To see the other types of publications on this topic, follow the link: Low pressure turbine blade design.

Journal articles on the topic 'Low pressure turbine blade design'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Low pressure turbine blade design.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Hu, Site, Chao Zhou, and Shiyi Chen. "Large Eddy Simulation of Secondary Flows in an Ultra-High Lift Low Pressure Turbine Cascade at Various Inlet Incidences." International Journal of Turbo & Jet-Engines 37, no. 2 (September 25, 2020): 195–207. http://dx.doi.org/10.1515/tjj-2017-0020.

Full text
Abstract:
AbstractIncreasing the blade loading of a low pressure turbine blade decreases the number of blades, thus improving the aero-engine performance in terms of the weight and manufacture cost. Many studies focused on the blade-to-blade flow field of ultra-high lift low pressure turbines. The secondary flows of ultra-high lift low pressure turbines received much less attention. This paper investigates the secondary flows in an ultra-high lift low pressure turbine cascade T106C by large eddy simulation at a Reynolds number of 100,000. Both time-averaged and instantaneous flow fields of this ultra-high lift low pressure turbine are presented. To understand the effects of the inlet angle, five incidences of ‒10°, ‒5°, 0, +5° and +10° are investigated. The case at the design incidence is analyzed first. Detailed data is used to illustrate the how the fluids in boundary layers develops into secondary flows. Then, the cases with different inlet incidences are discussed. The aerodynamic performances are compared. The effect of blade loading on the vortex structures is investigated. The horseshoe vortex, passage vortex and the suction side corner vortex are very sensitive to the loading of the front part of the blade.
APA, Harvard, Vancouver, ISO, and other styles
2

Curtis, E. M., H. P. Hodson, M. R. Banieghbal, J. D. Denton, R. J. Howell, and N. W. Harvey. "Development of Blade Profiles for Low-Pressure Turbine Applications." Journal of Turbomachinery 119, no. 3 (July 1, 1997): 531–38. http://dx.doi.org/10.1115/1.2841154.

Full text
Abstract:
This paper describes a program of work, largely experimental, which was undertaken with the objective of developing an improved blade profile for the low-pressure turbine in aero-engine applications. Preliminary experiments were conducted using a novel technique. An existing cascade of datum blades was modified to enable the pressure distribution on the suction surface of one of the blades to be altered. Various means, such as shaped inserts, an adjustable flap at the trailing edge, and changing stagger were employed to change the geometry of the passage. These experiments provided boundary layer and lift data for a wide range of suction surface pressure distributions. The data were then used as a guide for the development of new blade profiles. The new blade profiles were then investigated in a low-speed cascade that included a set of moving bars upstream of the cascade of blades to simulate the effect of the incoming wakes from the previous blade row in a multistage turbine environment. Results are presented for two improved profiles that are compared with a datum representative of current practice. The experimental results include loss measurements by wake traverse, surface pressure distributions, and boundary layer measurements. The cascades were operated over a Reynolds number range from 0.7 × 105 to 4.0 × 105. The first profile is a “laminar flow” design that was intended to improve the efficiency at the same loading as the datum. The other is a more highly loaded blade profile intended to permit a reduction in blade numbers. The more highly loaded profile is the most promising candidate for inclusion in future designs. It enables blade numbers to be reduced by 20 percent, without incurring any efficiency penalty. The results also indicate that unsteady effects must be taken into consideration when selecting a blade profile for the low-pressure turbine.
APA, Harvard, Vancouver, ISO, and other styles
3

Panovsky, J., and R. E. Kielb. "A Design Method to Prevent Low Pressure Turbine Blade Flutter." Journal of Engineering for Gas Turbines and Power 122, no. 1 (October 20, 1999): 89–98. http://dx.doi.org/10.1115/1.483180.

Full text
Abstract:
A design approach to avoid flutter of low pressure turbine blades in aircraft engines is described. A linearized Euler analysis, previously validated using experimental data, is used for a series of parameter studies. The influence of mode shape and reduced frequency are investigated. Mode shape is identified as the most important contributor to determining the stability of a blade design. A new stability parameter is introduced to gain additional insight into the key contributors to flutter. This stability parameter is derived from the influence coefficient representation of the cascade, and includes only contributions from the reference blade and its immediate neighbors. This has the effect of retaining the most important contributions to aerodynamic damping while filtering out terms of less significance. This parameter is utilized to develop a stability map, which provides the critical reduced frequency as a function of torsion axis location. Rules for preliminary design and procedures for detailed design analysis are defined. [S0742-4795(00)01401-0]
APA, Harvard, Vancouver, ISO, and other styles
4

Jiang, Chuhua, Xuedao Shu, Junhua Chen, Lingjie Bao, and Yawen Xu. "Research on Blade Design of Lift–Drag-Composite Tidal-Energy Turbine at Low Flow Velocity." Energies 14, no. 14 (July 14, 2021): 4258. http://dx.doi.org/10.3390/en14144258.

Full text
Abstract:
The research on tidal-current energy-capture technology mainly focuses on the conditions of high flow velocity, focusing on the use of differential pressure lift, while the average flow velocity in most sea areas of China is less than 1.5 m/s, especially in the marine aquaculture area, where tidal-current energy is needed to provide green energy locally. Due to the low flow velocity of this type of sea area, it seriously affects the effect of differential pressure lift, which is conducive to exerting the effect of impact resistance. In this regard, the coupling effect of the differential pressure lift and the impact resistance on the blade torque is comprehensively considered, this research puts forward the design method of the lift-–drag-composite thin-plate arc turbine blade. Based on the blade element momentum (BEM) theory and Bernoulli’s principle, the turbine dynamic model was established, and the nonlinear optimization method was used to solve the shape parameters of the turbine blades, and the thin-plate arc and NACA airfoil blade turbines were trial-produced under the same conditions. A model experiment was carried out in the experimental pool, and the Xiangshan sea area in Ningbo, East China Sea was taken as the experimental sea area. The results of the two experiments showed the same trend, indicating that the energy-harvesting performance of the lift–drag-composite blade was significantly better than that of the lift blade under the conditions of low flow velocity and small radius, which verified the correctness of the blade design method, and can promote the research and development of tidal energy under the conditions of low flow velocity and small radius.
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Jing, Fan Wu, Chun Wang, Ziyue Mei, An Han, and Danmei Xie. "The Effect of Suction Side Tubercles on Torque Output of a Steam Turbine Low-Pressure Last Stage Blade." Energies 13, no. 8 (April 13, 2020): 1889. http://dx.doi.org/10.3390/en13081889.

Full text
Abstract:
Flow separation and different kinds of stall flows occur under low load conditions for steam turbine last stage blades. In order to delay the flow separation and increase turbine power production, we applied suction side tubercles on steam turbine low-pressure last stage blades in the present study. The amplitude, wavelength, position, and thickness were considered as our design variables. We used the orthogonal test method (OTM) to generate modified blades with different tubercle variables that were then numerically simulated by a three-dimensional computational fluid dynamics (CFD) analysis. The blade axial torque of the nine modified tests was compared with the original blade. The results showed that the application of bionic tubercles on the suction side of the steam turbine blade is a promising solution to improve the blade axial torque for all modified tests with a maximum increase of 33.32% due to the turbulent vortices generated by bionic tubercles.
APA, Harvard, Vancouver, ISO, and other styles
6

Nowinski, M., and J. Panovsky. "Flutter Mechanisms in Low Pressure Turbine Blades." Journal of Engineering for Gas Turbines and Power 122, no. 1 (October 20, 1999): 82–88. http://dx.doi.org/10.1115/1.483179.

Full text
Abstract:
The work described in this paper is part of a comprehensive research effort aimed at eliminating the occurrence of low pressure turbine blade flutter in aircraft engines. The results of fundamental unsteady aerodynamic experiments conducted in an annular cascade are studied in order to improve the overall understanding of the flutter mechanism and to identify the key flutter parameters. In addition to the standard traveling wave tests, several other unique experiments are described. The influence coefficient technique is experimentally verified for this class of blades. The beneficial stabilizing effect of mistuning is also directly demonstrated. Finally, the key design parameters for flutter in low pressure turbine blades are identified. In addition to the experimental effort, correlating analyses utilizing linearized Euler methods demonstrate that these computational techniques are adequate to predict turbine flutter. [S0742-4795(00)01301-6]
APA, Harvard, Vancouver, ISO, and other styles
7

Pullan, Graham, and Neil W. Harvey. "Influence of Sweep on Axial Flow Turbine Aerodynamics at Midspan." Journal of Turbomachinery 129, no. 3 (July 14, 2006): 591–98. http://dx.doi.org/10.1115/1.2472397.

Full text
Abstract:
Sweep, when the stacking axis of the blade is not perpendicular to the axisymmetric streamsurface in the meridional view, is often an unavoidable feature of turbine design. Although a high aspect ratio swept blade can be designed to achieve the same pressure distribution as an unswept design, this paper shows that the swept blade will inevitably have a higher profile loss. A modified Zweifel loading parameter, taking sweep into account, is first derived. If this loading coefficient is held constant, it is shown that sweep reduces the required pitch-to-chord ratio and thus increases the wetted area of the blades. Assuming fully turbulent boundary layers and a constant dissipation coefficient, the effect of sweep on profile loss is then estimated. A combination of increased blade area and a raised pressure surface velocity means that the profile loss rises with increasing sweep. The theory is then validated using experimental results from two linear cascade tests of highly loaded blade profiles of the type found in low-pressure aeroengine turbines: one cascade is unswept, the other has 45deg of sweep. The swept cascade is designed to perform the same duty with the same loading coefficient and pressure distribution as the unswept case. The measurements show that the simple method used to estimate the change in profile loss due to sweep is sufficiently accurate to be a useful aid in turbine design.
APA, Harvard, Vancouver, ISO, and other styles
8

Maulana, Muhammad Ilham, Ahmad Syuhada, and Fiqih Almas. "Computational Fluid Dynamic Predictions on Effects of Screw Number on Performance of Single Blade Archimedes Screw Turbine." E3S Web of Conferences 67 (2018): 04027. http://dx.doi.org/10.1051/e3sconf/20186704027.

Full text
Abstract:
One of the alternative solutions to reduce the impact of electricity crisis in Aceh and other isolated areas in Indonesia is by the construction of small-scale hydro power plants that can work efficiently on the heads lower than 10 meters. One suitable type of turbine applied to the head below 10 meters is the Archimedes screw turbine. Due to the lack of information about the application of low head power plants, resulting in applications of this type of turbine is still less in Indonesia. This paper examined the appropriate turbine model. Before experimental turbine testing, turbines were designed theoretically first and then analyzed numerically. The flow velocity and pressure patterns within the turbine were analyzed using ANSYS CFD (Computational Fluid Dynamic) software under design conditions for 7, 9 and 11 screw numbers for single blade turbine. Based on the results of pressure analysis, speed and turbulent kinetic energy, it found that turbine performance using 11 blades is better among the three turbines. However, the highest average speed was obtained on the turbine using 7 screws, which maximum pressure obtained on a turbine 7 screws of 1406 Pa, on 9 screws on plane 1301 Pa and at 11 screws of 1175 Pa. Based on the results of the analysis, it showed that the smaller the distance between the channel and turbine blades, the results were more efficient due to the absence of wasted streams. Therefore, the flow pressure in the inlet position all directly leaded to the tip off the blade to produce a momentum.
APA, Harvard, Vancouver, ISO, and other styles
9

Vogt, Damian M., and Torsten H. Fransson. "Experimental Investigation of Mode Shape Sensitivity of an Oscillating Low-Pressure Turbine Cascade at Design and Off-Design Conditions." Journal of Engineering for Gas Turbines and Power 129, no. 2 (August 7, 2006): 530–41. http://dx.doi.org/10.1115/1.2436567.

Full text
Abstract:
The effect of negative incidence operation on mode shape sensitivity of an oscillating low-pressure turbine rotor blade row has been studied experimentally. An annular sector cascade has been employed in which the middle blade has been made oscillating in controlled three-dimensional rigid-body modes. Unsteady blade surface pressure data were acquired at midspan on the oscillating blade and two pairs of nonoscillating neighbor blades and reduced to aeroelastic stability data. The test program covered variations in reduced frequency, flow velocity, and inflow incidence; at each operating point, a set of three orthogonal modes was tested such as to allow for generation of stability plots by mode recombination. At nominal incidence, it has been found that increasing reduced frequency has a stabilizing effect on all modes. The analysis of mode shape sensitivity yielded that the most stable modes are of bending type with axial to chordwise character, whereas high sensitivity has been found for torsion-dominated modes. Negative incidence operation caused the flow to separate on the fore pressure side. This separation was found to have a destabilizing effect on bending modes of chordwise character, whereas an increase in stability could be noted for bending modes of edgewise character. Variations of stability parameter with inflow incidence have hereby found being largely linear within the range of conditions tested. For torsion-dominated modes, the influence on aeroelastic stability was close to neutral.
APA, Harvard, Vancouver, ISO, and other styles
10

Kosowski, Krzysztof, and Marian Piwowarski. "Design Analysis of Micro Gas Turbines in Closed Cycles." Energies 13, no. 21 (November 5, 2020): 5790. http://dx.doi.org/10.3390/en13215790.

Full text
Abstract:
The problems faced by designers of micro-turbines are connected with a very small volume flow rate of working media which leads to small blade heights and a high rotor speed. In the case of gas turbines this limitation can be overcome by the application of a closed cycle with very low pressure at the compressor inlet (lower than atmospheric pressure). In this way we may apply a micro gas turbine unit of accepted efficiency to work in a similar range of temperatures and the same pressure ratios, but in the range of smaller pressure values and smaller mass flow rate. Thus, we can obtain a gas turbine of a very small output but of the efficiency typical of gas turbines with a much higher power. In this paper, the results of the thermodynamic calculations of the turbine cycles are discussed and the designed gas turbine flow parts are presented. Suggestions of the design solutions of micro gas turbines for different values of power output are proposed. This new approach to gas turbine arrangement makes it possible to build a gas turbine unit of a very small output and a high efficiency. The calculations of cycle and gas turbine design were performed for different cycle parameters and different working media (air, nitrogen, hydrogen, helium, xenon and carbon dioxide).
APA, Harvard, Vancouver, ISO, and other styles
11

Li, Yan, Fang Feng, Wen Qiang Tian, and Kotaro Tagawa. "Numerical Simulation on the Static Torque Performance of Vertical Axis Wind Turbine with Different Blade Airfoils." Applied Mechanics and Materials 84-85 (August 2011): 702–5. http://dx.doi.org/10.4028/www.scientific.net/amm.84-85.702.

Full text
Abstract:
Recently, the straight-bladed vertical axis wind turbine (SB-VAWT) receives more and more attentions for its simple design, low cost, and good maintenance. The torque performance of the SB-VAWT is greatly affected by the blade airfoil. In order to research the static torque characteristics of SB-VAWT with symmetrical and non-symmetrical blade airfoil, numerical simulations by 2D CFD method were carried out on three kinds of blade airfoils including NACA0018, NACA2418 and NACA4418 at different azimuth angles. Furthermore, the static torque coefficient of the SB-VAWT with four blades with the three kinds of blade airfoils was calculated. The pressure and velocity fields were also obtained to analyze the static torque performance. Based on these results, the effects of blade airfoils on the starting torque performance of the SB-VAWT were compared and discussed.
APA, Harvard, Vancouver, ISO, and other styles
12

Lüddecke, Bernhardt, Dietmar Filsinger, and Jan Ehrhard. "On Mixed Flow Turbines for Automotive Turbocharger Applications." International Journal of Rotating Machinery 2012 (2012): 1–14. http://dx.doi.org/10.1155/2012/589720.

Full text
Abstract:
Due to increased demands for improved fuel economy of passenger cars, low-end and part-load performance is of key importance for the design of automotive turbocharger turbines. In an automotive drive cycle, a turbine which can extract more energy at high pressure ratios and lower rotational speeds is desirable. In the literature it is typically found that radial turbines provide peak efficiency at speed ratios of 0.7, but at high pressure ratios and low rotational speeds the blade speed ratio will be low and the rotor will experience high values of positive incidence at the inlet. Based on fundamental considerations, it is shown that mixed flow turbines offer substantial advantages for such applications. Moreover, to prove these considerations an experimental assessment of mixed flow turbine efficiency and optimal blade speed ratio is presented. This has been achieved using a new semi-unsteady measurement approach. Finally, evidence of the benefits of mixed flow turbine behaviour in engine operation is given. Regarding turbocharged engine simulation, the benefit of wide-ranging turbine map measurement data as well as the need for reasonable turbine map extrapolation is illustrated.
APA, Harvard, Vancouver, ISO, and other styles
13

Kielb, Robert, Jack Barter, Olga Chernycheva, and Torsten Fransson. "Flutter of Low Pressure Turbine Blades With Cyclic Symmetric Modes: A Preliminary Design Method." Journal of Turbomachinery 126, no. 2 (April 1, 2004): 306–9. http://dx.doi.org/10.1115/1.1650380.

Full text
Abstract:
A current preliminary design method for flutter of low pressure turbine blades and vanes only requires knowledge of the reduced frequency and mode shape (real). However, many low pressure turbine (LPT) blade designs include a tip shroud that mechanically connects the blades together in a structure exhibiting cyclic symmetry. A proper vibration analysis produces a frequency and complex mode shape that represents two real modes phase shifted by 90 deg. This paper describes an extension to the current design method to consider these complex mode shapes. As in the current method, baseline unsteady aerodynamic analyses must be performed for the three fundamental motions, two translations and a rotation. Unlike the current method work matrices must be saved for a range of reduced frequencies and interblade phase angles. These work matrices are used to generate the total work for the complex mode shape. Since it still only requires knowledge of the reduced frequency and mode shape (complex), this new method is still very quick and easy to use. Theory and an example application are presented.
APA, Harvard, Vancouver, ISO, and other styles
14

Bryce, J. D., M. R. Litchfield, and N. P. Leversuch. "The Design, Performance and Analysis of a High Work Capacity Transonic Turbine." Journal of Engineering for Gas Turbines and Power 107, no. 4 (October 1, 1985): 931–37. http://dx.doi.org/10.1115/1.3239838.

Full text
Abstract:
This paper describes the design and testing of a high work capacity single-stage transonic turbine of aerodynamic duty tailored to the requirements of driving the high-pressure core of a low cost turbofan engine. Aerodynamic loading was high for this duty (ΔH/U2 = 2.1) and a major objective in the design was the control of the resulting transonic flow to achieve good turbine performance. Practical and coolable blading was a design requirement. At the design point (pressure ratio = 4.48), a turbine total to total efficiency of 87.0 percent was measured—this being based on measured shaft power and a tip clearance of 1.4 percent of blade height. In addition, the turbine was comprehensively instrumented to allow measurement of aerofoil surface static pressures on both stator and rotor—the latter being expedited via a rotating scanivalve system. Downstream area traverses were also conducted. Analysis of these measurements indicates that the turbine operates at overall reaction levels lower than design but the rotor blade performs efficiently.
APA, Harvard, Vancouver, ISO, and other styles
15

Lv, Jinlei, Wenxian Yang, Haiyang Zhang, Daxiong Liao, Zebin Ren, and Qin Chen. "A Feasibility Study to Reduce Infrasound Emissions from Existing Wind Turbine Blades Using a Biomimetic Technique." Energies 14, no. 16 (August 11, 2021): 4923. http://dx.doi.org/10.3390/en14164923.

Full text
Abstract:
Infrasound, i.e., low-frequency noise in the frequency range of 10–200 Hz, produced by rotating wind turbine blades has become a matter of concern because it is harmful to human health. Today, with the rapid increase of wind turbine size, this kind of noise is more worrying than ever. Although much effort has been made to design quiet wind turbine blades, today there is still a lack of effective techniques to reduce infrasound emissions from existing blades. To fill this gap in technology, a biomimetic technique that can be readily applied to reduce infrasound emissions of existing wind turbine blades is studied in this paper using both numerical simulation and experimental testing approaches. The numerical study of the technique is based on the analysis of the sound field distribution near the blade, which is derived by performing both aerodynamic and acoustic simulations of the blade. The experimental study of the technique is based on laboratory tests of two scale models of the blade. Both numerical and experimental studies have shown that the shedding vortices behind the blade can be successfully suppressed by semi-cylindrical rings wrapped on the blade. Consequently, both infrasound and the overall sound pressure level of the noise produced by the blade are significantly reduced. Although the rings fail to show good performance in reducing high-frequency noise, it is not a problem for human health because high-frequency noise is weak and moreover it attenuates rapidly as distance increases. The research also showed that the proposed technique can, not only reduce the infrasound produced by the blade, but can also improve the power coefficient of wind turbines.
APA, Harvard, Vancouver, ISO, and other styles
16

Ma, Zhe, Baoshan Zhu, Cong Rao, and Yonghong Shangguan. "Comprehensive Hydraulic Improvement and Parametric Analysis of a Francis Turbine Runner." Energies 12, no. 2 (January 19, 2019): 307. http://dx.doi.org/10.3390/en12020307.

Full text
Abstract:
Hydraulic turbines are usually required to operate in a wide range. The operation at off-design conditions not only reduces the unit efficiency, but also significantly deteriorates the dynamic stability of the turbines. In order to develop a turbine runner with good performances under multi operation conditions, a comprehensive hydraulic improvement has been done of a Francis turbine runner with a multipoint and multi-objective optimization design system. Compared with the initial runner, the runner generated from this method has a satisfactory improvement. In detail, unit efficiencies of the preferred runner are increased by 0.91%, 0.47% and 0.37%, respectively, under the rated head, a high head and the maximum head. The lowest pressure at blade surface is improved by 376.2 kPa under the rated head. CFD calculations are conducted to analyze the flow conditions inside of the preferred runner. In addition, runners with different main design inputs, namely blade lean, blade loading and blade meridional shape are furtherly investigated to reveal their relationship with runner’s internal flow and outer performances. In summary, this optimization system supplies satisfactory results and convincing recommendations to determine the design inputs for low-head Francis turbine runners.
APA, Harvard, Vancouver, ISO, and other styles
17

Kreitmeier, F., and R. Greim. "Optimization of blade—diffuser interaction for improved turbine performance." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 217, no. 4 (January 1, 2003): 443–51. http://dx.doi.org/10.1243/095765003322315504.

Full text
Abstract:
Flowfields within turbines are generally three-dimensional and unsteady. Typically, the flow-fields in the interaction zone between the last stage and the diffuser are strongly inhomogeneous. This non-uniformity strongly limits the downstream diffusion process, so that significant improvement can be achieved by making the total pressure field in this zone more uniform. One way to achieve this is by using kinks in the endwall contours and, if necessary, one or two splitters. The use of balance-based space averaging and modelling procedures can help to characterize these flows, and to develop an optimum interaction zone and diffuser geometry. In the study described here, as an example the interaction zone of high-pressure/intermediate-pressure (HP/IP) and low-pressure (LP) diffusers of steam turbines were numerically and partly experimentally optimized for a fixed blading and exhaust. The operating conditions were also kept constant except that for low pressures the flowfield was studied for a range of back pressures (i.e. exhaust velocities). The optimization process starts with an initial flowfield in the interaction zone generated numerically or experimentally. Using these data a design procedure is applied that creates both a much more uniform total pressure field at the last stage exit and a diffuser geometry possibly with one or two splitters and proven for an earlier LP design experimentally. It was demonstrated that, depending on the inhomogeneity of the flow from the upstream stage, a performance improvement of several percentage points could be achieved.
APA, Harvard, Vancouver, ISO, and other styles
18

Xu, Zhi Qiang. "Research on the Optimization Design of Gas-Solid Coupling of Wind Turbine Blades." Advanced Materials Research 1022 (August 2014): 143–46. http://dx.doi.org/10.4028/www.scientific.net/amr.1022.143.

Full text
Abstract:
The effects of high-altitude wind shear of wind speed should be considered, the appropriate number of distribution group should be determined and the distribution of wind speed hybrid model parameters and solving should be loaded onto the blades. When the stress of rotor blade is analyzed, the elastic deformation of the blades and the effects of the vibration of oscillating flow field on reaction of the blades must be considered during the operation. Thus the laws of blade load distribution and the corresponding deformation can be accurately calculated to analyze the interplay between deformation vibration airflow and paddle, to determine the law of deformation of rotor blades, the surface pressure distribution, stress distribution and blade design safety factors. When wind load changes with the wind speed, the adaptive blades are powered by aeroelastic, the law of wielding and flapping of the blade will be studied. The torsion coupling effects of adaptive blade, blade bending ,the law of torsional deformation variation of the angle of attack and the impact on aeroelastic blades structural strength will be explored. The results of this study design will be optimized as the power factor, improving the stability of the design of wind turbine power output, reducing material consumption blades absorb vibration and reducing wind load maneuvering to avoid blade stall achieve pitch control. Thus it provides a theoretical basis for optimal design of strength and stiffness of the elongated paddles.
APA, Harvard, Vancouver, ISO, and other styles
19

Young, J. B., and K. K. Yau. "The Inertial Deposition of Fog Droplets on Steam Turbine Blades." Journal of Turbomachinery 110, no. 2 (April 1, 1988): 155–62. http://dx.doi.org/10.1115/1.3262175.

Full text
Abstract:
A theoretical approach for calculating the rate of deposition of fog droplets on steam turbine blades by inertial impaction is described. Deposition rates are computed by tracking a number of droplet path lines through a specified blade-to-blade vapor flowfield and identifying the limiting trajectories that just intersect the blade surface. A new technique for performing the calculations efficiently has been developed whereby the mathematical stiffness of the governing equations is removed, thus allowing the numerical integration to proceed stably with comparatively large time increments. For high accuracy, the vapor flowfield is specified by a quasi-three-dimensional flow calculation involving both meridional and blade-to-blade plane calculations. Results are presented for two representative “test cases,” namely the final stage blading of the low-pressure cylinder of a 500 MW turbine and a typical stage in a high-pressure wet steam turbine. The effect on the deposition rate of fog droplet size and blade profile geometry is investigated for both on- and off-design flowfields. Comparisons are made with the predictions of a simplified theory for inertial deposition and the effect of blade rotation in flows with high pitch angles is discussed.
APA, Harvard, Vancouver, ISO, and other styles
20

Kim, Seung-Jun, Jun-Won Suh, Young-Seok Choi, Jungwan Park, No-Hyun Park, and Jin-Hyuk Kim. "Inter-Blade Vortex and Vortex Rope Characteristics of a Pump-Turbine in Turbine Mode under Low Flow Rate Conditions." Water 11, no. 12 (December 3, 2019): 2554. http://dx.doi.org/10.3390/w11122554.

Full text
Abstract:
Pump-turbines are often used to provide a stable power supply with a constant frequency in response to intermittent renewable energy resources. However, existing pumped-storage power stations often operate under off-design conditions because of the increasing amounts of inconsistent renewable resources that have been added to the grid. Under off-design low flow rate conditions, inter-blade vortex and vortex rope phenomena usually develop in the runner and draft tube passages, respectively, in turbine mode. These vortices cause complicated flow patterns and pressure fluctuations that destabilize the operation of the pump-turbine system. Therefore, this study investigates the influence of correlation between the inter-blade vortex and vortex rope phenomena under low flow rate conditions. Three-dimensional steady- and unsteady-state Reynolds-averaged Navier–Stokes equations were calculated with a two-phase flow analysis using a shear stress transport as the turbulence model. The inter-blade vortices in the runner passages were captured well at the low flow rate conditions, and the vortex rope was found to develop within a specific range of low flow rates. These vortex regions showed a blockage effect and complicated flow characteristics with backflow in the passages. Moreover, higher unsteady pressure characteristics occurred at locations where the vortices were especially pronounced.
APA, Harvard, Vancouver, ISO, and other styles
21

Hodson, H. P., and R. G. Dominy. "The Off-Design Performance of a Low-Pressure Turbine Cascade." Journal of Turbomachinery 109, no. 2 (April 1, 1987): 201–9. http://dx.doi.org/10.1115/1.3262086.

Full text
Abstract:
The ability of a given blade profile to operate over a wide range of conditions is often of the utmost importance. This paper reports the off-design performance of a low-pressure turbine rotor root section in a linear cascade. Data were obtained using pneumatic probes and surface flow visualization. The effects of incidence (+9, 0, −20 deg), Reynolds (1.5, 2.9, 6.0 × 105), pitch-chord ratio (0.46, 0.56, 0.69), and inlet boundary layer thickness (0.011, 0.022 δ*/C) are discussed. Particular attention is paid to the three dimensionality of the flow field. Significant differences in the detail of the flow occur over the range of operating conditions investigated. It is found that the production of new secondary loss is greatest at lower Reynolds numbers, positive incidence, and the higher pitch-chord ratios.
APA, Harvard, Vancouver, ISO, and other styles
22

Giovannini, Matteo, Filippo Rubechini, Michele Marconcini, Andrea Arnone, and Francesco Bertini. "Reducing Secondary Flow Losses in Low-Pressure Turbines: The “Snaked” Blade." International Journal of Turbomachinery, Propulsion and Power 4, no. 3 (August 21, 2019): 28. http://dx.doi.org/10.3390/ijtpp4030028.

Full text
Abstract:
This paper presents an innovative design for reducing the impact of secondary flows on the aerodynamics of low-pressure turbine (LPT) stages. Starting from a state-of-the-art LPT stage, a local reshaping of the stator blade was introduced in the end-wall region in order to oppose the flow turning deviation. This resulted in an optimal stator shape, able to provide a more uniform exit flow angle. The detailed comparison between the baseline stator and the redesigned one allowed for pointing out that the rotor row performance increased thanks to the more uniform inlet flow, while the stator losses were not significantly affected. Moreover, it was possible to derive some design rules and to devise a general blade shape, named ‘snaked’, able to ensure such results. This generalization translated in an effective parametric description of the ‘snaked’ shape, in which few parameters are sufficient to describe the optimal shape modification starting from a conventional design. The “snaked” blade concept and its design have been patented by Avio Aero. The stator redesign was then applied to a whole LPT module in order to evaluate the potential benefit of the ‘snaked’ design on the overall turbine performance. Finally, the design was validated by means of an experimental campaign concerning the stator blade. The spanwise distributions of the flow angle and pressure loss coefficient at the stator exit proved the effectiveness of the redesign in providing a more uniform flow to the successive row, while preserving the original stator losses.
APA, Harvard, Vancouver, ISO, and other styles
23

., Sutrisno, Setyawan Bekti Wibowo, and Sigit Iswahyudi. "Numerical Research on the Vortex Center on the Forward-Swept 3-D Wind Turbine Blades at Low Rotational Speed." Modern Applied Science 12, no. 12 (November 16, 2018): 80. http://dx.doi.org/10.5539/mas.v12n12p80.

Full text
Abstract:
This paper studies the CFD simulation of forward three-dimensional (3-D) horizontal axis wind turbine (HAWT) blades. Using logarithmic grid and Q-criterion to learn the vortex dynamics around the blades at low rotational speed. The computational fluid dynamics (CFD) simulation uses Q-criterion to probe vortices and logarithmic grid to emphasize the micro-gridding effect of the turbulent boundary layer. The visualization & measurement of the simulation results give the coefficient of pressure (Cp). For forward 3-D wind turbine blade, at low rotational speed, the strongly accelerated laminar region surrounds the lower blade, and the decelerated tip blade region coalesce each other give rise to a reverse limiting streamline, eroding the laminar region further until a little is left on the tip of the blade. The "reverse limiting streamline" grows inward radially, the area is narrowing closing to the leading edge of the blade tip. The second side of the rolled-up vortex appears the velocity ratio (Uc/Ulocal) of the second vortices are higher than the main vortex cores. For radius R=1.547 m, U=12 m/s, at 210 RPM, CL and CD values reach a maximum with fully laminar tip conditions. While at 120 RPM, the CL and CD values reach a minimum in the absence of laminar tips. The results show the detailed vortex dynamic pattern surround the blades, give more understanding to design laminar 3-D blade toward a noiseless wind turbine system.
APA, Harvard, Vancouver, ISO, and other styles
24

Pátý, Marek, and Jan Halama. "ON THE USE OF A FLUX-SPLITTING SCHEME IN THE NUMERICAL FLUTTER ANALYSIS OF A LOW-PRESSURE TURBINE STAGE." Acta Polytechnica 61, SI (February 10, 2021): 135–47. http://dx.doi.org/10.14311/ap.2021.61.0135.

Full text
Abstract:
The endeavour to increase the power output of steam turbines results in the design of low-pressure stages with large diameters. Such designs, featuring long and thin blades, are increasingly susceptible to unfavourable aeroelastic effects. The interaction of structure and flow may induce blade vibrations, known as flutter, which act detrimentally on the operational life of the machine. The present work employs a time-marching numerical simulation to investigate the flutter behaviour of a low-pressure transonic turbine cascade. Its blades are subject to a harmonic motion based on the results of a structural analysis and its susceptibility to flutter is evaluated via the energy method. The computations are performed with an in-house Finite Volume Method code. The flow model is based on 2D Euler equations in Arbitrary Lagrangian-Eulerian formulation with the AUSM+-up scheme for inviscid flux discretization. A higher-order spatial accuracy is achieved by using a MUSCL approach, for which both the gradient reconstruction and the slope limiting are given a careful examination-by comparing the convergence and accuracy of multiple methods. The computational model is validated by experimental data on the Fourth Standard Configuration turbine cascade.
APA, Harvard, Vancouver, ISO, and other styles
25

Slama, Vaclav, Bartolomej Rudas, Jiri Ira, Ales Macalka, Petr Eret, and Volodymyr Tsymbalyuk. "CFD prediction of flutter of turbine blades and comparison with an experimental test case." MATEC Web of Conferences 168 (2018): 02005. http://dx.doi.org/10.1051/matecconf/201816802005.

Full text
Abstract:
Last stage blades are a key element of steam turbines and in many ways determine the turbine configuration alongside with the overall turbine performance. The total efficiency of the low pressure turbine section can be increased by extending the last stage blades. The design process of such long blades involves a flutter analysis using CFD tools which have to be validated by measurements in test facilities under various operating conditions. Experimental data obtained from a subsonic wind tunnel with an oscillating turbine blade cascade, which is available at the Department of Power System Engineering at the University of West Bohemia, was compared with simulations in ANSYS CFX currently used in the Doosan Škoda Power. The paper provides a brief summary of experimental rig description, CFD tool setup and the results for the case of a travelling wave mode with the pure torsion motion of amplitude of 0.5°, Ma = 0.2, reduced frequency of 0.38 and angle of attack +5°.
APA, Harvard, Vancouver, ISO, and other styles
26

Kroeger, Jim. "Large and Small Turbofans." Mechanical Engineering 138, no. 09 (September 1, 2016): 80–82. http://dx.doi.org/10.1115/1.2016-sep-7.

Full text
Abstract:
This article presents a study on common design challenges of large and small turbofans. Turbofan engines powering large transport aircraft have demonstrated much different design objectives than business-jet turbofans including thrust, range, mission type, development cost, unit price, maintainability standards, and production quantities. Prolific use of ‘thermal barrier coating’ has helped turbine designers compensate for the inability to distribute a large quantity of small diameter film holes over the turbine blade surface. The historical trends in overall pressure ratio observed for both large and small turbofans have parallel slopes. Small turbofans lag behind the larger engines due to the miniaturization required for low flowrates characteristic of the smaller engines. These trends are qualitatively demonstrated, showing the growth in both the overall engine pressure ratio and turbine inlet temperature for several decades. It has been noted in this paper that the importance of high-performance impeller designs and intricate turbine blade cooling concepts for very low compressor exit corrected flows has not yet been fully appreciated.
APA, Harvard, Vancouver, ISO, and other styles
27

Corriveau, D., and S. A. Sjolander. "Influence of Loading Distribution on the Off-Design Performance of High-Pressure Turbine Blades." Journal of Turbomachinery 129, no. 3 (August 12, 2006): 563–71. http://dx.doi.org/10.1115/1.2464145.

Full text
Abstract:
Linear cascade measurements for the aerodynamic performance of a family of three transonic, high-pressure (HP) turbine blades have been presented previously by the authors. The airfoils were designed for the same inlet and outlet velocity triangles but varied in their loading distributions. The previous papers presented results for the design incidence at various exit Mach numbers, and for off-design incidence at the design exit Mach number of 1.05. Results from the earlier studies indicated that by shifting the loading towards the rear of the airfoil an improvement in the profile loss performance of the order of 20% could be obtained near the design Mach number at design incidence. Measurements performed at off-design incidence, but still at the design Mach number, showed that the superior performance of the aft-loaded blade extended over a range of incidence from about −5.0deg to +5.0deg relative to the design value. For the current study, additional measurements were performed at off-design Mach numbers from about 0.5 to 1.3 and for incidence values of −10.0deg, +5.0deg, and +10.0deg relative to design. The corresponding Reynolds numbers, based on outlet velocity and true chord, varied from roughly 4×105 to 10×105. The measurements included midspan losses, blade loading distributions, and base pressures. In addition, two-dimensional Navier–Stokes computations of the flow were performed to help in the interpretation of the experimental results. The results show that the superior loss performance of the aft-loaded profile, observed at design Mach number and low values of off-design incidence, does not extend readily to off-design Mach numbers and larger values of incidence. In fact, the measured midspan loss performance for the aft-loaded blade was found to be inferior to, or at best equal to, that of the baseline, midloaded airfoil at most combinations of off-design Mach number and incidence. However, based on the observations made at design and off-design flow conditions, it appears that aft-loading can be a viable design philosophy to employ in order to reduce the losses within a blade row provided the rearward deceleration is carefully limited. The loss performance of the front-loaded blade is inferior or at best equal to that of the other two blades for all operating conditions.
APA, Harvard, Vancouver, ISO, and other styles
28

Howell, R. J., and K. M. Roman. "Loss reduction on ultra high lift low-pressure turbine blades using selective roughness and wake unsteadiness." Aeronautical Journal 111, no. 1118 (April 2007): 257–66. http://dx.doi.org/10.1017/s0001924000004504.

Full text
Abstract:
This paper describes how it is possible to reduce the profile losses on ultra high lift low pressure (LP) turbine blade profiles with the application of selected surface roughness and wake unsteadiness. Over the past several years, an understanding of wake interactions with the suction surface boundary layer on LP turbines has allowed the design of blades with ever increasing levels of lift. Under steady flow conditions, ultra high lift profiles would have large (and possibly open) separation bubbles present on the suction side which result from the very high diffusion levels. The separation bubble losses produced by it are reduced when unsteady wake flows are present. However, LP turbine blades have now reached a level of loading and diffusion where profile losses can no longer be controlled by wake unsteadiness alone. The ultra high lift profiles investigated here were created by attaching a flap to the trailing edge of another blade in a linear cascade — the so called flap-test technique. The experimental set-up used in this investigation allows for the simulation of upstream wakes by using a moving bar system. Hotwire and hotfilm measurements were used to obtain information about the boundary-layer state on the suction surface of the blade as it evolved in time. Measurements were taken at a Reynolds numbers ranging between 100,000 and 210,000. Two types of ultra high lift profile were investigated; ultra high lift and extended ultra high lift, where the latter has 25% greater back surface diffusion as well as a 12% increase in lift compared to the former. Results revealed that distributed roughness reduced the size of the separation bubble with steady flow. When wakes were present, the distributed roughness amplified disturbances in the boundary layer allowing for more rapid wake induced transition to take place, which tended to eliminate the separation bubble under the wake. The extended ultra high lift profile generated only slightly higher losses than the original ultra high lift profile, but more importantly it generated 12% greater lift.
APA, Harvard, Vancouver, ISO, and other styles
29

Liu, Ben Wu, Jian Jun Wang, and Hui Yi Yuan. "Fracture Failure Mechanism Analysis of LP Second Stage Blades of a Gas Turbine." Applied Mechanics and Materials 492 (January 2014): 76–85. http://dx.doi.org/10.4028/www.scientific.net/amm.492.76.

Full text
Abstract:
To systematically study the root cause of the fracture failure on a gas turbine LP(low pressure) second stage blade, the damage impression, fractography, material composition and metallurgical structure of the fractured section were studied. Vibration characteristic calcultaion analysis to the blade was performed under considering the working condition and structure characteristic. The analysis results revealed that the LP second stage Blade fracture is high cycled fracture (HCF), and mainly caused by furrowed manufacturing defects close to the fatigue source. Preventive measures were presented accordingly. The studied work is valuable for being a reference to fracture failure analysis and structure design for gas compressor blades.
APA, Harvard, Vancouver, ISO, and other styles
30

Pešek, Ludĕk, Ladislav Půst, Vítĕzslav Bula, and Jan Cibulka. "Application of Piezofilms for Excitation and Active Damping of Blade Flexural Vibration." Archives of Acoustics 40, no. 1 (March 1, 2015): 59–69. http://dx.doi.org/10.1515/aoa-2015-0008.

Full text
Abstract:
Abstract The steam turbine blades of low pressure stages are endangerd by the high-cyclic fatigue due to the combined loading of dynamic stresses by the steam time-variant pressure and the pre-stress from centrifugal forces. Therefore, the importance of their experimental dynamic analysis in the design stage is critical. For laboratory tests of the blades, the piezo actuators placed on the blades, unlike electromagnets placed in the stationary space, give a possibility to excite the flexural vibration of the blades within the bladed disk by time continuous forces independently of the rotor revolutions. In addition, the piezo actuators can be also used to control the vibrations of the blade. Therefore, several dynamic experiments of the clamped model blade equipped with PVDF films were performed for the force description of the piezo foils and their behavior as actuators of the blade vibration. The numerical beam models were used for numerical analysis of the vibration suppression effects both by additional parametric excitation and by active damping. The optimal phase shift of piezo actuator voltage supply was ascertained both for amplitude amplification and suppression. The results contribute to the knowledge of the actuation and active damping of blade vibration by the piezo elements
APA, Harvard, Vancouver, ISO, and other styles
31

Green, Brian R., John W. Barter, Charles W. Haldeman, and Michael G. Dunn. "Averaged and Time-Dependent Aerodynamics of a High Pressure Turbine Blade Tip Cavity and Stationary Shroud: Comparison of Computational and Experimental Results." Journal of Turbomachinery 127, no. 4 (March 1, 2004): 736–46. http://dx.doi.org/10.1115/1.1934410.

Full text
Abstract:
The unsteady aero-dynamics of a single-stage high-pressure turbine blade operating at design corrected conditions has been the subject of a thorough study involving detailed measurements and computations. The experimental configuration consisted of a single-stage high-pressure turbine and the adjacent, downstream, low-pressure turbine nozzle row. All three blade-rows were instrumented at three spanwise locations with flush-mounted, high-frequency response pressure transducers. The rotor was also instrumented with the same transducers on the blade tip and platform and the stationary shroud was instrumented with pressure transducers at specific locations above the rotating blade. Predictions of the time-dependent flow field around the rotor were obtained using MSU-TURBO, a three-dimensional (3D), nonlinear, computational fluid dynamics (CFD) code. Using an isolated blade-row unsteady analysis method, the unsteady surface pressure for the high-pressure turbine rotor due to the upstream high-pressure turbine nozzle was calculated. The predicted unsteady pressure on the rotor surface was compared to the measurements at selected spanwise locations on the blade, in the recessed cavity, and on the shroud. The rig and computational models included a flat and recessed blade tip geometry and were used for the comparisons presented in the paper. Comparisons of the measured and predicted static pressure loading on the blade surface show excellent correlation from both a time-average and time-accurate standpoint. This paper concentrates on the tip and shroud comparisons between the experiments and the predictions and these results also show good correlation with the time-resolved data. These data comparisons provide confidence in the CFD modeling and its ability to capture unsteady flow physics on the blade surface, in the flat and recessed tip regions of the blade, and on the stationary shroud.
APA, Harvard, Vancouver, ISO, and other styles
32

Demeulenaere, A., and R. Van den Braembussche. "Three-Dimensional Inverse Method for Turbomachinery Blading Design." Journal of Turbomachinery 120, no. 2 (April 1, 1998): 247–55. http://dx.doi.org/10.1115/1.2841399.

Full text
Abstract:
An iterative procedure for three-dimensional blade design is presented, in which the three-dimensional blade shape is modified using a physical algorithm, based on the transpiration model. The transpiration flux is computed by means of a modified Euler solver, in which the target pressure distribution is imposed along the blade surfaces. Only a small number of modifications is needed to obtain the final geometry. The method is based on a high-resolution three-dimensional Euler solver. An upwind biased evaluation of the advective fluxes allows for a very low numerical entropy generation, and sharp shock capturing. Non-reflecting boundary conditions are applied along the inlet/outlet boundaries. The capabilities of the method are illustrated by redesigning a transonic compressor rotor blade, to achieve, for the same mass flow and outlet flow angle, a shock-free deceleration along the suction side. The second example concerns the design of a low aspect ratio turbine blade, with a positive compound lean to reduce the intensity of the passage vortices. The final blade is designed for an optimized pressure distribution, taking into account the forces resulting from the blade lean angle.
APA, Harvard, Vancouver, ISO, and other styles
33

Widiyanto, Syam, Sasongko Pramonohadi, and Mohammad Kholid Ridwan. "Performance Analysis of Small Horizontal Axis Wind Turbine with Airfoil NACA 4412." International Journal of Science, Technology & Management 2, no. 1 (January 27, 2021): 347–57. http://dx.doi.org/10.46729/ijstm.v2i1.165.

Full text
Abstract:
The horizontal axis wind turbine (HAWT) design with low wind speed requires blade geometry selection. The analysis uses the potential flow panel method and the integral boundary layer formulation to analyze wind flow around the airfoil. The blade design with the blade element momentum (BEM) theory has an aerodynamic coefficient value along the blade. Power wind calculates to model the wind shear pressure at each blade. This research aims to determine the wind turbine rotor based on the performance, including the power coefficient, tip speed ratio, power, and rpm. The simulation uses an airfoil NACA 4412 which has optimal coefficient lift (Cl) = 1.92 at 190 pitch of angle, coefficient drag (Cd) = 0.0635 at 130 pitch angle and Cl / Cd = 155 at tilt angle = 40. Five models of 2.5 m diameter blades with different angles for each chord. The test results show that the change in the speed ratio affects the power coefficient so that the optimal power coefficient on NACA 4412 in experiment 5 is 0.56, and change in rotation per minute affects the output power so that the rotation per minute and the optimal power in experiment 4 with a value of 374 rpm and 553 W.
APA, Harvard, Vancouver, ISO, and other styles
34

Sonoda, Toyotaka, Yoshihiro Yamaguchi, Toshiyuki Arima, Markus Olhofer, Bernhard Sendhoff, and Heinz-Adolf Schreiber. "Advanced High Turning Compressor Airfoils for Low Reynolds Number Condition—Part I: Design and Optimization." Journal of Turbomachinery 126, no. 3 (July 1, 2004): 350–59. http://dx.doi.org/10.1115/1.1737780.

Full text
Abstract:
High performance compressor airfoils at a low Reynolds number condition at Re=1.3×105 have been developed using evolutionary algorithms in order to improve the performance of the outlet guide vane (OGV), used in a single low pressure turbine (LPT) of a small turbofan engine for business jet aircrafts. Two different numerical optimization methods, the evolution strategy (ES) and the multi-objective genetic algorithm (MOGA), were adopted for the design process to minimize the total pressure loss and the deviation angle at the design point at low Reynolds number condition. Especially, with respect to the MOGA, robustness against changes of the incidence angle is considered. The optimization process includes the representation of the blade geometry, the generation of a numerical grid and a blade-to-blade analysis using a quasi-three-dimensional Navier-Stokes solver with a k-ω turbulence model including a newly implemented transition model to evaluate the performance. Overall aerodynamic performance and boundary layer properties for the two optimized blades are discussed numerically. The superior performance of the two optimized airfoils is demonstrated by a comparison with conventional controlled diffusion airfoils (CDA). The advantage in performance has been confirmed by detailed experimental investigations, which are presented in Part II of this paper.
APA, Harvard, Vancouver, ISO, and other styles
35

Kasl, Josef, Miroslava Matějová, and Jakub Mrštík. "Failure of a Rotating Blade of a 200 MW Steam Turbine LP Rotor and Options for Eliminating other Similar Breakdowns." Solid State Phenomena 270 (November 2017): 174–82. http://dx.doi.org/10.4028/www.scientific.net/ssp.270.174.

Full text
Abstract:
This contribution deals with the analysis of the failure of a rotating blade of the third wheel (L-1 stage) of the LP rotor of a 200 MW turbine at the power station in Počerady. Material analysis of the blade showed that the cause of the blade fracture was the initiation and growth of a fatigue crack from a corrosion pit. Failures of low-pressure blades have occurred repeatedly on machines of the same design in the power stations of the ČEZ group in recent years and by a similar mechanism. Therefore, based on the knowledge obtained by EPRI (Electric Power Research Institute), ČEZ, a.s. has developed a methodology which can, in real conditions during checks of turbines, reliably detect the parameters of corrosion pits and predict the possibility of development of fatigue damage from these pits. The work summarizes the methodology and the conditions of its use with an emphasis on the fields of its application.
APA, Harvard, Vancouver, ISO, and other styles
36

Payambarpour, S. Abdolkarim, Amir F. Najafi, and Franco Magagnato. "Investigation of Blade Number Effect on Hydraulic Performance of In-Pipe Hydro Savonius Turbine." International Journal of Rotating Machinery 2019 (July 22, 2019): 1–14. http://dx.doi.org/10.1155/2019/8394191.

Full text
Abstract:
Level of utilization of clean energy has grown dramatically in recent years due to increased pollution and environmental issues. For instance, the extra potential energy in water supply system is usually wasted, due to its low capacity. Design of a proper turbine has recently been given more attention by researchers to apply this clean energy. In the present paper, a modified Savonius turbine, suitable for use in a 4-inch pipe, is designed. Turbine with two blades is tested in a laboratory rig and also simulated with the FLUENT software. By matching numerical and laboratory results, simulations are expanded and the blades number effect on turbine performance is studied under determined hydraulic conditions. The flow field around the modified Savonius turbine is interpreted by the 3D streamlines and pressure contours. The obtained results indicate that increasing the turbine blade numbers up to 5 and more causes the turbine efficiency first to rise and then to fall, respectively.
APA, Harvard, Vancouver, ISO, and other styles
37

Uzu-Kuei, Hsu, Tai Cheng-Hsien, HSU Chia-Wei, and Miau Jiun-Jih. "Numerical Studies on a NACA0018 Airfoil Blade HAWT with Trailing Edge Jet Flow." E3S Web of Conferences 64 (2018): 07008. http://dx.doi.org/10.1051/e3sconf/20186407008.

Full text
Abstract:
This study analyzed an airfoil blade for a horizontal-axis wind turbine (HAWT) with a trailing-edge jet flow design. This design was realized by drilling a hole in the trailing edge of an NACA0018 blade of a conventional HAWT to serve as a pressure injection nozzle. Five inflow wind speeds and three trailing-edge jet flow conditions were examined in the test. The results revealed the efficiency differences between a HAWT with the new jet flow design and conventional HAWTs. The experimental methods employed involved a wind tunnel experiment and a computational fluid dynamics (CFD) simulation. The results revealed that when the inflow wind speed was low, the trailing-edge jet flow accelerated the initiation phase and increased the rotating speed of the HAWT; however, when the inflow wind speed was high, damping occurred and the rotating speed of the turbine blades decreased.
APA, Harvard, Vancouver, ISO, and other styles
38

Rhee, Dong-Ho, and Hyung Hee Cho. "Local Heat/Mass Transfer Characteristics on a Rotating Blade With Flat Tip in a Low-Speed Annular Cascade—Part II: Tip and Shroud." Journal of Turbomachinery 128, no. 1 (February 1, 2005): 110–19. http://dx.doi.org/10.1115/1.2098767.

Full text
Abstract:
The local heat/mass transfer characteristics on the tip and shroud were investigated using a low speed rotating turbine annular cascade. Time-averaged mass transfer coefficients on the tip and shroud were measured using a naphthalene sublimation technique. A low speed wind tunnel with a single stage turbine annular cascade was used. The turbine stage is composed of sixteen guide plates and blades. The chord length of blade is 150 mm and the mean tip clearance is about 2.5% of the blade chord. The tested Reynolds number based on inlet flow velocity and blade chord is 1.5×105 and the rotational speed of the blade is 255.8 rpm at design condition. The results were compared with the results for a stationary blade and the effects of incidence angle of incoming flow were examined for incidence angles ranging from −15 to +7deg. The off-design test conditions are obtained by changing the rotational speed with a fixed incoming flow velocity. Flow reattachment on the tip near the pressure side edge dominates the heat transfer on the tip surface. Consequently, the heat/mass transfer coefficients on the blade tip are about 1.7 times as high as those on the blade surface and the shroud. However, the heat transfer on the tip is about 10% lower than that for the stationary case due to reduced leakage flow with the relative motion. The peak regions due to the flow reattachment are reduced and shifted toward the trailing edge and additional peaks are formed near the leading edge region with decreasing incidence angles. But, quite uniform and high values are observed on the tip with positive incidence angles. The time-averaged heat/mass transfer on the shroud surface has a level similar to that of the stationary cases.
APA, Harvard, Vancouver, ISO, and other styles
39

Song, Bo, Wing F. Ng, Joseph A. Cotroneo, Douglas C. Hofer, and Gunnar Siden. "Aerodynamic Design and Testing of Three Low Solidity Steam Turbine Nozzle Cascades." Journal of Turbomachinery 129, no. 1 (March 1, 2004): 62–71. http://dx.doi.org/10.1115/1.2372774.

Full text
Abstract:
Three sets of low solidity steam turbine nozzle cascades were designed and tested. The objective was to reduce cost through a reduction in parts count while maintaining or improving performance. The primary application is for steam turbine high pressure sections where Mach numbers are subsonic and high levels of unguided turning can be tolerated. The base line design A has a ratio of pitch to axial chord of 1.2. This is the pitch diameter section of a 50% reaction stage that has been verified by multistage testing on steam to have a high level of efficiency. Designs B and C have ratios of pitch to axial chord of 1.5 and 1.8, respectively. All three designs satisfy the same inlet and exit vector diagrams. Analytical surface Mach number distributions and boundary layer transition predictions are presented. Extensive cascade test measurements were carried out for a broad incidence range from −60to+35deg. At each incidence, four outlet Mach numbers were tested, ranging from 0.2 to 0.8, with the corresponding Reynolds number variation from 1.8×105 to 9.0×105. Experimental results of loss coefficient and blade surface Mach number are presented and compared for the three cascades. The experimental results have demonstrated low losses over the tested Mach number range for a wide range of incidence from −45to15deg. Designs B and C have lower profile losses than design A. The associated flow physics is interpreted using the results of wake profile, blade surface Mach number distribution, and blade surface oil flow visualization, with the emphasis placed on the loss mechanisms for different flow conditions and the loss reduction mechanism with lower solidity. The effect of the higher profile loading of the lower solidity designs on increased end wall losses induced by increased secondary flow, especially on low aspect ratio designs, is the subject of ongoing studies.
APA, Harvard, Vancouver, ISO, and other styles
40

Weber, H. E. "Wave Engine Aerothermodynamic Design." Journal of Engineering for Gas Turbines and Power 114, no. 4 (October 1, 1992): 790–96. http://dx.doi.org/10.1115/1.2906658.

Full text
Abstract:
A method for aerothermodynamic preliminary design of a wave engine is presented. The engine has a centrifugal precompressor for the wave rotor, which feeds high and low-pressure turbines. Three specific wave engine designs are presented. Wave rotor blades are naturally cooled by the ingested air; thus combustion temperatures can be as high as 1900 K. Engine pressure ratios of over 25 are obtained in compact designs. It is shown that placing no nozzles at the end of the rotor blade passages yields the highest cycle efficiencies, which can be over 50 percent. Rotor blades are straight and easily milled, cast, or fabricated.
APA, Harvard, Vancouver, ISO, and other styles
41

Troitskiy, N. I., and V. D. Molyakov. "Experimental Study of Power Turbine with Adjustable Nozzle Guide Vanes." Proceedings of Higher Educational Institutions. Маchine Building, no. 8 (737) (August 2021): 58–66. http://dx.doi.org/10.18698/0536-1044-2021-8-58-66.

Full text
Abstract:
The article discusses the results of experimental research of the impact of the law of profiling along the stage height on the characteristics of a turbine with an adjustable nozzle guide vanes. The results of the design study have been confirmed, taking into account meridional streamline bending. It is shown that in the stage profiled according to the law of constancy of the product of the radius of the flow path and the tangent of the blade angle the degree of reactivity in the root sections of the blades increases provided that the degree of reactivity at the middle diameter is the same as in a turbine with a constant blade angle, which leads to an increase in the turbine efficiency in modes with a reduced angle of arrangement of blades of the adjustable nozzle guide vanes and the degree of pressure reduction.
APA, Harvard, Vancouver, ISO, and other styles
42

Jin, Jiahui, Yanping Song, Jianyang Yu, and Fu Chen. "Effect of arbitrary blade tip design on tip leakage flow." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 234, no. 1 (May 14, 2019): 19–30. http://dx.doi.org/10.1177/0957650919848171.

Full text
Abstract:
Tip geometry modification is frequently used to suppress the tip leakage flow in the turbine cascade however a universally beneficial tip geometry modification design has not been fully discovered. In this paper, the two-surface coupling arbitrary blade tip design method in three-dimensional physical space which satisfies the simple trigonometric function law is proposed and the mathematical parametric description is presented. The effects of different arbitrary blade tips on tip leakage flow have been studied numerically in a highly loaded axial turbine cascade. The aerodynamic performance of different tips is assessed by the tip leakage mass flow rate and the total pressure loss coefficient at the exit section. The Kriging model and genetic optimization algorithm are used to optimize the arbitrary blade tips to obtain the optimal arbitrary blade tip. Compared with the flat tip, the tip leakage mass flow rate is decreased by 10.57% and the area-average total pressure loss coefficient at the exit section is reduced by 8.91% in the optimal arbitrary blade tip.
APA, Harvard, Vancouver, ISO, and other styles
43

Setyawan, E. Y., S. Djiwo, D. H. Praswanto, P. Suwandono, and P. Siagian. "Design of Low Flow Undershot Type Water Turbine." JOURNAL OF SCIENCE AND APPLIED ENGINEERING 2, no. 2 (November 28, 2019): 50. http://dx.doi.org/10.31328/jsae.v2i2.1184.

Full text
Abstract:
Many water sources around us which have kinetic energy to run waterwheels are not optimally utilized. This energy can be converted into an energy source that can produce electricity. Therefore this study produced a design of a waterwheel that could be used in low-flow rivers to produce electricity by adding generators. Waterwheel modeling using Ansys is calculated based on flow assumptions. Modeling using this system provides advantages in the form of computational power efficiency, the stability of numerical calculations and the accuracy of the resulting solutions. Numerical analysis of the waterwheel is assumed that the waterwheel is half floating on the surface of the water. As stated in the limitation of the problem that the incoming water flowing at a speed of 5 m/s from the flow moves the wheel. The flow rate of water that hit the blade on the waterwheel causes the waterwheel to rotate which is pressured by the flow of water with a number of 12 blades. With a relatively simple design, the waterwheel produces a wheel rotation I of 91 Rpm and II of 78 Rpm, with a torque of 39.2 N by using some analysis of this design can be applied to river flow with low flow velocity. The relatively simple design makes it easy to be produced and maintenance. River flow used is in the Malang District with a flow velocity of 1 m/s gets a power of 1128 W on waterwheel I while on waterwheel II gets a power of 967 W.
APA, Harvard, Vancouver, ISO, and other styles
44

Brear, Michael J., Howard P. Hodson, Paloma Gonzalez, and Neil W. Harvey. "Pressure Surface Separations in Low-Pressure Turbines—Part 2: Interactions With the Secondary Flow." Journal of Turbomachinery 124, no. 3 (July 1, 2002): 402–9. http://dx.doi.org/10.1115/1.1450765.

Full text
Abstract:
This paper describes a study of the interaction between the pressure surface separation and the secondary flow on low-pressure turbine blades. It is found that this interaction can significantly affect the strength of the secondary flow and the loss that it creates. Experimental and numerical techniques are used to study the secondary flow in a family of four low-pressure turbine blades in linear cascade. These blades are typical of current designs, share the same suction surface and pitch, but have differing pressure surfaces. A mechanism for the interaction between the pressure surface separation and the secondary flow is proposed and is used to explain the variations in the secondary flows of the four blades. This mechanism is based on simple dynamical secondary flow concepts and is similar to the aft-loading argument commonly used in modern turbine design.
APA, Harvard, Vancouver, ISO, and other styles
45

Ahmed, Rizwan, Christian Maria Firrone, and Stefano Zucca. "Design and Calibration of a Tri-Directional Contact Force Measurement System." Applied Sciences 11, no. 2 (January 19, 2021): 877. http://dx.doi.org/10.3390/app11020877.

Full text
Abstract:
In low pressure turbine stages, adjacent blades are coupled to each other at their tip by covers, called shrouds. Three-dimensional periodic contact forces at shrouds strongly affect the blade vibration level as energy is dissipated by friction. To validate contact models developed for the prediction of nonlinear forced response of shrouded blades, direct contact force measurement during dynamic tests is mandatory. In case of shrouded blades, the existing unidirectional and bi-directional contact force measurement methods need to be improved and extended to a tri-directional measurement of shroud contact forces for a comprehensive and more reliable validation of the shroud contact models. This demands an accurate and robust measurement solution that is compatible with the nature and orientation of the contact forces at blade shrouds. This study presents a cost effective and adaptable tri-directional force measurement system to measure static and dynamic contact forces simultaneously in three directions at blade shrouds during forced response tests. The system is based on three orthogonal force transducers connected to a reference block that will eventually be put in contact with the blade shroud in the test rig. A calibration process is outlined to define a decoupling matrix and its subsequent validation is demonstrated in order to evaluate the effectiveness of the measurement system to measure the actual contact forces acting on the contact.
APA, Harvard, Vancouver, ISO, and other styles
46

Dunn, Michael G. "Convective Heat Transfer and Aerodynamics in Axial Flow Turbines." Journal of Turbomachinery 123, no. 4 (February 1, 2001): 637–86. http://dx.doi.org/10.1115/1.1397776.

Full text
Abstract:
The primary focus of this paper is convective heat transfer in axial flow turbines. Research activity involving heat transfer generally separates into two related areas: predictions and measurements. The problems associated with predicting heat transfer are coupled with turbine aerodynamics because proper prediction of vane and blade surface-pressure distribution is essential for predicting the corresponding heat transfer distribution. The experimental community has advanced to the point where time-averaged and time-resolved three-dimensional heat transfer data for the vanes and blades are obtained routinely by those operating full-stage rotating turbines. However, there are relatively few CFD codes capable of generating three-dimensional predictions of the heat transfer distribution, and where these codes have been applied the results suggest that additional work is required. This paper outlines the progression of work done by the heat transfer community over the last several decades as both the measurements and the predictions have improved to current levels. To frame the problem properly, the paper reviews the influence of turbine aerodynamics on heat transfer predictions. This includes a discussion of time-resolved surface-pressure measurements with predictions and the data involved in forcing function measurements. The ability of existing two-dimensional and three-dimensional Navier–Stokes codes to predict the proper trends of the time-averaged and unsteady pressure field for full-stage rotating turbines is demonstrated. Most of the codes do a reasonably good job of predicting the surface-pressure data at vane and blade midspan, but not as well near the hub or the tip region for the blade. In addition, the ability of the codes to predict surface-pressure distribution is significantly better than the corresponding heat transfer distributions. Heat transfer codes are validated against measurements of one type or another. Sometimes the measurements are performed using full rotating rigs, and other times a much simpler geometry is used. In either case, it is important to review the measurement techniques currently used. Heat transfer predictions for engine turbines are very difficult because the boundary conditions are not well known. The conditions at the exit of the combustor are generally not well known and a section of this paper discusses that problem. The majority of the discussion is devoted to external heat transfer with and without cooling, turbulence effects, and internal cooling. As the design community increases the thrust-to-weight ratio and the turbine inlet temperature, there remain many turbine-related heat transfer issues. Included are film cooling modeling, definition of combustor exit conditions, understanding of blade tip distress, definition of hot streak migration, component fatigue, loss mechanisms in the low turbine, and many others. Several suggestions are given herein for research and development areas for which there is potentially high payoff to the industry with relatively small risk.
APA, Harvard, Vancouver, ISO, and other styles
47

Abidat, M., N. C. Baines, and M. R. Firth. "Design of a Highly Loaded Mixed Flow Turbine." Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy 206, no. 2 (May 1992): 95–107. http://dx.doi.org/10.1243/pime_proc_1992_206_016_02.

Full text
Abstract:
The high boost pressures and fuel–air ratios required for the next generation of turbocharged diesel engines imply an increased turbine expansion ratio without an increase in the speed of rotation. This leads to a requirement for high peak efficiency at lower values of blade speed/isentropic expansion velocity U/C than are normal today. The objective of this project was to achieve this with a mixed flow rotor with a positive inlet blade angle. Two rotors were manufactured and tested: one a ‘constant blade angle’ design and the other a ‘constant incidence’ design. In practice both achieved a peak efficiency at a low U/C value, but the constant blade angle design, at 0.84 total to static efficiency, was significantly more efficient than the constant incidence design at 0.77. These efficiencies are highly competitive, compared to current radial turbine design. It is suggested that the reasons for this difference are a lack of understanding of the incidence and its effects on a mixed flow rotor, and a region of diffusion in the shroud-trailing edge corner of the suction surface, apparently worse for the constant incidence design.
APA, Harvard, Vancouver, ISO, and other styles
48

Kozakiewicz, Adam, Stanisław Jóźwiak, Przemysław Jóźwiak, and Stanisław Kachel. "Material Origins of the Accelerated Operational Wear of RD-33 Engine Blades." Materials 14, no. 2 (January 11, 2021): 336. http://dx.doi.org/10.3390/ma14020336.

Full text
Abstract:
The structural and strength analysis of the materials used to construct an important engine element such as the turbine is of great significance, at both the design stage and during tests and training relating to emergency situations. This paper presents the results of a study on the chemical composition, morphology, and phased structure of the metallic construction material used to produce the blades of the high- and low-pressure turbines of the RD-33 jet engine, which is the propulsion unit of the MiG-29 aircraft. On the basis of an analysis of the chemical composition and phased structure, the data obtained from tests of the blade material allowed the grade of the alloy used to construct the tested elements of the jet engine turbine to be determined. The structural stability of the material was found to be lower in comparison with the engine operating conditions, which was shown by a clear decrease in the resistance properties of the blade material. The results obtained may be used as a basis for analyzing the life span of an object or a selection of material replacements, which may enable the production of the analyzed engine element.
APA, Harvard, Vancouver, ISO, and other styles
49

Kozakiewicz, Adam, Stanisław Jóźwiak, Przemysław Jóźwiak, and Stanisław Kachel. "Material Origins of the Accelerated Operational Wear of RD-33 Engine Blades." Materials 14, no. 2 (January 11, 2021): 336. http://dx.doi.org/10.3390/ma14020336.

Full text
Abstract:
The structural and strength analysis of the materials used to construct an important engine element such as the turbine is of great significance, at both the design stage and during tests and training relating to emergency situations. This paper presents the results of a study on the chemical composition, morphology, and phased structure of the metallic construction material used to produce the blades of the high- and low-pressure turbines of the RD-33 jet engine, which is the propulsion unit of the MiG-29 aircraft. On the basis of an analysis of the chemical composition and phased structure, the data obtained from tests of the blade material allowed the grade of the alloy used to construct the tested elements of the jet engine turbine to be determined. The structural stability of the material was found to be lower in comparison with the engine operating conditions, which was shown by a clear decrease in the resistance properties of the blade material. The results obtained may be used as a basis for analyzing the life span of an object or a selection of material replacements, which may enable the production of the analyzed engine element.
APA, Harvard, Vancouver, ISO, and other styles
50

Unterluggauer, Julian, Anton Maly, and Eduard Doujak. "Investigation on the Impact of Air Admission in a Prototype Francis Turbine at Low-Load Operation." Energies 12, no. 15 (July 27, 2019): 2893. http://dx.doi.org/10.3390/en12152893.

Full text
Abstract:
Due to significant changes in the energy system, hydraulic turbines are required to operate over a wide power range. In particular, older turbines which are not designed for these environments will suffer under off-design conditions. In order to evaluate whether or not such a turbine could fulfill the new requirements of the energy market, a study about the behavior of a prototype plant in low-load operation is presented. Therefore, prototype site measurements are performed to determine the most damaging operating point by means of acceleration sensors and pressure transducers. Moreover, unsteady computational fluid dynamics (CFD) simulations considering two-phase flow and two hybrid turbulence models are used to analyze the flow conditions inside the turbine. The resulting pressure pulsations are mapped onto the runner blade to obtain stress and further calculate damage factors. Accordingly, the stresses are compared to those obtained by the strain gauge measurement. Moreover, the influence of active flow control by means of air injection on plant behavior and runner lifetime is discussed as well.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography