Journal articles on the topic 'Low sample size'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Low sample size.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Litwin, Samuel, Stanley Basickes, and Eric A. Ross. "Two-sample binary phase 2 trials with low type I error and low sample size." Statistics in Medicine 36, no. 9 (2017): 1383–94. http://dx.doi.org/10.1002/sim.7226.
Full textLitwin, Samuel, Eric Ross, and Stanley Basickes. "Two-sample binary phase 2 trials with low type I error and low sample size." Statistics in Medicine 36, no. 21 (2017): 3439. http://dx.doi.org/10.1002/sim.7358.
Full textAlban, Eduardo X., Mario E. Magaña, and Harry Skinner. "A Low Sample Size Estimator for K Distributed Noise." Journal of Signal and Information Processing 03, no. 03 (2012): 293–307. http://dx.doi.org/10.4236/jsip.2012.33039.
Full textJung, Sungkyu, and J. S. Marron. "PCA consistency in high dimension, low sample size context." Annals of Statistics 37, no. 6B (2009): 4104–30. http://dx.doi.org/10.1214/09-aos709.
Full textZhou, Yi-Hui, and J. S. Marron. "High dimension low sample size asymptotics of robust PCA." Electronic Journal of Statistics 9, no. 1 (2015): 204–18. http://dx.doi.org/10.1214/15-ejs992.
Full textAoshima, Makoto, and Kazuyoshi Yata. "Statistical inference for high-dimension, low-sample-size data." Sugaku Expositions 30, no. 2 (2017): 137–58. http://dx.doi.org/10.1090/suga/421.
Full textHall, Peter, J. S. Marron, and Amnon Neeman. "Geometric representation of high dimension, low sample size data." Journal of the Royal Statistical Society: Series B (Statistical Methodology) 67, no. 3 (2005): 427–44. http://dx.doi.org/10.1111/j.1467-9868.2005.00510.x.
Full textAoshima, Makoto, Dan Shen, Haipeng Shen, Kazuyoshi Yata, Yi-Hui Zhou, and J. S. Marron. "A survey of high dimension low sample size asymptotics." Australian & New Zealand Journal of Statistics 60, no. 1 (2018): 4–19. http://dx.doi.org/10.1111/anzs.12212.
Full textShan, Guogen. "Comments on ‘Two-sample binary phase 2 trials with low type I error and low sample size’." Statistics in Medicine 36, no. 21 (2017): 3437–38. http://dx.doi.org/10.1002/sim.7359.
Full textSarkar, Soham, Rahul Biswas, and Anil K. Ghosh. "On some graph-based two-sample tests for high dimension, low sample size data." Machine Learning 109, no. 2 (2019): 279–306. http://dx.doi.org/10.1007/s10994-019-05857-4.
Full textKuncheva, Ludmila I., and Juan J. Rodríguez. "On feature selection protocols for very low-sample-size data." Pattern Recognition 81 (September 2018): 660–73. http://dx.doi.org/10.1016/j.patcog.2018.03.012.
Full textSarkar, Soham, and Anil K. Ghosh. "On Perfect Clustering of High Dimension, Low Sample Size Data." IEEE Transactions on Pattern Analysis and Machine Intelligence 42, no. 9 (2020): 2257–72. http://dx.doi.org/10.1109/tpami.2019.2912599.
Full textSen, Pranab K., Ming-Tien Tsai, and Yuh-Shan Jou. "High-Dimension, Low–Sample Size Perspectives in Constrained Statistical Inference." Journal of the American Statistical Association 102, no. 478 (2007): 686–94. http://dx.doi.org/10.1198/016214507000000077.
Full textCheema, Muhammad Shahzad, Abdalrahman Eweiwi, and Christian Bauckhage. "High dimensional low sample size activity recognition using geometric classifiers." Digital Signal Processing 42 (July 2015): 61–69. http://dx.doi.org/10.1016/j.dsp.2015.03.019.
Full textBoddy, Clive Roland. "Sample size for qualitative research." Qualitative Market Research: An International Journal 19, no. 4 (2016): 426–32. http://dx.doi.org/10.1108/qmr-06-2016-0053.
Full textJung, Sungkyu, Arusharka Sen, and J. S. Marron. "Boundary behavior in High Dimension, Low Sample Size asymptotics of PCA." Journal of Multivariate Analysis 109 (August 2012): 190–203. http://dx.doi.org/10.1016/j.jmva.2012.03.005.
Full textShen, Dan, Haipeng Shen, and J. S. Marron. "Consistency of sparse PCA in High Dimension, Low Sample Size contexts." Journal of Multivariate Analysis 115 (March 2013): 317–33. http://dx.doi.org/10.1016/j.jmva.2012.10.007.
Full textZhang, Lingsong, and Xihong Lin. "Some considerations of classification for high dimension low-sample size data." Statistical Methods in Medical Research 22, no. 5 (2011): 537–50. http://dx.doi.org/10.1177/0962280211428387.
Full textLiu, Yufeng, David Neil Hayes, Andrew Nobel, and J. S. Marron. "Statistical Significance of Clustering for High-Dimension, Low–Sample Size Data." Journal of the American Statistical Association 103, no. 483 (2008): 1281–93. http://dx.doi.org/10.1198/016214508000000454.
Full textLu, Qiyi, and Xingye Qiao. "Significance analysis of high-dimensional, low-sample size partially labeled data." Journal of Statistical Planning and Inference 176 (September 2016): 78–94. http://dx.doi.org/10.1016/j.jspi.2016.03.002.
Full textChan, Y. B., and P. Hall. "Scale adjustments for classifiers in high-dimensional, low sample size settings." Biometrika 96, no. 2 (2009): 469–78. http://dx.doi.org/10.1093/biomet/asp007.
Full textSong, Juhee, and Jeffrey D. Hart. "Bootstrapping in a high dimensional but very low-sample size problem." Journal of Statistical Computation and Simulation 80, no. 8 (2010): 825–40. http://dx.doi.org/10.1080/00949650902798129.
Full textAhn, Jeongyoun, Myung Hee Lee, and Jung Ae Lee. "Distance-based outlier detection for high dimension, low sample size data." Journal of Applied Statistics 46, no. 1 (2018): 13–29. http://dx.doi.org/10.1080/02664763.2018.1452901.
Full textChristoph, Gerd, and Vladimir V. Ulyanov. "Second Order Expansions for High-Dimension Low-Sample-Size Data Statistics in Random Setting." Mathematics 8, no. 7 (2020): 1151. http://dx.doi.org/10.3390/math8071151.
Full textZedaker, S. M., T. G. Gregoire, and J. H. Miller. "Sample-size needs for forestry herbicide trials." Canadian Journal of Forest Research 23, no. 10 (1993): 2153–58. http://dx.doi.org/10.1139/x93-268.
Full textBolivar-Cime, A., and J. S. Marron. "Comparison of binary discrimination methods for high dimension low sample size data." Journal of Multivariate Analysis 115 (March 2013): 108–21. http://dx.doi.org/10.1016/j.jmva.2012.10.001.
Full textYin, Qingbo, Ehsan Adeli, Liran Shen, and Dinggang Shen. "Population-guided large margin classifier for high-dimension low-sample-size problems." Pattern Recognition 97 (January 2020): 107030. http://dx.doi.org/10.1016/j.patcog.2019.107030.
Full textBecker, W. E., S. Tarantola, and G. Deman. "Sensitivity analysis approaches to high-dimensional screening problems at low sample size." Journal of Statistical Computation and Simulation 88, no. 11 (2018): 2089–110. http://dx.doi.org/10.1080/00949655.2018.1450876.
Full textAhn, J., J. S. Marron, K. M. Muller, and Y. Y. Chi. "The high-dimension, low-sample-size geometric representation holds under mild conditions." Biometrika 94, no. 3 (2007): 760–66. http://dx.doi.org/10.1093/biomet/asm050.
Full textSimpson, Sean L., Lloyd J. Edwards, Martin A. Styner, and Keith E. Muller. "Separability tests for high-dimensional, low-sample size multivariate repeated measures data." Journal of Applied Statistics 41, no. 11 (2014): 2450–61. http://dx.doi.org/10.1080/02664763.2014.919251.
Full textYata, Kazuyoshi, and Makoto Aoshima. "Intrinsic Dimensionality Estimation of High-Dimension, Low Sample Size Data withD-Asymptotics." Communications in Statistics - Theory and Methods 39, no. 8-9 (2010): 1511–21. http://dx.doi.org/10.1080/03610920903121999.
Full textvon Borries, George, and Haiyan Wang. "Partition clustering of high dimensional low sample size data based on -values." Computational Statistics & Data Analysis 53, no. 12 (2009): 3987–98. http://dx.doi.org/10.1016/j.csda.2009.06.012.
Full textMarozzi, Marco. "Multivariate multidistance tests for high-dimensional low sample size case-control studies." Statistics in Medicine 34, no. 9 (2015): 1511–26. http://dx.doi.org/10.1002/sim.6418.
Full textIshii, Aki. "A two-sample test for high-dimension, low-sample-size data under the strongly spiked eigenvalue model." Hiroshima Mathematical Journal 47, no. 3 (2017): 273–88. http://dx.doi.org/10.32917/hmj/1509674448.
Full textPitkänen, Leena, and Herbert Sixta. "Size-exclusion chromatography of cellulose: observations on the low-molar-mass fraction." Cellulose 27, no. 16 (2020): 9217–25. http://dx.doi.org/10.1007/s10570-020-03419-9.
Full textBell, Bethany A., Grant B. Morgan, Jason A. Schoeneberger, Jeffrey D. Kromrey, and John M. Ferron. "How Low Can You Go?" Methodology 10, no. 1 (2014): 1–11. http://dx.doi.org/10.1027/1614-2241/a000062.
Full textWilliams, Michael S., Eric D. Ebel, and Bruce A. Wagner. "Monte Carlo approaches for determining power and sample size in low-prevalence applications." Preventive Veterinary Medicine 82, no. 1-2 (2007): 151–58. http://dx.doi.org/10.1016/j.prevetmed.2007.05.015.
Full textChow, Shein-Chung, and Shih-Ting Chiu. "Sample Size and Data Monitoring for Clinical Trials With Extremely Low Incidence Rates." Therapeutic Innovation & Regulatory Science 47, no. 4 (2013): 438–46. http://dx.doi.org/10.1177/2168479013489298.
Full textYata, Kazuyoshi, and Makoto Aoshima. "PCA Consistency for Non-Gaussian Data in High Dimension, Low Sample Size Context." Communications in Statistics - Theory and Methods 38, no. 16-17 (2009): 2634–52. http://dx.doi.org/10.1080/03610910902936083.
Full textRibeiro-Oliveira, João Paulo, and Marli A. Ranal. "Sample size in studies on the germination process." Botany 94, no. 2 (2016): 103–15. http://dx.doi.org/10.1139/cjb-2015-0161.
Full textBlair, R. Clifford, and James J. Higgins. "A Comparison of the Power of the Paired Samples Rank Transform Statistic to that of Wilcoxon’s Signed Ranks Statistic." Journal of Educational Statistics 10, no. 4 (1985): 368–83. http://dx.doi.org/10.3102/10769986010004368.
Full textSchabarum, Denison Esequiel, Alberto Cargnelutti Filho, André Lavezo, et al. "Sample Size for Morphological Traits of Sunn Hemp." Journal of Agricultural Science 10, no. 1 (2017): 152. http://dx.doi.org/10.5539/jas.v10n1p152.
Full textMilitzer, Matthias, Mehran Maalekian, and André Moreau. "Laser-Ultrasonic Austenite Grain Size Measurements in Low-Carbon Steels." Materials Science Forum 715-716 (April 2012): 407–14. http://dx.doi.org/10.4028/www.scientific.net/msf.715-716.407.
Full textTamatani, Mitsuru, Kanta Naito, and Inge Koch. "MULTI-CLASS DISCRIMINANT FUNCTION BASED ON CANONICAL CORRELATION IN HIGH DIMENSION LOW SAMPLE SIZE." Bulletin of informatics and cybernetics 45 (December 2013): 67–101. http://dx.doi.org/10.5109/1563533.
Full textShen, Liran, and Qingbo Yin. "Data maximum dispersion classifier in projection space for high-dimension low-sample-size problems." Knowledge-Based Systems 193 (April 2020): 105420. http://dx.doi.org/10.1016/j.knosys.2019.105420.
Full textTamatani, Mitsuru, Inge Koch, and Kanta Naito. "Pattern recognition based on canonical correlations in a high dimension low sample size context." Journal of Multivariate Analysis 111 (October 2012): 350–67. http://dx.doi.org/10.1016/j.jmva.2012.04.011.
Full textNakayama, Yugo, Kazuyoshi Yata, and Makoto Aoshima. "Support vector machine and its bias correction in high-dimension, low-sample-size settings." Journal of Statistical Planning and Inference 191 (December 2017): 88–100. http://dx.doi.org/10.1016/j.jspi.2017.05.005.
Full textDutta, Subhajit, and Anil K. Ghosh. "On some transformations of high dimension, low sample size data for nearest neighbor classification." Machine Learning 102, no. 1 (2015): 57–83. http://dx.doi.org/10.1007/s10994-015-5495-y.
Full textWang, Zesong, Cui Zou, and Xianping Cui. "Low-sample size remote sensing image recognition based on a multihead attention integration network." Multimedia Tools and Applications 79, no. 43-44 (2020): 32525–40. http://dx.doi.org/10.1007/s11042-020-09641-8.
Full textMcClymont, Juliet, Russell Savage, Todd C. Pataky, Robin Crompton, James Charles, and Karl T. Bates. "Intra-subject sample size effects in plantar pressure analyses." PeerJ 9 (June 24, 2021): e11660. http://dx.doi.org/10.7717/peerj.11660.
Full text