Academic literature on the topic 'Lorentz gamma factor'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lorentz gamma factor.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Lorentz gamma factor"

1

Ghirlanda, G., F. Nappo, G. Ghisellini, A. Melandri, G. Marcarini, L. Nava, O. S. Salafia, S. Campana, and R. Salvaterra. "Bulk Lorentz factors of gamma-ray bursts." Astronomy & Astrophysics 609 (January 2018): A112. http://dx.doi.org/10.1051/0004-6361/201731598.

Full text
Abstract:
Knowledge of the bulk Lorentz factor Γ0 of gamma-ray bursts (GRBs) allows us to compute their comoving frame properties shedding light on their physics. Upon collisions with the circumburst matter, the fireball of a GRB starts to decelerate, producing a peak or a break (depending on the circumburst density profile) in the light curve of the afterglow. Considering all bursts with known redshift and with an early coverage of their emission, we find 67 GRBs (including one short event) with a peak in their optical or GeV light curves at a time tp. For another 106 GRBs we set an upper limit tpUL. The measure of tp provides the bulk Lorentz factor Γ0 of the fireball before deceleration. We show that tp is due to the dynamics of the fireball deceleration and not to the passage of a characteristic frequency of the synchrotron spectrum across the optical band. Considering the tp of 66 long GRBs and the 85 most constraining upper limits, we estimate Γ0 or a lower limit Γ0LL. Using censored data analysis methods, we reconstruct the most likely distribution of tp. All tp are larger than the time Tp,γ when the prompt γ-ray emission peaks, and are much larger than the time Tph when the fireball becomes transparent, that is, tp>Tp,γ>Tph. The reconstructed distribution of Γ0 has median value ~300 (150) for a uniform (wind) circumburst density profile. In the comoving frame, long GRBs have typical isotropic energy, luminosity, and peak energy ⟨ Eiso ⟩ = 3(8) × 1050 erg, ⟨ Liso ⟩ = 3(15) × 1047 erg s-1, and ⟨ Epeak ⟩ = 1(2) keV in the homogeneous (wind) case. We confirm that the significant correlations between Γ0 and the rest frame isotropic energy (Eiso), luminosity (Liso), and peak energy (Ep) are not due to selection effects. When combined, they lead to the observed Ep−Eiso and Ep−Liso correlations. Finally, assuming a typical opening angle of 5 degrees, we derive the distribution of the jet baryon loading which is centered around a few 10-6M⊙.
APA, Harvard, Vancouver, ISO, and other styles
2

Ioka, K. "Very High Lorentz Factor Fireballs and Gamma-Ray Burst Spectra." Progress of Theoretical Physics 124, no. 4 (October 1, 2010): 667–710. http://dx.doi.org/10.1143/ptp.124.667.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Granot, J., and P. Kumar. "Distribution of gamma-ray burst ejecta energy with Lorentz factor." Monthly Notices of the Royal Astronomical Society: Letters 366, no. 1 (February 1, 2006): L13—L16. http://dx.doi.org/10.1111/j.1745-3933.2005.00121.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Sonbas, E., G. A. MacLachlan, K. S. Dhuga, P. Veres, A. Shenoy, and T. N. Ukwatta. "GAMMA-RAY BURSTS: TEMPORAL SCALES AND THE BULK LORENTZ FACTOR." Astrophysical Journal 805, no. 2 (May 22, 2015): 86. http://dx.doi.org/10.1088/0004-637x/805/2/86.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

LIANG, EN-WEI, HOUJUN LÜ, SHUANG-XI YI, BING ZHANG, BIN-BIN ZHANG, and JIN ZHANG. "DISCERNING EMISSION COMPONENTS IN EARLY AFTERGLOW DATA AND CONSTRAINING THE INITIAL LORENTZ FACTOR OF LONG GRB FIREBALL." International Journal of Modern Physics D 20, no. 10 (September 2011): 1955–59. http://dx.doi.org/10.1142/s0218271811020007.

Full text
Abstract:
We prove that both the canonical and single power-law decay X-ray afterglow lightcurves of gamma-ray bursts (GRBs) observed with the Swift X-ray telescope may be an emission component radiated by external shocks prior to the GRB trigger. Our systematical analysis on both the early optical and X-ray afterglow data also indicates that they might be from different components. The detected optical emission possibly is dominated by the afterglow of the GRB fireball. The X-ray afterglows may be detected for some GRBs, but most of the detected X-rays for most GRBs are likely dominated by the prior X-ray component. With the deceleration feature in the early optical afterglow data, we estimate the initial Lorentz factors of the GRBs and discover a tight relation of the Lorentz factor to the isotropic gamma-ray energy.
APA, Harvard, Vancouver, ISO, and other styles
6

Baring, Matthew G. "Gamma-Ray Burst Spectral Breaks and Source Beaming." International Astronomical Union Colloquium 142 (1994): 899–903. http://dx.doi.org/10.1017/s0252921100078283.

Full text
Abstract:
AbstractThe principal discovery of the ComptonGamma-Ray Observatory(GRO) concerning gamma-ray bursts is that these sources are isotropic but with a comparative deficiency of fainter sources, suggesting that they are probably cosmological in origin. If they are at such large distances from Earth then they are extremely luminous and compact. A consequence of this is that two-photon pair production attenuation of the gamma-ray continuum cannot be avoided unless the source radiation is substantially beamed. Most sources do not display gamma-ray turnovers although a few GRB detected byGROexhibit distinct spectral breaks in the MeV range. A derivation of the relationship defining of the degree of beaming in burst sources with spectral breaks due toγ-γattenuation, as a function of source spectral index and break energy, is presented. It is found that sources at distances of ~1 Gpc must typically be beamed with bulk Lorentz factors of around 103-104, indicating powerful bulk acceleration in bursts, although these Lorentz factors are reduced markedly for steep source spectra. Since the source spectra are not strongly Comptonized, such beaming will blueshift the γ-γ attenuation breaks to energies much higher than 1 MeV; an absolute lower bound to the source bulk Lorentz factor is determined from this additional constraint. This blueshifting suggests that those sources with MeV breaks may not be cosmological, or that their breaks are produced by a mechanism that dominates γ-γ attenuation at these energies.Subject headings:gamma-rays: bursts — radiation mechanisms: nonthermal
APA, Harvard, Vancouver, ISO, and other styles
7

Zhang, Hai-Ming, Da-Bin Lin, Ting-Ting Lin, Bao-Rong Liu, Xiao-Li Huang, Shu-Qing Zhong, Rui-Jing Lu, and En-Wei Liang. "Lorentz Factor Evolution Patterns within Relativistic Jets of GRBs and AGNs." Proceedings of the International Astronomical Union 12, S324 (September 2016): 78–81. http://dx.doi.org/10.1017/s1743921317001260.

Full text
Abstract:
AbstractThe Lorentz factor (Γ) is an important parameter related to the relativistic jet physics. We study the evolution patterns of Γ within gamma-ray burst (GRB) and active galactic nuclear jets for individual GRB 090168, GRB 140508A, and 3C 454.3. By estimating the Γ values for well-separated pulses in GRBs 090618 and 140508A with an empirical relation derived from typical GRBs, we find that the Γ evolution pattern in the two GRBs are different. The increasing-to-coasting evolution pattern of Γ in GRB 090618 likely indicates that the GRB fireball is still being accelerated in the prompt phase. The clear decrease evolution pattern of Γ in GRB 140508A suggests the deceleration of the fireball components. By deriving the Γ value through fitting their spectral energy distribution in different flares of 3C 454.3, a pattern of Γ-tracking-γ-ray flux is clearly found, likely indicating that the observed gamma-ray flares are being due to the Doppler boosting effect to the jet emission.
APA, Harvard, Vancouver, ISO, and other styles
8

Matsumoto, Tatsuya, Shigeo S. Kimura, Kohta Murase, and Peter Mészáros. "Linking extended and plateau emissions of short gamma-ray bursts." Monthly Notices of the Royal Astronomical Society 493, no. 1 (February 11, 2020): 783–91. http://dx.doi.org/10.1093/mnras/staa305.

Full text
Abstract:
ABSTRACT Some short gamma-ray bursts (SGRBs) show a longer lasting emission phase, called extended emission (EE) lasting ${\sim}10^{2\!-\!3}\, \rm s$, as well as a plateau emission (PE) lasting ${\sim}10^{4\!-\!5}\, \rm s$. Although a long-lasting activity of the central engines is a promising explanation for powering both emissions, their physical origin and their emission mechanisms are still uncertain. In this work, we study the properties of the EEs and their connection with the PEs. First, we constrain the minimal Lorentz factor Γ of the outflows powering EEs, using compactness arguments and find that the outflows should be relativistic, Γ ≳ 10. We propose a consistent scenario for the PEs, where the outflow eventually catches up with the jet responsible for the prompt emission, injecting energy into the forward shock formed by the prior jet, which naturally results in a PE. We also derive the radiation efficiency of EEs and the Lorentz factor of the outflow within our scenario for 10 well-observed SGRBs accompanied by both EE and PE. The efficiency has an average value of ${\sim}3\, {{\ \rm per\ cent}}$ but shows a broad distribution ranging from ∼0.01 to ${\sim}100{{\ \rm per\ cent}}$. The Lorentz factor is ∼20–30, consistent with the compactness arguments. These results suggest that EEs are produced by a slower outflow via more inefficient emission than the faster outflow that causes the prompt emission with a high radiation efficiency.
APA, Harvard, Vancouver, ISO, and other styles
9

Salvati, M., M. Spada, and F. Pacini. "Rapid Variability of Gamma-Ray Blazars." Highlights of Astronomy 11, no. 2 (1998): 816–19. http://dx.doi.org/10.1017/s1539299600018864.

Full text
Abstract:
This paper is devoted to a discussion of the rapid variability observed in γ-ray blazars. We do this in the framework of a widely accepted scenario, according to which the blazar emission arises from a jet, i.e. a continuous flow of relativistic fluid, with perturbations occasionally superimposed. The jet is assumed to have a bulk Lorentz factor Γ ≫ 1, and length z and radius r such that r ã z/Γ.
APA, Harvard, Vancouver, ISO, and other styles
10

STERN, B. E., and J. POUTANEN. "GAMMA-RAY EMISSION OF RELATIVISTIC JETS AS A SUPERCRITICAL PROCESS." International Journal of Modern Physics D 17, no. 09 (September 2008): 1611–17. http://dx.doi.org/10.1142/s0218271808013212.

Full text
Abstract:
Supercriticality of the same kind as that in a nuclear pile can take place in high-energy astrophysical objects producing a number of impressive effects. For example, it could cause an explosive release of the energy of a cloud of ultrarelativistic protons into radiation. More certainly, supercriticality should be responsible for energy dissipation of very energetic relativistic fluids such as ultrarelativistic shocks in gamma-ray bursts and jets in active galactic nuclei (AGNs). In this case, the photon breeding process operates. It is a kind of converter mechanism with the high-energy photons and e+e- pairs converting into each other via pair production and inverse Compton scattering. Under certain conditions, which should be satisfied in powerful AGNs, the photon breeding mechanism becomes supercritical: the high-energy photons breed exponentially until their feedback on the fluid changes its velocity pattern. Then the system comes to a self-adjusting near-critical steady state. Monte-Carlo simulations with detailed treatment of particle propagation and interactions demonstrate that a jet with a Lorentz factor Γ ≈ 20 can radiate away up to a half of its total energy, and for Γ = 40 the radiation efficiency can be up to 80 per cent. Outer layers of the jet decelerate down to a moderate Lorentz factor 2–4, while the spine of the jet has a final Lorentz factor in the range 10–20 independent of the initial Γ. Such sharp deceleration under the impact of radiation must cause a number of interesting phenomena such as formation of internal shocks and an early generation of turbulence.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Lorentz gamma factor"

1

Yassine, Manal. "The prompt emission of Gamma-Ray Bursts : analysis and interpretation of Fermi observations." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTS006/document.

Full text
Abstract:
Les sursauts gamma (GRBs pour "Gamma-Ray Bursts" en anglais) sont de brèves bouffées très énergétiques de rayonnement de haute énergie qui sont émises sur de courtes échelles de temps (fraction de seconde à plusieurs minutes). L'émission intense des sursauts gamma à haute énergie est supposée provenir d'un trou noir de masse stellaire nouvellement formé, accompagné d'un vent collimaté (i.e. un jet) se propageant à vitesse relativiste. L'émission est observée suivant deux phases successives, la phase prompte très erratique, et la phase de rémanence, moins lumineuse. Les deux instruments embarqués sur le satellite Fermi, le "Gamma-ray Burst Monitor" (GBM) et le "Large Area Telescope" (LAT), permettent d'étudier l'émission prompte des sursauts gamma sur une grande plage d'énergie (de ~10 keV à ~100 GeV). L'objectif principal de ma thèse est l'analyse et l'interprétation des propriétés spectrales et temporelles de l'émission prompte des GRBs observés par Fermi, en particulier avec les nouvelles données du LAT (Pass 8) qui ont été rendues publiques en juin 2015.La première partie de mon travail est une analyse spectrale résolue en temps de la phase prompte du sursaut GRB 090926A avec les données du GBM et du LAT. Mes résultats confirment avec un meilleur niveau de confiance la présence d'une cassure spectrale à ~400 MeV, qui est observée en coincidence avec un pic d'émission très court. Ils révèlent que cette atténuation spectrale est présente durant toute l'émission prompte du sursaut, et que l'énergie de cassure augmente jusqu'au GeV. L'interprétation de la cassure spectrale en termes d'absorption gamma ou de courbure naturelle du spectre d'émission Compton inverse (CI) dans le régime Klein-Nishina fournit des contraintes fortes sur le facteur de Lorentz du jet. Mes résultats conduisent en outre à des rayons d'émission R ∼10^14 cm qui sont compatibles avec une origine interne de l'émission du keV au GeV au-dessus de la photosphère du jet.La seconde partie de mon travail est une exploration du modèle de chocs internes développé par des collaborateurs à l'Institut d'Astrophysique de Paris (IAP). Ce modèle simule la dynamique du jet et les processus d'émission (synchrotron et CI) d'une population d'électrons accélérés aux chocs. J'ai simulé la réponse instrumentale de Fermi à un sursaut synthétique fourni par ce code numérique, et j'ai construit une fonction paramétrique qui peut être utilisée pour ajuster le modèle aux spectres de sursauts du keV au MeV. J'ai appliqué cette fonction avec succès à un échantillon de 64 sursauts brillants détectés par le GBM. J'ai aussi confronté le modèle de l'IAP au spectre d'émission prompte de GRB 090926A. Mes résultats montrent un bon accord, et j'ai identifié quelques pistes pour les améliorer. Les spectres synthétiques sont plus larges que tous les spectres dans l'échantillon du GBM. En conséquence, je discute brièvement quelques pistes de développements théoriques qui pourraient améliorer l'accord du modèle avec les observations, ainsi que des avancées observationnelles attendues dans le futur
Gamma-Ray Bursts (GRBs) are very energetic and brief flashes of high-energy radiations which are emitted in a short time scale (fraction of a second to several minutes). The GRB bright emission is thought to be powered by a newly formed stellar-mass black hole that is accompanied by a collimated outflow (i.e. a jet) moving at a relativistic speed. The emission is observed as two successive phases: the highly variable “prompt” phase and the late and less luminous “afterglow” phase. The two instruments on board the Fermi space telescope, the Gamma-ray Burst Monitor (GBM) and the Large Area Telescope (LAT), allow the study of GRB prompt emission over a broad energy range (from ~10 keV to ~100 GeV). In June 2015, a new set of LAT data (Pass 8) was publicly released, which were generated using improved algorithms of reconstruction and classification of gamma-ray events. The main goal of my thesis is the analysis and interpretation of the spectral and temporal properties of the prompt emission phase of the GRBs observed by Fermi, especially using LAT Pass8 data.In the first part of my work, I performed a detailed time-resolved spectral analysis of the prompt phase of GRB 090926A with GBM and LAT data. My results confirm with a greater significance the spectral break at ∼400 MeV that is observed during a fast variability pulse, and they also reveal the presence of a spectral attenuation throughout the GRB prompt emission, as well as an increase of the break energy up to the GeV domain. I interpreted the spectral break in terms of gamma-ray absorption or as a natural curvature of the inverse Compton (IC) emission in the Klein-Nishina regime. Strong constraints on the jet Lorentz factor were obtained in both scenarios. My results lead also to emission radii R ∼10^14 cm, which are consistent with an internal origin of both the keV-MeV and GeV prompt emissions above the jet photosphere.The second part of my work is an exploration of the internal shock model that has been developed by collaborators at the "Institut d'Astrophysique de Paris" (IAP). This model simulates the GRB jet dynamics and the radiations (synchrotron and IC processes) from a population of shock-accelerated electrons. I simulated the response of the Fermi instruments to the synthetic GRB spectra provided by this numerical code. From these simulations, I built a new parametric function that can be used to fit the keV-MeV spectra of GRBs with the model. I applied successfully this function to a sample of 64 GBM bright GRBs. I confronted also the IAP model to the prompt emission spectrum of GRB 090926A. I obtained a relatively good agreement and I identified a couple of solutions that may improve it. The synthetic spectra are wider than any GRB spectra in the GBM sample. I present some theoretical developments that could improve the data-model agreement in the future, and I discuss possible advances from future GRB missions as well
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Lorentz gamma factor"

1

Ioka, Kunihito, J. E. McEnery, J. L. Racusin, and N. Gehrels. "High Lorentz Factor Fireballs for High-Energy GRB Emission." In GAMMA RAY BURSTS 2010. AIP, 2011. http://dx.doi.org/10.1063/1.3621740.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Mészáros, P., and M. J. Rees. "High Lorentz-factor e± jets in gamma-ray burst sources." In COMPTON GAMMA-RAY OBSERVATORY. AIP, 1993. http://dx.doi.org/10.1063/1.44190.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Soderberg, Alicia M. "Constraints on the Bulk Lorentz Factor of GRB 990123." In GAMMA-RAY BURST AND AFTERGLOW ASTRONOMY 2001: A Workshop Celebrating the First Year of the HETE Mission. AIP, 2003. http://dx.doi.org/10.1063/1.1579332.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ghisellini, Gabriele. "GRBs have preferred jet opening angles and bulk Lorentz factors." In Gamma-Ray Bursts 2012 Conference. Trieste, Italy: Sissa Medialab, 2012. http://dx.doi.org/10.22323/1.152.0015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Hascöt, R., V. Vennin, F. Daigne, R. Mochkovitch, J. E. McEnery, J. L. Racusin, and N. Gehrels. "Do Fermi-LAT observations really imply very large Lorentz factors in GRB outflows?" In GAMMA RAY BURSTS 2010. AIP, 2011. http://dx.doi.org/10.1063/1.3621739.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography