Academic literature on the topic 'Low pressure plasma treatment'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Low pressure plasma treatment.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Low pressure plasma treatment"

1

Pivovarov, Oleksandr, Tetiana Derkach, and Margarita Skiba. "Low-Pressure Discharge Plasma Treatment of Aqueous Solutions with Mn, Cr and Fe." Chemistry & Chemical Technology 13, no. 3 (July 15, 2019): 317–25. http://dx.doi.org/10.23939/chcht13.03.317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kuwabara, Atsushi, Shin-ichi Kuroda, and Hitoshi Kubota. "Polymer Surface Treatment by Atmospheric Pressure Low Temperature Surface Discharge Plasma: Its Characteristics and Comparison with Low Pressure Oxygen Plasma Treatment." Plasma Science and Technology 9, no. 2 (April 2007): 181–89. http://dx.doi.org/10.1088/1009-0630/9/2/14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gu, Bongjun, Dongwook Ko, Sungjin Jo, Dong Choon Hyun, Hyeon-Ju Oh, and Jongbok Kim. "Effect of Low-Pressure Plasma Treatment Parameters on Wrinkle Features." Materials 13, no. 17 (September 1, 2020): 3852. http://dx.doi.org/10.3390/ma13173852.

Full text
Abstract:
Wrinkles attract significant attention due to their ability to enhance the mechanical and optical characteristics of various optoelectronic devices. We report the effect of the plasma gas type, power, flow rate, and treatment time on the wrinkle features. When an optical adhesive was treated using a low-pressure plasma of oxygen, argon, and nitrogen, the oxygen and argon plasma generated wrinkles with the lowest and highest wavelengths, respectively. The increase in the power of the nitrogen and oxygen plasma increased the wavelengths and heights of the wrinkles; however, the increase in the power of the argon plasma increased the wavelengths and decreased the heights of the wrinkles. Argon molecules are heavier and smaller than nitrogen and oxygen molecules that have similar weights and sizes; moreover, the argon plasma comprises positive ions while the oxygen and nitrogen plasma comprise negative ions. This resulted in differences in the wrinkle features. It was concluded that a combination of different plasma gases could achieve exclusive control over either the wavelength or the height and allow a thorough analysis of the correlation between the wrinkle features and the characteristics of the electronic devices.
APA, Harvard, Vancouver, ISO, and other styles
4

Listratov, Sergey. "Technologies of plasma treatment of contact lenses." Eye 125, no. 2019-1 (2019): 41–44. http://dx.doi.org/10.33791/2222-4408-2019-1-41-44.

Full text
Abstract:
Plasma cleaning is considered to be an accurate cleaning method for high-quality applications in medical production. Differences of low-pressure and atmospheric pressure plasma technologies were analyzed. The main purpose of low-pressure plasma cleaning is the removal of thin organic films from surfaces. The positive effect of plasma treatment on the structure of gas permeable contact lenses surface is described in the article. Plasma cleaning, however, is the most suitable process for achieving optimum surface cleanliness. The given data was obtained by practical means.
APA, Harvard, Vancouver, ISO, and other styles
5

Behnisch, J., A. Holländer, and H. Zimmermann. "Controlled Functionalization of Polymer Surfaces by Low Pressure Plasma Treatment." International Journal of Polymeric Materials 23, no. 3-4 (February 1994): 215–24. http://dx.doi.org/10.1080/00914039408029333.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Aksenov, I. I., and V. M. Khoroshikh. "Treatment of Materials in Radial Low-Pressure Arc Plasma Streams." Materials Science Forum 287-288 (August 1998): 295–98. http://dx.doi.org/10.4028/www.scientific.net/msf.287-288.295.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Koo, Il Gyo, Myoung Seok Lee, and Woong Moo Lee. "Low temperature plasma-chemical treatment of PdCl2 film by atmospheric pressure hydrogen plasma." Thin Solid Films 506-507 (May 2006): 350–54. http://dx.doi.org/10.1016/j.tsf.2005.08.347.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Ru, Ji Fei Deng, and Fen Fen Liu. "Surface Modification of the Polyethersulfone Membrane by Low Pressure Argon Plasma Treatment." Applied Mechanics and Materials 268-270 (December 2012): 510–13. http://dx.doi.org/10.4028/www.scientific.net/amm.268-270.510.

Full text
Abstract:
In this study, low pressure Ar plasma is used to improve the surface hydrophilicity of the polyethersulfone (PES) membrane. The low pressure Ar plasma generated by radio frequency (RF) glow discharge was acted on the PES membrane surface to observe the change of the hydrophilic nature. This paper discusses the different plasma power, treatment time and plasma fluxes conditions on PES membrane modified influence. Experimental results show that with the plasma power and plasma fluxes increase and treatment time prolonged, the surface hydrophilicity of the PES membrane continues to increase and no more changes were observed when it reached to a certain value. The best condition was carried out at 60W, 120s, 20sccm, in this condition, the hydrophilic nature of the PES membrane is remarkably improved.
APA, Harvard, Vancouver, ISO, and other styles
9

Kwong, C. H., S. P. Ng, and C. W. Kan. "Improvement on Hydrophobicity of Synthetic Textiles by Plasma Treatment – A Review." Research Journal of Textile and Apparel 18, no. 4 (November 1, 2014): 1–14. http://dx.doi.org/10.1108/rjta-18-04-2014-b001.

Full text
Abstract:
Plasma treatment is becoming increasingly popular in enhancing the hydrophobicity of synthetic textiles. In recent years, the study of surface hydrophobisation by means of plasma treatment, under low or atmospheric pressure, has drawn a great deal of attention. A large amount of research has reported on the possibility of applying this technique with merits that include a dry process, reduced pollution, a single step treatment, etc. In this regard, this paper reviews recent approaches on enhancing the hydrophobicity of synthetic textiles by means of plasma treatment. The basic working principle of generating plasma to enhance hydrophobicity is explained. Both low and atmospheric plasma treatments are introduced. A higher cost is usually required for low pressure plasma because of the investment on a vacuum chamber. On the other hand, carrier gas is required for atmospheric plasma treatment, which is not the case for low pressure plasma. The experimental set up and the chemicals involved in the processes are discussed. In order to enhance surface hydrophobicity, fluorocarbons are always applied, such as perfluoroalkylacrylate, perfluorodecaline and tetrafluoroethylene.
APA, Harvard, Vancouver, ISO, and other styles
10

Chuangsuwanich, Apirag, Tananchai Assadamongkol, and Dheerawan Boonyawan. "The Healing Effect of Low-Temperature Atmospheric-Pressure Plasma in Pressure Ulcer." International Journal of Lower Extremity Wounds 15, no. 4 (September 20, 2016): 313–19. http://dx.doi.org/10.1177/1534734616665046.

Full text
Abstract:
Pressure ulcers are difficult to treat. Recent reports of low-temperature atmospheric-pressure plasma (LTAPP) indicated its safe and effectiveness in chronic wound care management. It has been shown both in vitro and vivo studies that LTAPP not only helps facilitate wound healing but also has antimicrobial efficacy due to its composition of ion and electron, free radicals, and ultraviolet ray. We studied the beneficial effect of LTAPP specifically on pressure ulcers. In a prospective randomized study, 50 patients with pressure ulcers were divided into 2 groups: Control group received standard wound care and the study group was treated with LTAPP once every week for 8 consecutive weeks in addition to standard wound care. We found that the group treated with LTAPP had significantly better PUSH (Pressure Ulcer Scale for Healing) scores and exudate amount after 1 week of treatment. There was also a reduction in bacterial load after 1 treatment regardless of the species of bacteria identified.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Low pressure plasma treatment"

1

Miller, Christopher J. "An Additive Printing Process for Conductive Structures Based on Low Pressure Argon Plasma Treatment of Silver Nitrate-based Inks." Case Western Reserve University School of Graduate Studies / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=case1497046125099719.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Roth, Jan. "Funktionalisierung von Silikonoberflächen." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2009. http://nbn-resolving.de/urn:nbn:de:bsz:14-ds-1234268177738-70409.

Full text
Abstract:
Poly(dimethylsiloxan) (PDMS) ist ein wichtiges Polymer, das zunehmend in der Mikroelektronik aufgrund seiner hervorragenden Elastizität und thermischen Stabilität Verwendung findet. Ein limitierender Faktor für den Einsatz von PDMS ist aufgrund des Fehlens von reaktiven Gruppen und der niedrigen freien Oberflächenenergie seine geringe Adhäsion zu anderen Materialien. Zur Erhöhung der Adhäsion ist deshalb die Einführung von polaren, funktionellen Gruppen notwendig. Hier lag die Motivation der vorliegenden Arbeit, die sich eine gezielte Funktionalisierung von PDMS-Oberflächen als Aufgabe gesetzt hatte. Im ersten Teil der Arbeit wurde eine Verbesserung der Adhäsion zu einem fotostrukturierbaren Epoxidharz mittels der Sauerstoff- und Ammoniakplasmabehandlung angestrebt. In beiden Fällen führte die Plasmabehandlung zu der Einführung von unterschiedlichsten funktionellen Gruppen auf die Oberfläche und zu einer Verbesserung des Benetzungsverhaltens gegenüber Wasser. Zudem wurden Haftfestigkeiten erzielt, die um ein Vielfaches höher waren als jene zwischen Epoxidharz und einer unbehandelten PDMS-Oberfläche. Jedoch waren die hydrophilen Eigenschaften nach der Plasmabehandlung während der Lagerung an Luft zeitlich begrenzt, die PDMS-Oberfläche kehrt innerhalb kurzer Zeit in den einst hydrophoben Ausgangszustand zurück. Der Alterungsvorgang wird als „Hydrophobic Recovery“ bezeichnet und ist bei PDMS-Oberflächen, die höheren Plasmaleistungen und Behandlungszeiten ausgesetzt wurden, besonders auffällig. Die Vermeidung dieser Problematik war der Ausgangspunkt für den zweiten Teil der Arbeit. Auf der Grundlage der über die Plasmabehandlungen erzeugten funktionellen Gruppen wurden neue Konzepte für eine kovalente Anbindung von verschiedenen funktionellen Homo- und Copolymeren über die „Grafting to“-Technik entwickelt. Neben der Erhöhung der Adhäsion zu dem Epoxidharz war es möglich, das Benetzungsverhalten gegenüber Wasser durch die Unterbindung der „Hydrophobic Recovery“ zu stabilisieren. Des Weiteren gelang es, durch die Wahl der funktionellen Polymere, die PDMS-Oberfläche gezielt mit gewünschten Eigenschaften auszustatten. Somit ist der Einsatz der polymermodifizierten Oberflächen, außer in der Mikroelektronik, auch auf andere Anwendungen, wie der Biomedizin, der Mikrofluidik oder der Softlithografie übertragbar, in denen eine beständige, definierte Oberflächenfunktionalisierung ein wichtiges Kriterium darstellt.
APA, Harvard, Vancouver, ISO, and other styles
3

Roth, Jan. "Funktionalisierung von Silikonoberflächen." Doctoral thesis, Technische Universität Dresden, 2008. https://tud.qucosa.de/id/qucosa%3A23701.

Full text
Abstract:
Poly(dimethylsiloxan) (PDMS) ist ein wichtiges Polymer, das zunehmend in der Mikroelektronik aufgrund seiner hervorragenden Elastizität und thermischen Stabilität Verwendung findet. Ein limitierender Faktor für den Einsatz von PDMS ist aufgrund des Fehlens von reaktiven Gruppen und der niedrigen freien Oberflächenenergie seine geringe Adhäsion zu anderen Materialien. Zur Erhöhung der Adhäsion ist deshalb die Einführung von polaren, funktionellen Gruppen notwendig. Hier lag die Motivation der vorliegenden Arbeit, die sich eine gezielte Funktionalisierung von PDMS-Oberflächen als Aufgabe gesetzt hatte. Im ersten Teil der Arbeit wurde eine Verbesserung der Adhäsion zu einem fotostrukturierbaren Epoxidharz mittels der Sauerstoff- und Ammoniakplasmabehandlung angestrebt. In beiden Fällen führte die Plasmabehandlung zu der Einführung von unterschiedlichsten funktionellen Gruppen auf die Oberfläche und zu einer Verbesserung des Benetzungsverhaltens gegenüber Wasser. Zudem wurden Haftfestigkeiten erzielt, die um ein Vielfaches höher waren als jene zwischen Epoxidharz und einer unbehandelten PDMS-Oberfläche. Jedoch waren die hydrophilen Eigenschaften nach der Plasmabehandlung während der Lagerung an Luft zeitlich begrenzt, die PDMS-Oberfläche kehrt innerhalb kurzer Zeit in den einst hydrophoben Ausgangszustand zurück. Der Alterungsvorgang wird als „Hydrophobic Recovery“ bezeichnet und ist bei PDMS-Oberflächen, die höheren Plasmaleistungen und Behandlungszeiten ausgesetzt wurden, besonders auffällig. Die Vermeidung dieser Problematik war der Ausgangspunkt für den zweiten Teil der Arbeit. Auf der Grundlage der über die Plasmabehandlungen erzeugten funktionellen Gruppen wurden neue Konzepte für eine kovalente Anbindung von verschiedenen funktionellen Homo- und Copolymeren über die „Grafting to“-Technik entwickelt. Neben der Erhöhung der Adhäsion zu dem Epoxidharz war es möglich, das Benetzungsverhalten gegenüber Wasser durch die Unterbindung der „Hydrophobic Recovery“ zu stabilisieren. Des Weiteren gelang es, durch die Wahl der funktionellen Polymere, die PDMS-Oberfläche gezielt mit gewünschten Eigenschaften auszustatten. Somit ist der Einsatz der polymermodifizierten Oberflächen, außer in der Mikroelektronik, auch auf andere Anwendungen, wie der Biomedizin, der Mikrofluidik oder der Softlithografie übertragbar, in denen eine beständige, definierte Oberflächenfunktionalisierung ein wichtiges Kriterium darstellt.
APA, Harvard, Vancouver, ISO, and other styles
4

Jones, Tony Lee. "Interaction of liquid droplets with low-temperature, low-pressure plasma." Thesis, Available online, Georgia Institute of Technology, 2005, 2005. http://etd.gatech.edu/theses/available/etd-04072005-144736/.

Full text
Abstract:
Thesis (M. S.)--Mechanical Engineering, Georgia Institute of Technology, 2005.
Said I. Abdel-Khalik, Committee Chair ; Sheldon M. Jeter, Committee Member ; Minami Yoda, Committee Member. Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
5

Blacknell, Hannah Irene. "Modification of PTFE using low-pressure and atmospheric-pressure plasma methods." Thesis, Durham University, 2018. http://etheses.dur.ac.uk/12759/.

Full text
Abstract:
As an inherently chemically inert and physically stable polymer, PTFE has the potential to be used in medical applications as replacement ligaments or vascular stents. In the work presented in this thesis, atmospheric and low-pressure plasma processes were used to modify PTFE surfaces without altering the bulk properties of the substrate. The coupling of two low-pressure gas plasma treatments together into a two-step process was investigated as a method of producing a stable hydrophilic PTFE surface. A roughening oxygen plasma treatment was used to create a high water contact angle (WCA) Cassie-Baxter surface, before an ammonia plasma treatment transformed it into a hydrophilic Wenzel state. Although these surfaces initially exhibited a WCA of < 10°, solvent washing caused significant hydrophobic recovery which was attributed to the washing off of low molecular weight oxidised species (LMWOS). Economically, an atmospheric-pressure plasma process is industrially favourable to low-pressure methods. The simple equipment required for a dielectric barrier discharge (DBD) process means that PTFE modification could be carried out in situ to prevent contamination or hydrophobic recovery being an issue in surgeries. The work presented here produced surfaces with a stable surface potential, the polarity of which was determined by the feed gas. Doping in water and/or ammonia molecules into inert feed gases was found to change the polarity of the surface potential. The use of the theory of electrowetting to decrease the WCA of DBD plasma-treated surfaces was successful, although only a small decrease in WCA was observed on the charged surfaces. However, the surface potential of the substrates was used to initialise the grafting and subsequent polymerization of a number of monomers, as well as deposition of a sulfobetaine zwitterionic layer. The lowest WCA was produced by the dipping of DBD-charged PTFE substrates into an aqueous sulfobetaine solution which produced a WCA of < 10° recovering to 39° after solvent washing. The methods described in this thesis present a number of ways in which stable hydrophilic PTFE surfaces can be produced: an effective low-pressure treatment altered the wetting state of the surface using roughening effect, and DBD plasma-treated surfaces used the surface potential imparted by the plasma to initialise further grafting processes to achieve stable hydrophilicity.
APA, Harvard, Vancouver, ISO, and other styles
6

Scheubert, Peter. "Modelling and diagnostics of low pressure plasma discharges." [S.l.] : [s.n.], 2002. http://deposit.ddb.de/cgi-bin/dokserv?idn=966327535.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Diaper, Clare. "Low pressure nanofiltration membranes for dyehouse effluent treatment." Thesis, Cranfield University, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.284922.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Yang, Suidong. "Diagnostics and modelling of an inductively coupled RF low-pressure low-temperature plasma." Thesis, n.p, 1998. http://oro.open.ac.uk/19841/.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Jiansirisomboon, Sukanda. "Low pressure plasma spraying of alumina/silicon carbide nanocomposite coatings." Thesis, University of Oxford, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.393389.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hurd, Sarah M. "Low-pressure reverse osmosis membrane treatment of landfill leachate." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape8/PQDD_0025/MQ52299.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Low pressure plasma treatment"

1

Thomas, Michael, and K. L. Mittal, eds. Atmospheric Pressure Plasma Treatment of Polymers. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118747308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

service), SpringerLink (Online, ed. Low Pressure Plasmas and Microstructuring Technology. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2009.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Kogoma, Masuhiro. Generation and application of atmospheric pressure plasmas. Hauppauge, N.Y: Nova Science Publishers, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wells, Nikita. Soviet research on the transport of intense relativistic electron beams through low-pressure air. [Santa Monica, Calif.]: Rand Corp., 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Franz, Gerhard. Low Pressure Plasmas and Microstructuring Technology. Springer, 2010.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Atmospheric Pressure Plasma For Surface Modification. Wiley-Scrivener, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Thomas, Michael, and K. L. Mittal. Atmospheric Pressure Plasma Treatment of Polymers: Relevance to Adhesion. Wiley & Sons, Incorporated, John, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Thomas, Michael, and K. L. Mittal. Atmospheric Pressure Plasma Treatment of Polymers: Relevance to Adhesion. Wiley & Sons, Incorporated, John, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Thomas, Michael, and K. L. Mittal. Atmospheric Pressure Plasma Treatment of Polymers: Relevance to Adhesion. Wiley-Interscience, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Non-Equilibrium Air Plasmas at Atmospheric Pressure (Series in Plasma Physics) (Plasma Physics). Taylor & Francis, 2004.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Low pressure plasma treatment"

1

Martínez-García, Asunción, Alejandra Segura-Domingo, Ana Sánchez-Reche, and Santiago Gisbert-Soler. "Treatment of Flexible Polyethylene with Low-Pressure Plasma to Improve its Painting Properties." In Plasma Processes and Polymers, 143–55. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2005. http://dx.doi.org/10.1002/3527605584.ch12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bretagne, J., D. Jacquin, and R. Ferdinand. "Kinetics of a Low-Pressure H2 Multipole Discharge Used for GaAs Treatment." In Plasma-Surface Interactions and Processing of Materials, 147–50. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1946-4_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Andre, V., F. Tchoubineh, F. Arefi, and J. Amouroux. "Surface Treatment of PP Films by a Non Equilibrium Low Pressure Plasma of NH3, N2,Ar." In Plasma-Surface Interactions and Processing of Materials, 507–10. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-1946-4_34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Franz, Gerhard. "The plasma." In Low Pressure Plasmas and Microstructuring Technology, 41–67. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85849-2_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Franz, Gerhard. "Plasma diagnostics." In Low Pressure Plasmas and Microstructuring Technology, 299–374. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85849-2_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sevillano, Evelio. "Microwave-Plasma Deposition of Diamond." In Low-Pressure Synthetic Diamond, 11–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-71992-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Cappelli, Mark A., and Thomas G. Owano. "Plasma-Jet Deposition of Diamond." In Low-Pressure Synthetic Diamond, 59–84. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-642-71992-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Schumacher, Robert W., and Robin J. Harvey. "Low-Pressure Plasma Opening Switches." In Opening Switches, 93–129. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4613-1929-0_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Franz, Gerhard. "Plasma deposition processes." In Low Pressure Plasmas and Microstructuring Technology, 375–438. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85849-2_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Franz, Gerhard. "Plasma etch processes." In Low Pressure Plasmas and Microstructuring Technology, 439–515. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-540-85849-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Low pressure plasma treatment"

1

Luciu, I., B. Mitu, V. Satulu, A. Matei, and G. Dinescu. "Low and atmospheric pressure plasma treatment of natural textile fibers." In 2008 XXIII International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV 2008). IEEE, 2008. http://dx.doi.org/10.1109/deiv.2008.4676839.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Byoung Ki Min, Jun Ho Seo, and Kwang Hyun Paek. "Surface treatment of tape substrates using atmospheric pressure low temperature plasma." In 2008 IEEE 35th International Conference on Plasma Science (ICOPS). IEEE, 2008. http://dx.doi.org/10.1109/plasma.2008.4590897.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Thiyagarajan, Magesh, and Xavier Gonzales. "Atmospheric pressure resistive barrier low temperature plasma treatment for food industry." In 2014 IEEE 41st International Conference on Plasma Sciences (ICOPS) held with 2014 IEEE International Conference on High-Power Particle Beams (BEAMS). IEEE, 2014. http://dx.doi.org/10.1109/plasma.2014.7012618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Ruzafa-Silvestre, Carlos, Pilar Carbonell-Blasco, Elena Orgiles-Calpena, and Francisca Aran Ais. "Low-pressure plasma treatment applied to polymeric materials for a sustainable footwear industry." In The 8th International Conference on Advanced Materials and Systems. INCDTP - Leather and Footwear Research Institute (ICPI), Bucharest, Romania, 2020. http://dx.doi.org/10.24264/icams-2020.iv.19.

Full text
Abstract:
In this paper INESCOP proposes the improvement of the bonding of footwear soling materials using the low-pressure plasma surface treatment as a non-polluting and resource-efficient technology by means of adhesive bonds, with a reactive hot melt polyurethane adhesive, as a more sustainable alternative to current chemical surface treatments such as halogenation. More precisely, low-pressure plasma is capable of cleaning and removing all impurities, such as oxides, oils and fats on material surface. Then, it is activated by producing new chemicals species on the top layer of the substrate. Thus, the materials’ surface acquires new surface functionalities, improving the compatibility adhesive-substrate and, therefore their adhesion properties. Furthermore, in this work the surface modifications produced in these materials of different polymeric nature have been optimised to increase their roughness, wettability, adhesive properties, etc., and have been validated through various experimental characterisation techniques. As a result, the samples treated with plasma meet the adhesion requirements for footwear materials. As a result, low-pressure plasma treatment has desmonstrated to be a green, alternative, and sustainable technology in line with European policies on circular economy, which enhances material surface properties by improving the adhesion bonding process.
APA, Harvard, Vancouver, ISO, and other styles
5

Hayashi, Nobuya, Akari Nakahigashi, Ryutaro Kawaguchi, Masaaki Goto, Akira Kobayashi, Josef Krasa, and Takeshi Miyasaka. "Treatment Characteristics of Second Order Structure of Proteins Using Low-Pressure Oxygen RF Plasma." In NEW TREND IN APPLIED PLASMA SCIENCE AND TECHNOLOGY: The Seventh International Symposium on Applied Plasma Science. AIP, 2010. http://dx.doi.org/10.1063/1.3508551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Szeremley, D., R. P. Brinkmann, T. Mussenbrock, S. Steves, P. Awakowicz, and M. Kushner. "Numerical simulation of a microwave driven low pressure plasma for pet bottle treatment." In 2012 IEEE 39th International Conference on Plasma Sciences (ICOPS). IEEE, 2012. http://dx.doi.org/10.1109/plasma.2012.6383630.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Yang, Guoqing, Yue Yang, Si Zhong, and Deyi Wang. "Surface treatment of micro-Al2O3 with atmospheric pressure and low temperature plasma." In 2016 27th International Symposium on Discharges and Electrical Insulation in Vacuum (ISDEIV). IEEE, 2016. http://dx.doi.org/10.1109/deiv.2016.7764013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Steiner, Cindy, J. Fahlteich, and E. Radlein. "Nanostructuring of Ethylene Tetrafluoroethylene Films by a Low Pressure Plasma Treatment Process." In Society of Vacuum Coaters Annual Technical Conference. Society of Vacuum Coaters, 2015. http://dx.doi.org/10.14332/svc15.proc.1973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Weberová, Zuzana. "Low-Pressure Cold Plasma Surface Treatment for Adhesion Improvement in Composite Structures." In 62nd Society of Vacuum Coaters Annual Technical Conference. Society of Vacuum Coaters, 2019. http://dx.doi.org/10.14332/svc19.proc.0063.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Lee, Jae-Ok, Woo Seok Kang, Min Hur, and Young-Hoon Song. "Optimization of low-pressure plasma reactor for high-speed surface treatment of polyimide substrate." In 2015 IEEE International Conference on Plasma Sciences (ICOPS). IEEE, 2015. http://dx.doi.org/10.1109/plasma.2015.7179529.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Low pressure plasma treatment"

1

Kuettner, Lindsey Ann. Atmospheric-Pressure Plasma Jet Surface Treatment for Use in Improving Adhesion. Office of Scientific and Technical Information (OSTI), September 2017. http://dx.doi.org/10.2172/1392798.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Herman, H., and R. A. Zatorski. Modular Low-Pressure Plasma Spray System for Coating of Machine Elements. Fort Belvoir, VA: Defense Technical Information Center, June 1986. http://dx.doi.org/10.21236/ada198658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fleetwood, James D., Elliot Slamovich, Rodney Wayne Trice, Aaron Christopher Hall, and James F. McCloskey. Doped solid oxide fuel cell electrolytes produced via combination of suspension plasma spray and very low pressure plasma spray. Office of Scientific and Technical Information (OSTI), October 2012. http://dx.doi.org/10.2172/1055901.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pastukhov, V. P., V. I. Ilgisonis, and A. A. Subbotin. Low beta equilibrium and stability for anisotropic pressure closed field line plasma confinement systems. Office of Scientific and Technical Information (OSTI), May 1994. http://dx.doi.org/10.2172/10161245.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Honaker, Rick, Aaron Noble, Wencai Zhang, and Tushar Gupta. Low-Temperature Plasma Treatment for Enhanced Recovery of Highly Valued Critical REEs from Coal. Office of Scientific and Technical Information (OSTI), January 2020. http://dx.doi.org/10.2172/1778177.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Johannes, J., T. Bartel, D. Sears, and J. Payne. Gemini: A hybrid plasma modelling capability for low pressure systems. User`s manual - V.1.7. Office of Scientific and Technical Information (OSTI), October 1996. http://dx.doi.org/10.2172/399683.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Laroussi, Mounir. Large Volume Non-Equilibrium Air Plasma at Atmospheric Pressure: A Novel Method with Low Power Requirements. Fort Belvoir, VA: Defense Technical Information Center, February 2007. http://dx.doi.org/10.21236/ada472062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Chiang, J. M., W. D. Bostick, D. P. Hoffman, W. H. Hermes, L. V. Jr Gibson, and A. A. Richmond. Surrogate formulations for thermal treatment of low-level mixed waste. Part 3: Plasma hearth process testing. Office of Scientific and Technical Information (OSTI), January 1994. http://dx.doi.org/10.2172/10161255.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Igor D. Kaganovich, Oleg V. Polomarov, and Constantine E. Theodosiou. Landau Damping and Anomalous Skin Effect in Low-pressure Gas Discharges: Self-consistent Treatment of Collisionless Heating. Office of Scientific and Technical Information (OSTI), January 2004. http://dx.doi.org/10.2172/821522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography