Ras proteins. We show here that git8 is identical to the gpa2 gene that encodes a protein homologous to the alpha subunit of a G protein. Mutations in two additional genes, git3 and git5 are suppressed by gpa2+ in high copy number. Furthermore, a mutation in either git3 or git5 has an additive effect in strains deleted for gpa2 (git8), as it significantly increases expression of an fbp1-lacZ reporter gene. Therefore, git3 and git5 appear to act either in concert with or independently from gpa2 (git8) to regulate adenylate cyclase activity.
APA, Harvard, Vancouver, ISO, and other styles
45

Han, L., and J. Colicelli. "A human protein selected for interference with Ras function interacts directly with Ras and competes with Raf1." Molecular and Cellular Biology 15, no. 3 (March 1995): 1318–23. http://dx.doi.org/10.1128/mcb.15.3.1318.

Full text
Abstract:
The overexpression of some human proteins can cause interference with the Ras signal transduction pathway in the yeast Saccharomyces cerevisiae. The functional block is located at the level of the effector itself, since these proteins do not suppress activating mutations further downstream in the same pathway. We now demonstrate, with in vivo and in vitro experiments, that the protein encoded by one human cDNA (clone 99) can interact directly with yeast Ras2p and with human H-Ras protein, and we have named this gene rin1 (Ras interaction/interference). The interaction between Ras and Rin1 is enhanced when Ras is bound to GTP. Rin1 is not able to interact with either an effector mutant or a dominant negative mutant of H-Ras. Thus, Rin1 displays a human H-Ras interaction profile that is the same as that seen for Raf1 and yeast adenylyl cyclase, two known effectors of Ras. Moreover, Raf1 directly competes with Rin1 for binding to H-Ras in vitro. Unlike Raf1, however, the Rin1 protein resides primarily at the plasma membrane, where H-Ras is localized. These data are consistent with Rin1 functioning in mammalian cells as an effector or regulator of H-Ras.
APA, Harvard, Vancouver, ISO, and other styles
46

PHALIP, Vincent, Jian-Hong LI, and Cheng-Cai ZHANG. "HstK, a cyanobacterial protein with both a serine/threonine kinase domain and a histidine kinase domain: implication for the mechanism of signal transduction." Biochemical Journal 360, no. 3 (December 10, 2001): 639–44. http://dx.doi.org/10.1042/bj3600639.

Full text
Abstract:
Two distinct families of protein kinases are involved in signal transduction: Ser, Thr and Tyr kinases, which are predominantly found among eukaryotes, and His kinases, as part of bacterial two-component signalling systems. Genetic studies in Arabidopsis and Saccharomyces have demonstrated that bacterial-type two-component systems may act upstream of Ser/Thr kinases in the same signalling pathway, but how this coupling is accomplished remains unclear. In the present study, we report the characterization of a protein kinase, HstK, from the N2-fixing cyanobacterium Anabaena sp. PCC 7120, that possesses both a Ser/Thr kinase domain and a His kinase domain. Proteins with a structural architecture similar to that of HstK can be found in the eukaryote, Schizosaccharomyces pombe, and the bacterium, Rhodococcus sp. M5. HstK was present in cells grown with NH4+ or N2 as the nitrogen source, but was absent in cells grown with NO3−. The hstK gene was inactivated and the mutant phenotype was characterized. The catalytic domain of the Ser/Thr kinase of HstK functionally replaced that of Hog1p, a well-characterized protein kinase required for the response to high osmolarity in the S. cerevisiae heterologous system. The unusual multidomain structure of HstK suggests that a two-component system could be directly coupled to Ser/Thr kinases in the same signal transduction pathway.
APA, Harvard, Vancouver, ISO, and other styles
47

Wu, Mingxuan, Lucy S. Chong, David H. Perlman, Adam C. Resnick, and Dorothea Fiedler. "Inositol polyphosphates intersect with signaling and metabolic networks via two distinct mechanisms." Proceedings of the National Academy of Sciences 113, no. 44 (October 19, 2016): E6757—E6765. http://dx.doi.org/10.1073/pnas.1606853113.

Full text
Abstract:
Inositol-based signaling molecules are central eukaryotic messengers and include the highly phosphorylated, diffusible inositol polyphosphates (InsPs) and inositol pyrophosphates (PP-InsPs). Despite the essential cellular regulatory functions of InsPs and PP-InsPs (including telomere maintenance, phosphate sensing, cell migration, and insulin secretion), the majority of their protein targets remain unknown. Here, the development of InsP and PP-InsP affinity reagents is described to comprehensively annotate the interactome of these messenger molecules. By using the reagents as bait, >150 putative protein targets were discovered from a eukaryotic cell lysate (Saccharomyces cerevisiae). Gene Ontology analysis of the binding partners revealed a significant overrepresentation of proteins involved in nucleotide metabolism, glucose metabolism, ribosome biogenesis, and phosphorylation-based signal transduction pathways. Notably, we isolated and characterized additional substrates of protein pyrophosphorylation, a unique posttranslational modification mediated by the PP-InsPs. Our findings not only demonstrate that the PP-InsPs provide a central line of communication between signaling and metabolic networks, but also highlight the unusual ability of these molecules to access two distinct modes of action.
APA, Harvard, Vancouver, ISO, and other styles
48

Schmitz, Hans-Peter, Stefanie Huppert, Anja Lorberg, and Jürgen J. Heinisch. "Rho5p downregulates the yeast cell integrity pathway." Journal of Cell Science 115, no. 15 (August 1, 2002): 3139–48. http://dx.doi.org/10.1242/jcs.115.15.3139.

Full text
Abstract:
The Rho family of proteins and their effectors are key regulators involved in many eukaryotic cell functions. In Saccharomyces cerevisiae the family consists of six members, Rho1p to Rho5p and Cdc42p. With the exception of Rho5p, these enzymes have been assigned different biological functions,including the regulation of polar growth, morphogenesis, actin cytoskeleton,budding and secretion. Here we show that a rho5 deletion results in an increased activity of the protein kinase C (Pkc1p)-dependent signal transduction pathway. Accordingly, the deletion shows an increased resistance to drugs such as caffeine, Calcofluor white and Congo red, which indicates activation of the pathway. In contrast, overexpression of an activated RHO5Q91H mutant renders cells more sensitive to these drugs. We conclude that Rho5p acts as an off-switch for the MAP-kinase cascade, which differentiates between MAP-kinase-dependent and -independent functions of Pkc1p. Kinetics of actin depolarisation and repolarisation after heat treatment of rho5 deletions as well as strains overexpressing the activated RHO5Q91H allele provide further evidence for such a function.
APA, Harvard, Vancouver, ISO, and other styles
49

Grishin, A. V., J. L. Weiner, and K. J. Blumer. "Biochemical and genetic analysis of dominant-negative mutations affecting a yeast G-protein gamma subunit." Molecular and Cellular Biology 14, no. 7 (July 1994): 4571–78. http://dx.doi.org/10.1128/mcb.14.7.4571.

Full text
Abstract:
Heterotrimeric guanine nucleotide-binding proteins (G proteins) consisting of alpha, beta, and gamma subunits mediate signalling between cell surface receptors and intracellular effectors in eukaryotic cells. To define signalling functions of G gamma subunits (STE18 gene product) involved in pheromone response and mating in the yeast Saccharomyces cerevisiae, we isolated and characterized dominant-negative STE18 alleles. We obtained dominant-negative mutations that disrupt C-terminal sequences required for prenylation of G gamma precursors (CAAX box) and that affect residues in the N-terminal half of Ste18p. Overexpression of mutant G gamma subunits in wild-type cells blocked signal transduction; this effect was suppressed upon overexpression of G beta subunits. Mutant G gamma subunits may therefore sequester G beta subunits into nonproductive G beta gamma dimers. Because mutant G gamma subunits blocked the constitutive signal resulting from disruption of the G alpha subunit gene (GPA1), they are defective in functions required for downstream signalling. Ste18p bearing a C107Y substitution in the CAAX box displayed reduced electrophoretic mobility, consistent with a prenylation defect. G gamma subunits carrying N-terminal substitutions had normal electrophoretic mobilities, suggesting that these proteins were prenylated. G gamma subunits bearing substitutions in their N-terminal region or C-terminal CAAX box (C107Y) supported receptor-G protein coupling in vitro, whereas C-terminal truncations caused partial defects in receptor coupling.
APA, Harvard, Vancouver, ISO, and other styles
50

Grishin, A. V., J. L. Weiner, and K. J. Blumer. "Biochemical and genetic analysis of dominant-negative mutations affecting a yeast G-protein gamma subunit." Molecular and Cellular Biology 14, no. 7 (July 1994): 4571–78. http://dx.doi.org/10.1128/mcb.14.7.4571-4578.1994.

Full text
Abstract:
Heterotrimeric guanine nucleotide-binding proteins (G proteins) consisting of alpha, beta, and gamma subunits mediate signalling between cell surface receptors and intracellular effectors in eukaryotic cells. To define signalling functions of G gamma subunits (STE18 gene product) involved in pheromone response and mating in the yeast Saccharomyces cerevisiae, we isolated and characterized dominant-negative STE18 alleles. We obtained dominant-negative mutations that disrupt C-terminal sequences required for prenylation of G gamma precursors (CAAX box) and that affect residues in the N-terminal half of Ste18p. Overexpression of mutant G gamma subunits in wild-type cells blocked signal transduction; this effect was suppressed upon overexpression of G beta subunits. Mutant G gamma subunits may therefore sequester G beta subunits into nonproductive G beta gamma dimers. Because mutant G gamma subunits blocked the constitutive signal resulting from disruption of the G alpha subunit gene (GPA1), they are defective in functions required for downstream signalling. Ste18p bearing a C107Y substitution in the CAAX box displayed reduced electrophoretic mobility, consistent with a prenylation defect. G gamma subunits carrying N-terminal substitutions had normal electrophoretic mobilities, suggesting that these proteins were prenylated. G gamma subunits bearing substitutions in their N-terminal region or C-terminal CAAX box (C107Y) supported receptor-G protein coupling in vitro, whereas C-terminal truncations caused partial defects in receptor coupling.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography