Academic literature on the topic 'Low-Rank matrix approximation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Low-Rank matrix approximation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Low-Rank matrix approximation"
Ting Liu, Ting Liu, Mingjian Sun Mingjian Sun, Naizhang Feng Naizhang Feng, Minghua Wang Minghua Wang, Deying Chen Deying Chen, and and Yi Shen and Yi Shen. "Sparse photoacoustic microscopy based on low-rank matrix approximation." Chinese Optics Letters 14, no. 9 (2016): 091701–91705. http://dx.doi.org/10.3788/col201614.091701.
Full textParekh, Ankit, and Ivan W. Selesnick. "Enhanced Low-Rank Matrix Approximation." IEEE Signal Processing Letters 23, no. 4 (2016): 493–97. http://dx.doi.org/10.1109/lsp.2016.2535227.
Full textFomin, Fedor V., Petr A. Golovach, and Fahad Panolan. "Parameterized low-rank binary matrix approximation." Data Mining and Knowledge Discovery 34, no. 2 (2020): 478–532. http://dx.doi.org/10.1007/s10618-019-00669-5.
Full textFomin, Fedor V., Petr A. Golovach, Daniel Lokshtanov, Fahad Panolan, and Saket Saurabh. "Approximation Schemes for Low-rank Binary Matrix Approximation Problems." ACM Transactions on Algorithms 16, no. 1 (2020): 1–39. http://dx.doi.org/10.1145/3365653.
Full textJia, Yuheng, Hui Liu, Junhui Hou, and Qingfu Zhang. "Clustering Ensemble Meets Low-rank Tensor Approximation." Proceedings of the AAAI Conference on Artificial Intelligence 35, no. 9 (2021): 7970–78. http://dx.doi.org/10.1609/aaai.v35i9.16972.
Full textZhenyue Zhang and Keke Zhao. "Low-Rank Matrix Approximation with Manifold Regularization." IEEE Transactions on Pattern Analysis and Machine Intelligence 35, no. 7 (2013): 1717–29. http://dx.doi.org/10.1109/tpami.2012.274.
Full textXu, An-Bao, and Dongxiu Xie. "Low-rank approximation pursuit for matrix completion." Mechanical Systems and Signal Processing 95 (October 2017): 77–89. http://dx.doi.org/10.1016/j.ymssp.2017.03.024.
Full textBarlow, Jesse L., and Hasan Erbay. "Modifiable low-rank approximation to a matrix." Numerical Linear Algebra with Applications 16, no. 10 (2009): 833–60. http://dx.doi.org/10.1002/nla.651.
Full textZhang, Jiani, Jennifer Erway, Xiaofei Hu, Qiang Zhang, and Robert Plemmons. "Randomized SVD Methods in Hyperspectral Imaging." Journal of Electrical and Computer Engineering 2012 (2012): 1–15. http://dx.doi.org/10.1155/2012/409357.
Full textSoto-Quiros, Pablo. "Error analysis of the generalized low-rank matrix approximation." Electronic Journal of Linear Algebra 37 (July 23, 2021): 544–48. http://dx.doi.org/10.13001/ela.2021.5961.
Full textDissertations / Theses on the topic "Low-Rank matrix approximation"
Robeyns, Matthieu. "Mixed precision algorithms for low-rank matrix and tensor approximations." Electronic Thesis or Diss., université Paris-Saclay, 2024. http://www.theses.fr/2024UPASG095.
Full textBlanchard, Pierre. "Fast hierarchical algorithms for the low-rank approximation of matrices, with applications to materials physics, geostatistics and data analysis." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0016/document.
Full textLee, Joonseok. "Local approaches for collaborative filtering." Diss., Georgia Institute of Technology, 2015. http://hdl.handle.net/1853/53846.
Full textKim, Jingu. "Nonnegative matrix and tensor factorizations, least squares problems, and applications." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42909.
Full textGalvin, Timothy Matthew. "Faster streaming algorithms for low-rank matrix approximations." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/91810.
Full textAbbas, Kinan. "Dématriçage et démélange conjoints d'images multispectrales." Electronic Thesis or Diss., Littoral, 2024. http://www.theses.fr/2024DUNK0710.
Full textCastorena, Juan. "Remote-Sensed LIDAR Using Random Impulsive Scans." International Foundation for Telemetering, 2012. http://hdl.handle.net/10150/581855.
Full textVinyes, Marina. "Convex matrix sparsity for demixing with an application to graphical model structure estimation." Thesis, Paris Est, 2018. http://www.theses.fr/2018PESC1130/document.
Full textSadek, El Mostafa. "Méthodes itératives pour la résolution d'équations matricielles." Thesis, Littoral, 2015. http://www.theses.fr/2015DUNK0434/document.
Full textWinkler, Anderson M. "Widening the applicability of permutation inference." Thesis, University of Oxford, 2016. https://ora.ox.ac.uk/objects/uuid:ce166876-0aa3-449e-8496-f28bf189960c.
Full textBook chapters on the topic "Low-Rank matrix approximation"
Kannan, Ramakrishnan, Mariya Ishteva, Barry Drake, and Haesun Park. "Bounded Matrix Low Rank Approximation." In Signals and Communication Technology. Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-662-48331-2_4.
Full textFriedland, Shmuel, and Venu Tammali. "Low-Rank Approximation of Tensors." In Numerical Algebra, Matrix Theory, Differential-Algebraic Equations and Control Theory. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-15260-8_14.
Full textDewilde, Patrick, and Alle-Jan van der Veen. "Low-Rank Matrix Approximation and Subspace Tracking." In Time-Varying Systems and Computations. Springer US, 1998. http://dx.doi.org/10.1007/978-1-4757-2817-0_11.
Full textZhang, Huaxiang, Zhichao Wang, and Linlin Cao. "Fast Nyström for Low Rank Matrix Approximation." In Advanced Data Mining and Applications. Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-35527-1_38.
Full textDeshpande, Amit, and Santosh Vempala. "Adaptive Sampling and Fast Low-Rank Matrix Approximation." In Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques. Springer Berlin Heidelberg, 2006. http://dx.doi.org/10.1007/11830924_28.
Full textEvensen, Geir, Femke C. Vossepoel, and Peter Jan van Leeuwen. "Localization and Inflation." In Springer Textbooks in Earth Sciences, Geography and Environment. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-96709-3_10.
Full textLi, Chong-Ya, Wenzheng Bao, Zhipeng Li, Youhua Zhang, Yong-Li Jiang, and Chang-An Yuan. "Local Sensitive Low Rank Matrix Approximation via Nonconvex Optimization." In Intelligent Computing Methodologies. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-63315-2_67.
Full textWacira, Joseph Muthui, Dinna Ranirina, and Bubacarr Bah. "Low Rank Matrix Approximation for Imputing Missing Categorical Data." In Artificial Intelligence Research. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-95070-5_16.
Full textWu, Jiangang, and Shizhong Liao. "Accuracy-Preserving and Scalable Column-Based Low-Rank Matrix Approximation." In Knowledge Science, Engineering and Management. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-25159-2_22.
Full textMantzaflaris, Angelos, Bert Jüttler, B. N. Khoromskij, and Ulrich Langer. "Matrix Generation in Isogeometric Analysis by Low Rank Tensor Approximation." In Curves and Surfaces. Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-22804-4_24.
Full textConference papers on the topic "Low-Rank matrix approximation"
Kannan, Ramakrishnan, Mariya Ishteva, and Haesun Park. "Bounded Matrix Low Rank Approximation." In 2012 IEEE 12th International Conference on Data Mining (ICDM). IEEE, 2012. http://dx.doi.org/10.1109/icdm.2012.131.
Full textLi, Chong-Ya, Lin Zhu, Wen-Zheng Bao, Yong-Li Jiang, Chang-An Yuan, and De-Shuang Huang. "Convex local sensitive low rank matrix approximation." In 2017 International Joint Conference on Neural Networks (IJCNN). IEEE, 2017. http://dx.doi.org/10.1109/ijcnn.2017.7965863.
Full textvan der Veen, Alle-Jan. "Schur method for low-rank matrix approximation." In SPIE's 1994 International Symposium on Optics, Imaging, and Instrumentation, edited by Franklin T. Luk. SPIE, 1994. http://dx.doi.org/10.1117/12.190848.
Full textNadakuditi, Raj Rao. "Exploiting random matrix theory to improve noisy low-rank matrix approximation." In 2011 45th Asilomar Conference on Signals, Systems and Computers. IEEE, 2011. http://dx.doi.org/10.1109/acssc.2011.6190110.
Full textTatsukawa, Manami, and Mirai Tanaka. "Box Constrained Low-rank Matrix Approximation with Missing Values." In 7th International Conference on Operations Research and Enterprise Systems. SCITEPRESS - Science and Technology Publications, 2018. http://dx.doi.org/10.5220/0006612100780084.
Full textYinqiang Zheng, Guangcan Liu, S. Sugimoto, Shuicheng Yan, and M. Okutomi. "Practical low-rank matrix approximation under robust L1-norm." In 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). IEEE, 2012. http://dx.doi.org/10.1109/cvpr.2012.6247828.
Full textAlelyani, Salem, and Huan Liu. "Supervised Low Rank Matrix Approximation for Stable Feature Selection." In 2012 Eleventh International Conference on Machine Learning and Applications (ICMLA). IEEE, 2012. http://dx.doi.org/10.1109/icmla.2012.61.
Full textLiu, Yang, Wenji Chen, and Yong Guan. "Monitoring Traffic Activity Graphs with low-rank matrix approximation." In 2012 IEEE 37th Conference on Local Computer Networks (LCN 2012). IEEE, 2012. http://dx.doi.org/10.1109/lcn.2012.6423680.
Full textWang, Hengyou, Ruizhen Zhao, Yigang Cen, and Fengzhen Zhang. "Low-rank matrix recovery based on smooth function approximation." In 2016 IEEE 13th International Conference on Signal Processing (ICSP). IEEE, 2016. http://dx.doi.org/10.1109/icsp.2016.7877928.
Full textKaloorazi, Maboud F., and Jie Chen. "Low-rank Matrix Approximation Based on Intermingled Randomized Decomposition." In ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2019. http://dx.doi.org/10.1109/icassp.2019.8683284.
Full text