Academic literature on the topic 'Low-power application'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Low-power application.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Low-power application"
Sakellariou, Panagiotis, and Vassilis Paliouras. "Application-Specific Low-Power Multipliers." IEEE Transactions on Computers 65, no. 10 (October 1, 2016): 2973–85. http://dx.doi.org/10.1109/tc.2016.2516016.
Full textDe, S., D. Banerjee, K. Siva kumar, K. Gopakumar, R. Ramchand, and C. Patel. "Multilevel inverters for low-power application." IET Power Electronics 4, no. 4 (2011): 384. http://dx.doi.org/10.1049/iet-pel.2010.0027.
Full textCai, Wei, Cheng Li, and Heng Gu. "LOW POWER SI-BASED POWER AMPLIFIER FOR HEALTHCARE APPLICATION." International Journal of Pharmacy and Pharmaceutical Sciences 8, no. 9 (September 1, 2016): 307. http://dx.doi.org/10.22159/ijpps.2016v8i9.12141.
Full textSonthong, Patawee, Natthaphon Phokhaphan, Parnhatai Buasri, and Krit Choeisai. "Single Phase Low-Cost Inverter for Low Power Application." Advanced Materials Research 931-932 (May 2014): 899–903. http://dx.doi.org/10.4028/www.scientific.net/amr.931-932.899.
Full textWięcek, Bogusław, and Sebastian Urbaś. "Development of Low-Resolution, Low-Power and Low-Cost Infrared System." Pomiary Automatyka Robotyka 25, no. 2 (June 30, 2021): 47–52. http://dx.doi.org/10.14313/par_240/47.
Full textSinyakin, V. Yu, M. O. Makeev, and S. A. Meshkov. "RTD application in low power UHF rectifiers." Journal of Physics: Conference Series 741 (August 2016): 012160. http://dx.doi.org/10.1088/1742-6596/741/1/012160.
Full textWang, P. F., K. Hilsenbeck, Th Nirschl, M. Oswald, Ch Stepper, M. Weis, D. Schmitt-Landsiedel, and W. Hansch. "Complementary tunneling transistor for low power application." Solid-State Electronics 48, no. 12 (December 2004): 2281–86. http://dx.doi.org/10.1016/j.sse.2004.04.006.
Full text., Santosh K. Verma. "DESIGN OF TRANSFORMER LESS POWER SUPPLY FOR LOW POWER APPLICATION." International Journal of Research in Engineering and Technology 04, no. 04 (April 25, 2015): 278–82. http://dx.doi.org/10.15623/ijret.2015.0404047.
Full textMijovic, Stefan, Andrea Stajkic, Riccardo Cavallari, and Chiara Buratti. "Low Power Listening in BAN." International Journal of E-Health and Medical Communications 5, no. 4 (October 2014): 52–66. http://dx.doi.org/10.4018/ijehmc.2014100104.
Full textWu, Xiang, and Fang Ming Deng. "A Capacitive Humidity Sensor for Low-Cost Low-Power Application." Applied Mechanics and Materials 556-562 (May 2014): 1847–51. http://dx.doi.org/10.4028/www.scientific.net/amm.556-562.1847.
Full textDissertations / Theses on the topic "Low-power application"
Zhou, Shun. "Multi-precision reconfigurable multiplier for low power application /." View abstract or full-text, 2008. http://library.ust.hk/cgi/db/thesis.pl?ECED%202008%20ZHOU.
Full textSrivastava, Amit. "Design of Ultra Low Power Transmitter for Wireless medical Application." Thesis, Linköping University, Electronic Devices, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-18408.
Full textSignificant advanced development in the field of communication has led many designers and healthcare professionals to look towards wireless communication for the treatment of dreadful diseases. Implant medical device offers many benefits, but design of implantable device at very low power combines with high data rate is still a challenge. However, this device does not rely on external source of power. So, it is important to conserve every joule of energy to maximize the lifetime of a device. Choice of modulation technique, frequency band and data rate can be analyzed to maximize battery life.
In this thesis work, system level design of FSK and QPSK transmitter is presented. The proposed transmitter is based on direct conversion to RF architecture, which is known for low power application. Both the transmitters are designed and compared in terms of their performance and efficiency. The simulation results show the BER and constellation plots for both FSK and QPSK transmitter.
Roy, Sajib, and Md Murad Kabir Nipun. "Understanding Sub-threshold source coupled logic for ultra-low power application." Thesis, Linköpings universitet, Elektroniksystem, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-69404.
Full textParsons, David Willard. "Toward the proper application of air power in low-intensity conflict." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1993. http://handle.dtic.mil/100.2/ADA276734.
Full textPetrov, Peter. "Application specific embedded processor customizations for low power and high performance /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2004. http://wwwlib.umi.com/cr/ucsd/fullcit?p3137218.
Full textNouri, Neda. "A low-phase-noise mm-wave oscillator and its application in a low-power polar transmitter." Thesis, University of British Columbia, 2011. http://hdl.handle.net/2429/39476.
Full textVilic, Husein. "Development And Analisis OfA Low Power Sensor Network ForA Parking Garage Application." Thesis, Uppsala universitet, Institutionen för informationsteknologi, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-378403.
Full textSinangil, Mahmut E. (Mahmut Ersin). "Low-power and application-specific SRAM design for energy-efficient motion estimation." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/75650.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 181-189).
Video content is expected to account for 70% of total mobile data traffic in 2015. High efficiency video coding, in this context, is crucial for lowering the transmission and storage costs for portable electronics. However, modern video coding standards impose a large hardware complexity. Hence, energy-efficiency of these hardware blocks is becoming more critical than ever before for mobile devices. SRAMs are critical components in almost all SoCs affecting the overall energy-efficiency. This thesis focuses on algorithm and architecture development as well as low-power and application-specific SRAM design targeting motion estimation. First, a motion estimation design is considered for the next generation video standard, HEVC. Hardware cost and coding efficiency trade-offs are quantified and an optimum design choice between hardware complexity and coding efficiency is proposed. Hardware-efficient search algorithm, shared search range across CU engines and pixel pre-fetching algorithms provide 4.3x area, 56x on-chip bandwidth and 151 x off-chip bandwidth reduction. Second, a highly-parallel motion estimation design targeting ultra-low voltage operation and supporting AVC/H.264 and VC-1 standards are considered. Hardware reconfigurability along with frame and macro-block parallel processing are implemented for this engine to maximize hardware sharing between multiple standards and to meet throughput constraints. Third, in the context of low-power SRAMs, a 6T and an 8T SRAM are designed in 28nm and 45nm CMOS technologies targeting low voltage operation. The 6T design achieves operation down to 0.6V and the 8T design achieves operation down to 0.5V providing ~ 2.8x and ~ 4.8x reduction in energy/access respectively. Finally, an application-specific SRAM design targeted for motion estimation is developed. Utilizing the correlation of pixel data to reduce bit-line switching activity, this SRAM achieves up to 1.9x energy savings compared to a similar conventional 8T design. These savings demonstrate that application-specific SRAM design can introduce a new dimension and can be combined with voltage scaling to maximize energy-efficiency.
by Mahmut Ersin Sinangil.
Ph.D.
Kallel, Bilel. "Design of Inductive Power Transmission System for Low Power Application with Movable Receiver and Large Air Gap." Universitätsverlag Chemnitz, 2018. https://monarch.qucosa.de/id/qucosa%3A32975.
Full textDie induktive Energieübertragung ist interessant, nicht nur für Systeme, bei denen die Energieübertragung in rauen, feuchten und nassen Bereichen erfolgen soll, sondern auch für mobile und sehr kleine Systeme. Diese Art von Energieübertragung findet heute eine breite Anwendung in verschiedenen Bereichen, wie z.B. Industrie, Automobil, Medizin und intelligente Gebäude. Um eine gute Effizienz und eine hohe Energieübertragungsleistung zu realisieren, sollten die Sende- und Empfangsspulen perfekt ausgerichtet und nahe beieinander sein. Insbesondere bei Systemen mit beweglichen Teilen ist jedoch eine Fehlausrichtung zwischen Sender und Empfänger unvermeidlich. Diese Arbeit zielt darauf ab, die übertragene Leistung, die gegenseitige Induktivität, die Leistung an der Last und damit den Wirkungsgrad der Leistungsübertragung im Falle einer seitlichen Fehlausrichtung zwischen Sende- und Empfangsspule und bei großem Abstand von Spule zu Spule zu verbessern. Zu diesem Zweck wird ein Multi-Input Single-Output (MISO)-Spulensystem vorgeschlagen, das in der Lage ist, das ausgegebene Magnetfeld auf die Empfangsspule auszurichten, indem die benachbarten Spulen der aktiven Sendespulen mit einem schwachen Strom in der entgegengesetzten Richtung versorgt wird. Darüber hinaus wurde ein analytisches Modell für die verwendeten Spulen und ein genaues dreidimensionales Modell für das System entwickelt, um die induzierte Spannung, den induzierten Strom und die äquivalente gegenseitige Induktivität zu berechnen. Sowohl die Simulation als auch die experimentellen Ergebnisse belegen, dass das vorgeschlagene induktive Mehrfachspulensystem mit hexagonaler Anordnung und die Sendespulen, die den halben Durchmesser der Empfangsspule haben, in der Lage sind, die Sendeleistung bei lateraler Fehlausrichtung und großem Luftspalt deutlich zu verbessern. Das neuartige MISO-System erreicht einen besseren Wirkungsgrad, beginnend mit einem Luftspalt von 50% des Sendespulendurchmessers und einer Fehlausrichtung von 28% des Sendespulendurchmessers. Sie erreicht bei 50 mm Luftspalt (entspricht 166% des Sendespulendurchmessers) und bei 10 mm seitlichem Versatz (entspricht 33% des Sendespulendurchmessers) das Doppelte der Sendeleistung des herkömmlichen Zwei-Spulen-Induktivsystems. Um die äquivalente gegenseitige Induktivität zwischen Primär- und Sekundärseite zu verbessern und Energieverluste zu vermeiden, schlagen wir ein Verfahren zur Detektion des Empfängers vor, bei dem die Sendespulen selbst als Detektoren verwendet werden. Dabei werden nur die Sendespulen unter dem Empfänger aktiviert und die anderen bleiben ausgeschaltet. Dazu wird der Scheitelwert des Wechselstroms der Sendespulen gemessen und mit einem vorgegebenem Schwellenwert verglichen. Die Anregungsstrategie der aktiven Spulen wird entsprechend der Position der Empfangsspule optimiert. Die neuartige Anregungsstrategie erhöht die gegenseitige Induktivität um 85% und die induzierte Spannung um 13% bei perfekter Ausrichtung und um 30% bzw. 10% bei 10 mm seitlichem Versatz, im Vergleich zum MISO-System ohne Empfängerdetektor und Spulenanregungsstrategie. Um die übertragene Leistung durch Resonanz zu erhöhen, wurden verschiedene Systemtopologien untersucht, wie z.B. Serien-SS, Serien-Parallel-SP, Parallel-Series-PS und Parallel-Parallel-PP-Topologien für verschiedene Stufen der Lastimpedanz. Die Ergebnisse zeigen, dass ein MISO System mit parallel-paralleler PP-Topologie eine höhere Sendeleistung realisiert als die anderen Topologien für hohe und niedrige Last-Impedanzen. Das vorgeschlagene induktive Mehrspulensystem eignet sich für Systeme mit geringer Leistung, wie drahtlose Sensoren und biomedizinische Implantate, kann aber auch flexibler Position des Empfängers in einen höheren Leistungsbereich angewendet werden.
Yeh, Chih-Shen. "Synchronous-Conduction-Mode Tapped-Inductor Buck Converter for Low-Power, High-Density Application." Thesis, Virginia Tech, 2017. http://hdl.handle.net/10919/81722.
Full textMaster of Science
General-purpose step-down converter is essential in electronic system for processing energy from high-voltage rail to low-voltage circuits. The applications can be found at the auxiliary supplies in automobile, industrial and communication systems. Typically, the ultimate goals of general-purpose step-down converter are versatility, high efficiency and compact size. Recently, tapped-inductor (TI) buck converter is studied since it could overcome the drawback of commonly used buck converter under high step-down conversion. Therefore, the potential of TI buck converter as a general-purpose step-down converter candidate is explored in this thesis, including control method, hardware design, etc. The thesis verifies that TI buck converter could have compact size while remaining efficient and adaptable.
Books on the topic "Low-power application"
Kularatna, Nihal. Power electronics design handbook: Low-power components and applications. Boston: Newnes, 1998.
Find full textPower electronics design handbook: Low-power components and applications. Boston: Newnes, 1998.
Find full textCostas, Diamantopolous, ed. A handbook for low power lasers and their medical application. London: East Asia Co., 1988.
Find full textParsons, David Willard. Toward the proper application of air power in low-intensity conflict. Monterey, Calif: Naval Postgraduate School, 1993.
Find full textBurger, Thomas. Optimal design of operational transconductance amplifiers with application for low power [delta-sigma] modulators. Konstanz: Hartung-Gorre, 2002.
Find full textBürgin, Felix. Low-power circuit architectures and clocking strategies for digital hearing aids. Konstanz: Hartung-Gorre, 2008.
Find full textCarbognani, Flavio. Low-power techniques for low-frequency VLSI applications. Konstanz: Hartung-Gorre, 2007.
Find full textVieira, Rafael, Nuno Horta, Nuno Lourenço, and Ricardo Póvoa. Tunable Low-Power Low-Noise Amplifier for Healthcare Applications. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70887-0.
Full textRabuske, Taimur, and Jorge Fernandes. Charge-Sharing SAR ADCs for Low-Voltage Low-Power Applications. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-39624-8.
Full textKorec, Jacek. Low voltage power MOSFETs: Design, performance and applications. New York: Springer, 2011.
Find full textBook chapters on the topic "Low-power application"
Gayasen, Aman. "Low Power Reconfigurable Devices." In Field Programmable Logic and Application, 1169. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30117-2_159.
Full textAkramullah, Shahriar. "Video Application Power Consumption on Low-Power Platforms." In Digital Video Concepts, Methods, and Metrics, 259–95. Berkeley, CA: Apress, 2014. http://dx.doi.org/10.1007/978-1-4302-6713-3_7.
Full textKrishnan, Rohini, Jose Pineda de Gyvez, and Harry J. M. Veendrick. "Encoded-Low Swing Technique for Ultra Low Power Interconnect." In Field Programmable Logic and Application, 240–51. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45234-8_24.
Full textFrank, David J. "Application and Technology Forecast." In Low Power Design in Deep Submicron Electronics, 9–44. Boston, MA: Springer US, 1997. http://dx.doi.org/10.1007/978-1-4615-5685-5_2.
Full textPalesi, Maurizio, Rickard Holsmark, Shashi Kumar, and Vincenzo Catania. "Application-Specific Routing Algorithms for Low Power Network on Chip Design." In Low Power Networks-on-Chip, 113–50. Boston, MA: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-6911-8_5.
Full textNys, Olivier, Daniel Aebischer, Stéphane Villier, Yves Kunz, and Dequn Sun. "Ultra Low Power Low Voltage Capacitive Preamplifier for Audio Application." In Efficient Sensor Interfaces, Advanced Amplifiers and Low Power RF Systems, 161–73. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-21185-5_9.
Full textSchüler, Erik, and Luigi Carro. "A Low Power FPAA for Wide Band Applications." In Field Programmable Logic and Application, 970–74. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30117-2_109.
Full textGayasen, A., K. Lee, N. Vijaykrishnan, M. Kandemir, M. J. Irwin, and T. Tuan. "A Dual-V DD Low Power FPGA Architecture." In Field Programmable Logic and Application, 145–57. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/978-3-540-30117-2_17.
Full textBarat, Francisco, Murali Jayapala, Tom Vander Aa, Rudy Lauwereins, Geert Deconinck, and Henk Corporaal. "Low Power Coarse-Grained Reconfigurable Instruction Set Processor." In Field Programmable Logic and Application, 230–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45234-8_23.
Full textLorenz, Michael G., Luis Mengibar, Luis Entrena, and Raul Sánchez-Reillo. "Data Processing System with Self-reconfigurable Architecture, for Low Cost, Low Power Applications." In Field Programmable Logic and Application, 220–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003. http://dx.doi.org/10.1007/978-3-540-45234-8_22.
Full textConference papers on the topic "Low-power application"
Israsena, P. "Accurate power estimation technique with application to low-power recursive digital filter design." In IEE Seminar Low Power IC Design. IEE, 2001. http://dx.doi.org/10.1049/ic:20010012.
Full textPatyk, Tomasz, David Guevorkian, Teemu Pitkanen, Pekka Jaaskelainen, and Jarmo Takala. "Low-power application-specific FFT processor for LTE applications." In 2013 International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation (SAMOS XIII). IEEE, 2013. http://dx.doi.org/10.1109/samos.2013.6621102.
Full textZhou, Yu, and Hui Guo. "Application Specific Low Power ALU Design." In 2008 IEEE/IFIP International Conference on Embedded and Ubiquitous Computing (EUC). IEEE, 2008. http://dx.doi.org/10.1109/euc.2008.81.
Full textSKELLY, P., J. FISHER, and C. GOLDEN. "Power conditioning unit for low-power arcjet flight application." In 28th Joint Propulsion Conference and Exhibit. Reston, Virigina: American Institute of Aeronautics and Astronautics, 1992. http://dx.doi.org/10.2514/6.1992-3529.
Full textRitzberger, G. "Design of low-power RF ICs in Si bipolar technology and its application to an 8 GHz dual-modulus prescaler." In IEE Seminar Low Power IC Design. IEE, 2001. http://dx.doi.org/10.1049/ic:20010010.
Full textSaneei, Mohsen, Ali Afzali-Kusha, and Zainalabedin Navabi. "Serial Bus Encoding for Low Power Application." In 2006 International Symposium on System-on-Chip. IEEE, 2006. http://dx.doi.org/10.1109/issoc.2006.321977.
Full textMohammed, Ashraf A., and Samah M. Nafie. "Flyback converter design for low power application." In 2015 International Conference on Computing, Control, Networking, Electronics and Embedded Systems Engineering (ICCNEEE). IEEE, 2015. http://dx.doi.org/10.1109/iccneee.2015.7381410.
Full textSalah, K., A. El-Rouby, Y. Ismail, H. Ragai, and K. Amin. "Compact TSV modeling for low power application." In 2010 International Conference on Energy Aware Computing (ICEAC). IEEE, 2010. http://dx.doi.org/10.1109/iceac.2010.5702291.
Full textSato, T., M. Nagamatsu, and H. Tago. "Power and performance simulator: ESP and its application for 100 MIPS/W class RISC design." In 1994 IEEE Symposium on Low Power Electronics. IEEE, 1994. http://dx.doi.org/10.1109/lpe.1994.573197.
Full textHong, Pan, Wu Xiaobo, Chen Hai, and Hao Binxian. "Power supply module design in the low power consumption application." In 2007 IEEE Conference on Electron Devices and Solid-State Circuits. IEEE, 2007. http://dx.doi.org/10.1109/edssc.2007.4450147.
Full textReports on the topic "Low-power application"
Smith, Brian. Autonomous Distributed Systems - Application of Ultra Low Power Technology. Fort Belvoir, VA: Defense Technical Information Center, November 2002. http://dx.doi.org/10.21236/ada410355.
Full textKim, E., and D. Kaspar. Design and Application Spaces for IPv6 over Low-Power Wireless Personal Area Networks (6LoWPANs). RFC Editor, April 2012. http://dx.doi.org/10.17487/rfc6568.
Full textParsons, David W. British Air Control: A Model for the Application of Air Power in Low-Intensity Conflict? Fort Belvoir, VA: Defense Technical Information Center, September 1997. http://dx.doi.org/10.21236/ada329097.
Full textMotayed, Abhishek, Baomei Wen, and Ratan Debnath. Two-Dimensional MoS2 Transistors for Low- Power RF Applications. Fort Belvoir, VA: Defense Technical Information Center, February 2015. http://dx.doi.org/10.21236/ada628472.
Full textWang, Wen I. InAs HVT for Extremely Low Power and High Speed Applications. Fort Belvoir, VA: Defense Technical Information Center, July 2005. http://dx.doi.org/10.21236/ada438567.
Full textChang, P. C., A. G. Baca, M. J. Hafich, and C. I. Ashby. InGaAs/InP heterojunction bipolar transistors for ultra-low power circuit applications. Office of Scientific and Technical Information (OSTI), August 1998. http://dx.doi.org/10.2172/674756.
Full textY. Raitses, N.J. Fisch, K.M. Ertmer, and C.A. Burlingame. A study of cylindrical Hall thruster for low power space applications. Office of Scientific and Technical Information (OSTI), July 2000. http://dx.doi.org/10.2172/759246.
Full textJeon, Kanghoon. Band-to-Band Tunnel Transistor Design and Modeling for Low Power Applications. Fort Belvoir, VA: Defense Technical Information Center, May 2012. http://dx.doi.org/10.21236/ada561676.
Full textElshurafa, Amro. The Value of Storage in Electricity Generation: A Qualitative and Quantitative Review. King Abdullah Petroleum Studies and Research Center, November 2020. http://dx.doi.org/10.30573/ks--2020-dp23.
Full textCooper, James A., and Jr. Development of SiC Power MOSFETs with Low On-Resistance for Military and Commercial Applications. Fort Belvoir, VA: Defense Technical Information Center, March 2003. http://dx.doi.org/10.21236/ada414680.
Full text