Journal articles on the topic 'Low loss dielectric materials'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Low loss dielectric materials.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Hayes, Colin O., Kevin Wang, Rosemary Bell, et al. "Low Loss Photodielectric Materials for 5G HS/HF Applications." International Symposium on Microelectronics 2019, no. 1 (2019): 000037–41. http://dx.doi.org/10.4071/2380-4505-2019.1.000037.
Full textWang, Li-Qiang, Hong-Xing Zheng, Li-Ying Feng, and Feng-You Gao. "Measurement of Low-Loss Dielectric Materials Using Dielectric Rod Resonator." International Journal of Infrared and Millimeter Waves 29, no. 1 (2007): 63–68. http://dx.doi.org/10.1007/s10762-007-9303-z.
Full textJACOB, MOHAN V. "LOW LOSS DIELECTRIC MATERIALS FOR HIGH FREQUENCY APPLICATIONS." International Journal of Modern Physics B 23, no. 17 (2009): 3649–54. http://dx.doi.org/10.1142/s0217979209063122.
Full textZhao, Cuijiao, Xiaonan Wei, Yawen Huang, et al. "Preparation and unique dielectric properties of nanoporous materials with well-controlled closed-nanopores." Physical Chemistry Chemical Physics 18, no. 28 (2016): 19183–93. http://dx.doi.org/10.1039/c6cp00465b.
Full textNunoshige, Jun, and Satoru Amou. "Development of Laminate with Low Dielectric Loss Materials." Journal of Japan Institute of Electronics Packaging 12, no. 4 (2009): 333–39. http://dx.doi.org/10.5104/jiep.12.333.
Full textSengupta, Louise C., and Somnath Sengupta. "Breakthrough advances in low loss, tunable dielectric materials." Materials Research Innovations 2, no. 5 (1999): 278–82. http://dx.doi.org/10.1007/s100190050098.
Full textSebastian, M. T., R. Ubic, and H. Jantunen. "Low-loss dielectric ceramic materials and their properties." International Materials Reviews 60, no. 7 (2015): 392–412. http://dx.doi.org/10.1179/1743280415y.0000000007.
Full textMaggiore, C. J., A. M. Clogston, G. Spalek, W. C. Sailor, and F. M. Mueller. "Low‐loss microwave cavity using layered‐dielectric materials." Applied Physics Letters 64, no. 11 (1994): 1451–53. http://dx.doi.org/10.1063/1.111993.
Full textSu, Hua, Xiaoli Tang, Huaiwu Zhang, Yulan Jing, and Feiming Bai. "Low-Loss Magneto-Dielectric Materials: Approaches and Developments." Journal of Electronic Materials 43, no. 2 (2013): 299–307. http://dx.doi.org/10.1007/s11664-013-2831-5.
Full textCava, R. J., J. J. Krajewski, and R. S. Roth. "Ca5Nb2TiO12 and Ca5Ta2TiO12: low temperature coefficient low loss dielectric materials." Materials Research Bulletin 34, no. 3 (1999): 355–62. http://dx.doi.org/10.1016/s0025-5408(99)00036-7.
Full textHORIKI, Eita, Isao SUZUKI, Toshiaki TANAKA, Akihiro UENISHI, and Hiroshi KOUYANAGI. "Build-up Electrical Insulation Material with Low-Dielectric Loss Tangent, Low-CTE and Low-Surface Roughness." International Symposium on Microelectronics 2011, no. 1 (2011): 000813–19. http://dx.doi.org/10.4071/isom-2011-wp5-paper2.
Full textTomikawa, Masao, Hitoshi Araki, Yohei Kiuchi, and Akira Shimada. "Photosensitive Polyimide having low loss tangent for RF application." International Symposium on Microelectronics 2018, no. 1 (2018): 000476–82. http://dx.doi.org/10.4071/2380-4505-2018.1.000476.
Full textYang, Yi, Owen D. Miller, Thomas Christensen, John D. Joannopoulos, and Marin Soljačić. "Low-Loss Plasmonic Dielectric Nanoresonators." Nano Letters 17, no. 5 (2017): 3238–45. http://dx.doi.org/10.1021/acs.nanolett.7b00852.
Full textKanareykin, Alexei D. "Low Loss Microwave Ceramic and other Microwave Dielectric Materials for Beam Physics Applications." Journal of the Russian Universities. Radioelectronics 22, no. 4 (2019): 66–74. http://dx.doi.org/10.32603/1993-8985-2019-22-4-66-74.
Full textSebastian, M. T., and H. Jantunen. "Low loss dielectric materials for LTCC applications: a review." International Materials Reviews 53, no. 2 (2008): 57–90. http://dx.doi.org/10.1179/174328008x277524.
Full textModes, Christina, Stefan Malkmus, and Frieder Gora. "High K Low Loss Dielectrics Co-Fireable with LTCC." Active and Passive Electronic Components 25, no. 2 (2002): 141–45. http://dx.doi.org/10.1080/08827510212346.
Full textWang, Ping, Li Hua Cheng, Chao Lin Liang, Jian Qing Zhao, and Zhi Jie Jiang. "Research Progress of the Preparation and Application of Low Dielectric Materials." Applied Mechanics and Materials 419 (October 2013): 401–6. http://dx.doi.org/10.4028/www.scientific.net/amm.419.401.
Full textTormey, Ellen, Chao Ma, John Maloney, Bradford Smith, Sid Sridharan, and Yi Yang. "Low Loss LTCC Ag System for 5G Applications." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2021, HiTEC (2021): 000105–11. http://dx.doi.org/10.4071/2380-4491.2021.hitec.000105.
Full textZhu, Lei. "Exploring Strategies for High Dielectric Constant and Low Loss Polymer Dielectrics." Journal of Physical Chemistry Letters 5, no. 21 (2014): 3677–87. http://dx.doi.org/10.1021/jz501831q.
Full textSergolle, Maëlle, Xavier Castel, Mohamed Himdi, Philippe Besnier, and Patrick Parneix. "Structural composite laminate materials with low dielectric loss: Theoretical model towards dielectric characterization." Composites Part C: Open Access 3 (November 2020): 100050. http://dx.doi.org/10.1016/j.jcomc.2020.100050.
Full textFang, Liang, Congxue Su, Huanfu Zhou, Zhenhai Wei, and Hui Zhang. "Novel Low-Firing Microwave Dielectric Ceramic LiCa3 MgV3 O12 with Low Dielectric Loss." Journal of the American Ceramic Society 96, no. 3 (2013): 688–90. http://dx.doi.org/10.1111/jace.12156.
Full textIqbal, Yaseen, Abdul Manan, and I. M. Reaney. "Low loss Sr1−xCaxLa4Ti5O17 microwave dielectric ceramics." Materials Research Bulletin 46, no. 7 (2011): 1092–96. http://dx.doi.org/10.1016/j.materresbull.2011.03.002.
Full textBaker-Jarvis, J., R. G. Geyer, J. H. Grosvenor, et al. "Dielectric characterization of low-loss materials a comparison of techniques." IEEE Transactions on Dielectrics and Electrical Insulation 5, no. 4 (1998): 571–77. http://dx.doi.org/10.1109/94.708274.
Full textSubodh, Ganesanpotti, Manoj Joseph, Pezholil Mohanan, and Mailadil Thomas Sebastian. "Low Dielectric Loss Polytetrafluoroethylene/TeO2Polymer Ceramic Composites." Journal of the American Ceramic Society 90, no. 11 (2007): 3507–11. http://dx.doi.org/10.1111/j.1551-2916.2007.01914.x.
Full textIm, Dong Hyeok, Chang Jun Jeon, and Eung Soo Kim. "MgTiO3/polystyrene composites with low dielectric loss." Ceramics International 38 (January 2012): S191—S195. http://dx.doi.org/10.1016/j.ceramint.2011.04.081.
Full textZhou, Huanfu, Xiuli Chen, Liang Fang, Dongjin Chu, and Hong Wang. "A new low-loss microwave dielectric ceramic for low temperature cofired ceramic applications." Journal of Materials Research 25, no. 7 (2010): 1235–38. http://dx.doi.org/10.1557/jmr.2010.0160.
Full textZHANG, QIWEI, JIWEI ZHAI, and LING BING KONG. "RELAXOR FERROELECTRIC MATERIALS FOR MICROWAVE TUNABLE APPLICATIONS." Journal of Advanced Dielectrics 02, no. 01 (2012): 1230002. http://dx.doi.org/10.1142/s2010135x12300022.
Full textKageyama, Keisuke. "Dielectric Properties and Densification by HIP for Low Loss Microwave Dielectrics." Journal of the Japan Society of Powder and Powder Metallurgy 40, no. 6 (1993): 614–17. http://dx.doi.org/10.2497/jjspm.40.614.
Full textLiang, Guozheng, Zengping Zhang, Jieying Yang, and Xiaolei Wang. "BMI Based Composites With Low Dielectric Loss." Polymer Bulletin 59, no. 2 (2007): 269–78. http://dx.doi.org/10.1007/s00289-007-0762-0.
Full textTatsumi, Shiro, Shohei Fujishima, and Hiroyuki Sakauchi. "Advanced Build-up Materials for High Speed Transmission Application." International Symposium on Microelectronics 2018, no. 1 (2018): 000305–9. http://dx.doi.org/10.4071/2380-4505-2018.1.000305.
Full textFang, Xiang Yi, David Linton, Chris Walker, and Brian Collins. "Non-destructive characterization for dielectric loss of low permittivity substrate materials." Measurement Science and Technology 15, no. 4 (2004): 747–54. http://dx.doi.org/10.1088/0957-0233/15/4/019.
Full textJones, Charles R., Jo Dutta, Guofen Yu, and Yuanci Gao. "Measurement of Dielectric Properties for Low-Loss Materials at Millimeter Wavelengths." Journal of Infrared, Millimeter, and Terahertz Waves 32, no. 6 (2011): 838–47. http://dx.doi.org/10.1007/s10762-011-9795-4.
Full textTAKAHASHI, Susumu, Yusuke IMAI, Akinori KAN, Yuji HOTTA, and Hirotaka OGAWA. "Preparation and characterization of isotactic polypropylene/MgO composites as dielectric materials with low dielectric loss." Journal of the Ceramic Society of Japan 121, no. 1416 (2013): 606–10. http://dx.doi.org/10.2109/jcersj2.121.606.
Full textKobayashi, Y., and M. Katoh. "Microwave Measurement of Dielectric Properties of Low-Loss Materials by the Dielectric Rod Resonator Method." IEEE Transactions on Microwave Theory and Techniques 33, no. 7 (1985): 586–92. http://dx.doi.org/10.1109/tmtt.1985.1133033.
Full textRastogi, Alok Kumar, A. K. Tiwari, and R. P. Shrivastava. "Strip dielectric wave guide antenna-for the measurement of dielectric constant of low-loss materials." International Journal of Infrared and Millimeter Waves 14, no. 7 (1993): 1471–83. http://dx.doi.org/10.1007/bf02084420.
Full textLee, Chao-Yu, and Chia-Wei Chang. "Dielectric Constant Enhancement with Low Dielectric Loss Growth in Graphene Oxide/Mica/Polypropylene Composites." Journal of Composites Science 5, no. 2 (2021): 52. http://dx.doi.org/10.3390/jcs5020052.
Full textZhang, Yun, Shihua Ding, Lu You, and Yingchun Zhang. "Temperature Stable Microwave Dielectric Ceramic CoTiNb2O8-Zn1.01Nb2O6 with Ultra-Low Dielectric Loss." Journal of Electronic Materials 48, no. 2 (2018): 867–72. http://dx.doi.org/10.1007/s11664-018-6795-3.
Full textManna, Rakesh, and Suneel Kumar Srivastava. "Fabrication of functionalized graphene filled carboxylated nitrile rubber nanocomposites as flexible dielectric materials." Materials Chemistry Frontiers 1, no. 4 (2017): 780–88. http://dx.doi.org/10.1039/c6qm00025h.
Full textCaldwell, Joshua D., Lucas Lindsay, Vincenzo Giannini, et al. "Low-loss, infrared and terahertz nanophotonics using surface phonon polaritons." Nanophotonics 4, no. 1 (2015): 44–68. http://dx.doi.org/10.1515/nanoph-2014-0003.
Full textHoshino, Mitsutoshi, and Fumihiro Ebisawa. "Low dielectric loss polyethylene polymerized with chromocene catalyst." Journal of Applied Polymer Science 70, no. 3 (1998): 441–48. http://dx.doi.org/10.1002/(sici)1097-4628(19981017)70:3<441::aid-app3>3.0.co;2-n.
Full textLi, Qi, Feihua Liu, Tiannan Yang, et al. "Sandwich-structured polymer nanocomposites with high energy density and great charge–discharge efficiency at elevated temperatures." Proceedings of the National Academy of Sciences 113, no. 36 (2016): 9995–10000. http://dx.doi.org/10.1073/pnas.1603792113.
Full textZhang, Li, Zhen Xing Yue, and Long Tu Li. "Ceramic-Polymer Composites with Low Dielectric Loss for Microwave Antennas and Wireless Sensors." Key Engineering Materials 655 (July 2015): 153–58. http://dx.doi.org/10.4028/www.scientific.net/kem.655.153.
Full textJongprateep, Oratai, Tunchanoke Khongnakhon, and Jednupong Palomas. "Composition-Microstructure-Property Relationships in BaTiO3 with Mg Addition." Key Engineering Materials 659 (August 2015): 58–63. http://dx.doi.org/10.4028/www.scientific.net/kem.659.58.
Full textShih, Chuan-Feng, Wei-Min Li, Kuo-Shin Tung, and Wen-Dong Hsu. "Low-Loss Microwave Dielectric Material Based on Magnesium Titanate." Journal of the American Ceramic Society 93, no. 9 (2010): 2448–51. http://dx.doi.org/10.1111/j.1551-2916.2010.03790.x.
Full textZeraati, Ali Shayesteh, Mohammad Arjmand, and Uttandaraman Sundararaj. "Silver Nanowire/MnO2 Nanowire Hybrid Polymer Nanocomposites: Materials with High Dielectric Permittivity and Low Dielectric Loss." ACS Applied Materials & Interfaces 9, no. 16 (2017): 14328–36. http://dx.doi.org/10.1021/acsami.6b14948.
Full textSheen, Jyh. "A dielectric resonator method of measuring dielectric properties of low loss materials in the microwave region." Measurement Science and Technology 19, no. 5 (2008): 055701. http://dx.doi.org/10.1088/0957-0233/19/5/055701.
Full textAgarwal, R. K., and A. Dasgupta. "Prediction of Electrical Properties of Plain-Weave Fabric Composites for Printed Wiring Board Design." Journal of Electronic Packaging 115, no. 2 (1993): 219–24. http://dx.doi.org/10.1115/1.2909321.
Full textCui, Xue-min, Le-ping Liu, Yan He, Jin-yu Chen, and Ji Zhou. "A novel aluminosilicate geopolymer material with low dielectric loss." Materials Chemistry and Physics 130, no. 1-2 (2011): 1–4. http://dx.doi.org/10.1016/j.matchemphys.2011.06.039.
Full textZhang, Jingji, Jiwei Zhai, and Xi Yao. "Dielectric tunable properties of low-loss Ba0.4Sr0.6Ti1−yMnyO3 ceramics." Scripta Materialia 61, no. 7 (2009): 764–67. http://dx.doi.org/10.1016/j.scriptamat.2009.06.027.
Full textMirkhani, Seyyed Alireza, Ali Shayesteh Zeraati, Ehsan Aliabadian, Michael Naguib, and Uttandaraman Sundararaj. "High Dielectric Constant and Low Dielectric Loss via Poly(vinyl alcohol)/Ti3C2Tx MXene Nanocomposites." ACS Applied Materials & Interfaces 11, no. 20 (2019): 18599–608. http://dx.doi.org/10.1021/acsami.9b00393.
Full text