Journal articles on the topic 'Low frequency radar'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Low frequency radar.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Costanzo, Sandra, Giuseppe Di Massa, Antonio Costanzo, et al. "Multimode/Multifrequency Low Frequency Airborne Radar Design." Journal of Electrical and Computer Engineering 2013 (2013): 1–9. http://dx.doi.org/10.1155/2013/857530.
Full textYurovsky, Yury, Vladimir Kudryavtsev, Semyon Grodsky, and Bertrand Chapron. "Low-Frequency Sea Surface Radar Doppler Echo." Remote Sensing 10, no. 6 (2018): 870. http://dx.doi.org/10.3390/rs10060870.
Full textBaranov, G., R. Gabruk та I. Gorishna. "Features of Usіng Pulse-Doppler Radars for Determіnatіon Low-Altіtude Targets". Metrology and instruments, № 2 (3 травня 2019): 62–66. http://dx.doi.org/10.33955/2307-2180(2)2019.62-66.
Full textRodriguez, Paul. "Solar radar astronomy with the low-frequency array." Planetary and Space Science 52, no. 15 (2004): 1391–98. http://dx.doi.org/10.1016/j.pss.2004.09.008.
Full textJacobi, Ch, C. Arras, D. Kürschner, W. Singer, P. Hoffmann, and D. Keuer. "Comparison of mesopause region meteor radar winds, medium frequency radar winds and low frequency drifts over Germany." Advances in Space Research 43, no. 2 (2009): 247–52. http://dx.doi.org/10.1016/j.asr.2008.05.009.
Full textBerquin, Yann, Alain Herique, Wlodek Kofman, and Essam Heggy. "Computing low-frequency radar surface echoes for planetary radar using Huygens-Fresnel's principle." Radio Science 50, no. 10 (2015): 1097–109. http://dx.doi.org/10.1002/2015rs005714.
Full textJavidi, Giti, and Ehsan Sheybani. "Data Visualization for Low-Frequency Inverse Synthetic Aperture Radar (ISAR)." International Journal of Interdisciplinary Telecommunications and Networking 10, no. 3 (2018): 1–8. http://dx.doi.org/10.4018/ijitn.2018070101.
Full textImhoff, M. L., S. Carson, and P. Johnson. "A low-frequency radar experiment for measuring vegetation biomass." IEEE Transactions on Geoscience and Remote Sensing 36, no. 6 (1998): 1988–91. http://dx.doi.org/10.1109/36.729374.
Full textGeiger, Martin, Christian Wegner, Winfried Mayer, and Christian Waldschmidt. "A Wideband Dielectric Waveguide-Based 160-GHz Radar Target Generator." Sensors 19, no. 12 (2019): 2801. http://dx.doi.org/10.3390/s19122801.
Full textAguirre, Roberto, Felipe Toledo, Rafael Rodríguez, Roberto Rondanelli, Nicolas Reyes, and Marcos Díaz. "Low-Cost Ka-Band Cloud Radar System for Distributed Measurements within the Atmospheric Boundary Layer." Remote Sensing 12, no. 23 (2020): 3965. http://dx.doi.org/10.3390/rs12233965.
Full textIlcev, Dimov Stojce. "Introduction to Coastal HF Maritime Surveillance Radars." Polish Maritime Research 26, no. 3 (2019): 153–62. http://dx.doi.org/10.2478/pomr-2019-0056.
Full textMouginot, J., E. Rignot, Y. Gim, D. Kirchner, and E. Le Meur. "Low-frequency radar sounding of ice in East Antarctica and southern Greenland." Annals of Glaciology 55, no. 67 (2014): 138–46. http://dx.doi.org/10.3189/2014aog67a089.
Full textMellios, E., Di Kong, M. Webb, et al. "Impact of Low-Frequency Radar Interference on Digital Terrestrial Television." IEEE Transactions on Broadcasting 59, no. 1 (2013): 84–95. http://dx.doi.org/10.1109/tbc.2012.2232511.
Full textHowlader, Md Omar Faruq, and Tariq Pervez Sattar. "MINIATURIZATION OF DIPOLE ANTENNA FOR LOW FREQUENCY GROUND PENETRATING RADAR." Progress In Electromagnetics Research C 61 (2016): 161–70. http://dx.doi.org/10.2528/pierc15103004.
Full textInaba, Takayuki, and Kiyomichi Araki. "Space-frequency maximal ratio combining for low-elevation radar target." Electronics and Communications in Japan (Part I: Communications) 87, no. 5 (2004): 75–85. http://dx.doi.org/10.1002/ecja.10143.
Full textPettinelli, Elena, Sebastian E. Lauro, Elisabetta Mattei, Barbara Cosciotti, and Francesco Soldovieri. "Stratigraphy versus artefacts in the Chang’e-4 low-frequency radar." Nature Astronomy 5, no. 9 (2021): 890–93. http://dx.doi.org/10.1038/s41550-021-01432-x.
Full textMou, Chun Hui, Tao Hong, Wen Jiang, and Shu Xi Gong. "Complex Spiral Antenna with Low Radar Cross Section Level." Applied Mechanics and Materials 631-632 (September 2014): 306–9. http://dx.doi.org/10.4028/www.scientific.net/amm.631-632.306.
Full textScheiblhofer, Werner, Reinhard Feger, Andreas Haderer, and Andreas Stelzer. "Concept and realization of a low-cost multi-target simulator for CW and FMCW radar system calibration and testing." International Journal of Microwave and Wireless Technologies 10, no. 2 (2018): 207–15. http://dx.doi.org/10.1017/s1759078718000028.
Full textSchlegel, K., and A. V. Gurevich. "Radar backscatter from plasma irregularities of the lower E region induced by neutral turbulence." Annales Geophysicae 15, no. 7 (1997): 870–77. http://dx.doi.org/10.1007/s00585-997-0870-z.
Full textHaynes, Mark S. "Surface and subsurface radar equations for radar sounders." Annals of Glaciology 61, no. 81 (2020): 135–42. http://dx.doi.org/10.1017/aog.2020.16.
Full textWright, David L., Steven M. Hodge, Jerry A. Bradley, Thomas P. Grover, and Robert W. Jacobel. "Instruments and Methods: A Digital Low-Frequency, Surface-Profiling Ice-Radar System." Journal of Glaciology 36, no. 122 (1990): 112–21. http://dx.doi.org/10.1017/s0022143000005633.
Full textWright, David L., Steven M. Hodge, Jerry A. Bradley, Thomas P. Grover, and Robert W. Jacobel. "Instruments and Methods: A Digital Low-Frequency, Surface-Profiling Ice-Radar System." Journal of Glaciology 36, no. 122 (1990): 112–21. http://dx.doi.org/10.3189/s0022143000005633.
Full textLevy, Chagai, Monika Pinchas, and Yosef Pinhasi. "Coherent Integration Loss Due to Nonstationary Phase Noise in High-Resolution Millimeter-Wave Radars." Remote Sensing 13, no. 9 (2021): 1755. http://dx.doi.org/10.3390/rs13091755.
Full textYang, Jing, Chao Pan, Caijun Wang, Dapeng Jiang, and Biyang Wen. "Wind Turbine Clutter Mitigation in Coastal UHF Radar." Scientific World Journal 2014 (2014): 1–8. http://dx.doi.org/10.1155/2014/529230.
Full textWang, Ying, Hong Yan Su, Huai Cheng Zhu, and Qi Yuan. "Parameter Design Method of Stepped-Frequency Radar to Suppress Clutter." Applied Mechanics and Materials 130-134 (October 2011): 2042–46. http://dx.doi.org/10.4028/www.scientific.net/amm.130-134.2042.
Full textLi, Zhi, Tian Jin, Yongpeng Dai, and Yongkun Song. "Through-Wall Multi-Subject Localization and Vital Signs Monitoring Using UWB MIMO Imaging Radar." Remote Sensing 13, no. 15 (2021): 2905. http://dx.doi.org/10.3390/rs13152905.
Full textBystrov, Aleksandr, Liam Daniel, Edward Hoare, Fatemeh Norouzian, Mikhail Cherniakov, and Marina Gashinova. "Experimental Evaluation of 79 and 300 GHz Radar Performance in Fire Environments." Sensors 21, no. 2 (2021): 439. http://dx.doi.org/10.3390/s21020439.
Full textBystrov, Aleksandr, Liam Daniel, Edward Hoare, Fatemeh Norouzian, Mikhail Cherniakov, and Marina Gashinova. "Experimental Evaluation of 79 and 300 GHz Radar Performance in Fire Environments." Sensors 21, no. 2 (2021): 439. http://dx.doi.org/10.3390/s21020439.
Full textCho, John Y. N. "A New Radio Frequency Interference Filter for Weather Radars." Journal of Atmospheric and Oceanic Technology 34, no. 7 (2017): 1393–406. http://dx.doi.org/10.1175/jtech-d-17-0028.1.
Full textMai, Chaoyun, Jinping Sun, Rui Zhou, and Guohua Wang. "Sparse Frequency Waveform Design for Radar-Embedded Communication." Mathematical Problems in Engineering 2016 (2016): 1–7. http://dx.doi.org/10.1155/2016/7270301.
Full textMilan, S. E., M. Lester, and N. Sato. "Multi-frequency observations of E-region HF radar aurora." Annales Geophysicae 21, no. 3 (2003): 761–77. http://dx.doi.org/10.5194/angeo-21-761-2003.
Full textMachado, G. G., M. T. De Melo, H. V. H. Silva Filho, A. G. Neto, and T. R. De Souza. "Low Radar Cross-section and Low Cost Dipole Antenna Reflector." Advanced Electromagnetics 6, no. 3 (2017): 25. http://dx.doi.org/10.7716/aem.v6i3.512.
Full textLiu, Yonggang, Robert H. Weisberg, Clifford R. Merz, Sage Lichtenwalner, and Gary J. Kirkpatrick. "HF Radar Performance in a Low-Energy Environment: CODAR SeaSonde Experience on the West Florida Shelf*." Journal of Atmospheric and Oceanic Technology 27, no. 10 (2010): 1689–710. http://dx.doi.org/10.1175/2010jtecho720.1.
Full textBaher Safa Hanbali, Samer. "A review of radar signals in terms of Doppler tolerance, time-sidelobe level, and immunity against jamming." International Journal of Microwave and Wireless Technologies 10, no. 10 (2018): 1134–42. http://dx.doi.org/10.1017/s1759078718001174.
Full textBodine, David J., Robert D. Palmer, Takashi Maruyama, Caleb J. Fulton, Ye Zhu, and Boon Leng Cheong. "Simulated Frequency Dependence of Radar Observations of Tornadoes." Journal of Atmospheric and Oceanic Technology 33, no. 9 (2016): 1825–42. http://dx.doi.org/10.1175/jtech-d-15-0120.1.
Full textXia, Zhenghuan, Qunying Zhang, Shengbo Ye, et al. "A novel low-frequency coded ground penetrating radar for deep detection." IEICE Electronics Express 12, no. 11 (2015): 20150200. http://dx.doi.org/10.1587/elex.12.20150200.
Full textHagen, Jon Ove, and Arne Sætrang. "Radio-echo soundings of sub-polar glaciers with low-frequency radar." Polar Research 9, no. 1 (1991): 99–107. http://dx.doi.org/10.3402/polar.v9i1.6782.
Full textHAGEN, JON OVE, and ARNE SÆTRANG. "Radio-echo soundings of sub-polar glaciers with low-frequency radar." Polar Research 9, no. 1 (1991): 99–107. http://dx.doi.org/10.1111/j.1751-8369.1991.tb00405.x.
Full textKim, Dong-Sik, Jong-Pil Kim, Ju-Young Lee, Yeon Duk Kang, and Sun-Ju Kim. "Ultra Low Noise Hybrid Frequency Synthesizer for High Performance Radar System." Journal of the Korean Society for Aeronautical & Space Sciences 48, no. 1 (2020): 73–79. http://dx.doi.org/10.5139/jksas.2020.48.1.73.
Full textRignot, E., J. Mouginot, C. F. Larsen, Y. Gim, and D. Kirchner. "Low-frequency radar sounding of temperate ice masses in Southern Alaska." Geophysical Research Letters 40, no. 20 (2013): 5399–405. http://dx.doi.org/10.1002/2013gl057452.
Full textJungang, Y., H. Xiaotao, J. Thompson, J. Tian, and Z. Zhimin. "Low-frequency ultra-wideband synthetic aperture radar ground moving target imaging." IET Radar, Sonar & Navigation 5, no. 9 (2011): 994. http://dx.doi.org/10.1049/iet-rsn.2010.0387.
Full textDoel, K. van den, and G. Stove. "Modeling and Simulation of Low Frequency Subsurface Radar Imaging in Permafrost." Computer Science and Information Technology 6, no. 3 (2018): 40–45. http://dx.doi.org/10.13189/csit.2018.060302.
Full textAlphonse, Sebastian, and Geoffrey A. Williamson. "On Estimating Nonlinear Frequency Modulated Radar Signals in Low SNR Environments." IEEE Transactions on Aerospace and Electronic Systems 57, no. 3 (2021): 1793–802. http://dx.doi.org/10.1109/taes.2021.3050649.
Full textMcDaniel, Jay W., Mark B. Yeary, Hjalti H. Sigmarsson, et al. "Integration and Miniaturization of a Ka-band Stepped Frequency Radar for Un-manned Aerial Vehicle Applications." International Symposium on Microelectronics 2017, no. 1 (2017): 000061–66. http://dx.doi.org/10.4071/isom-2017-tp26_156.
Full textGaitanakis, George-Konstantinos, George Limnaios, and Konstantinos C. Zikidis. "On the use of AESA (Active Electronically Scanned Array) Radar and IRST (InfraRed Search&Track) System to Detect and Track Low Observable Threats." MATEC Web of Conferences 304 (2019): 04001. http://dx.doi.org/10.1051/matecconf/201930404001.
Full textBrandewie, Aaron, and Robert Burkholder. "FEKO™ Simulation of Radar Scattering from Objects in Low Earth Orbit for ISAR Imaging." Applied Computational Electromagnetics Society 35, no. 11 (2021): 1358–59. http://dx.doi.org/10.47037/2020.aces.j.351148.
Full textPeng, Bo, Zhen Liu, Xizhang Wei, and Xiang Li. "Sinusoidal Frequency Modulation Sparse Recovery for Precession Rate Estimation Using Low-Frequency Long-Range Radar." IEEE Sensors Journal 15, no. 12 (2015): 7329–40. http://dx.doi.org/10.1109/jsen.2015.2469133.
Full textYan, Songhua, Shicai Wu, and Biyang Wen. "Low velocity target detection based on time-frequency image for high frequency ground wave radar." Frontiers of Electrical and Electronic Engineering in China 2, no. 4 (2007): 404–9. http://dx.doi.org/10.1007/s11460-007-0075-y.
Full textBedard, A. J. "Low-Frequency Atmospheric Acoustic Energy Associated with Vortices Produced by Thunderstorms." Monthly Weather Review 133, no. 1 (2005): 241–63. http://dx.doi.org/10.1175/mwr-2851.1.
Full textKirincich, Anthony. "Improved Detection of the First-Order Region for Direction-Finding HF Radars Using Image Processing Techniques." Journal of Atmospheric and Oceanic Technology 34, no. 8 (2017): 1679–91. http://dx.doi.org/10.1175/jtech-d-16-0162.1.
Full text