Academic literature on the topic 'Low temperature co-fire ceramic'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Low temperature co-fire ceramic.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Low temperature co-fire ceramic"
Shao, Hui, and Gang Jian. "Microwave Dielectric Properties and its Compatibility with Silver of Glass-Ceramic Based on Co-Fire at Low Temperature." Advanced Materials Research 704 (June 2013): 167–72. http://dx.doi.org/10.4028/www.scientific.net/amr.704.167.
Full textShiao, Fu Thang, Han Chou Ke, and Ying Chieh Lee. "Phase Transformation Behavior of Bi2O3-ZnO-Nb2O5 Ceramics Sintered at Low Temperature." Materials Science Forum 534-536 (January 2007): 1477–80. http://dx.doi.org/10.4028/www.scientific.net/msf.534-536.1477.
Full textMajer, Zdeněk, Kateřina Štegnerová, Pavel Hutař, Martin Pletz, Raul Bermejo, and Luboš Náhlík. "Residual Lifetime Determination of Low Temperature Co-Fired Ceramics." Key Engineering Materials 713 (September 2016): 266–69. http://dx.doi.org/10.4028/www.scientific.net/kem.713.266.
Full textSU, Che-Yi, Cheng-Liang HUANG, and Wen-Hsi LEE. "Phase development and dielectric properties of BaAl2Si2O8-based low temperature co-fire ceramic material." Journal of the Ceramic Society of Japan 116, no. 1357 (2008): 935–40. http://dx.doi.org/10.2109/jcersj2.116.935.
Full textMercke, William L., Thomas Dziubla, Richard E. Eitel, and Kimberly Anderson. "Biocompatibility Evaluation of Human Umbilical Vein Endothelial Cells Directly onto Low-Temperature Co-fired Ceramic Materials for Microfluidic Applications." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2012, CICMT (September 1, 2012): 000549–56. http://dx.doi.org/10.4071/cicmt-2012-tha11.
Full textWang, Rui, Ji Zhou, Hongjie Zhao, Bo Li, and Longtu Li. "Oxyfluoride glass-silica ceramic composite for low temperature co-fired ceramics." Journal of the European Ceramic Society 28, no. 15 (November 2008): 2877–81. http://dx.doi.org/10.1016/j.jeurceramsoc.2008.05.010.
Full textLuo, Jin, and Richard Eitel. "Biocompatible low temperature co-fired ceramic for biosensors." Additional Conferences (Device Packaging, HiTEC, HiTEN, and CICMT) 2013, CICMT (September 1, 2013): 000183–86. http://dx.doi.org/10.4071/cicmt-wp35.
Full textWu, Ming-Hsun, and Richard Yetter. "A LOW TEMPERATURE CO-FIRED CERAMIC ELECTROLTYIC MICROTHRUSTER." International Journal of Energetic Materials and Chemical Propulsion 8, no. 4 (2009): 357–71. http://dx.doi.org/10.1615/intjenergeticmaterialschemprop.v8.i4.80.
Full textJurków, Dominik, Thomas Maeder, Arkadiusz Dąbrowski, Marina Santo Zarnik, Darko Belavič, Heike Bartsch, and Jens Müller. "Overview on low temperature co-fired ceramic sensors." Sensors and Actuators A: Physical 233 (September 2015): 125–46. http://dx.doi.org/10.1016/j.sna.2015.05.023.
Full textRadosavljević, Goran, Mariana Mădălina Pochia, Daniela Rosca, Nelu Blaž, and Andrea Marić. "Capacitive Low Temperature Co-Fired Ceramic Fluidic Sensor." Sensor Letters 11, no. 4 (April 1, 2013): 646–49. http://dx.doi.org/10.1166/sl.2013.2933.
Full textDissertations / Theses on the topic "Low temperature co-fire ceramic"
Adluru, Hari Kishore. "Design and analysis of micro-channel heat-exchanger embedded in Low Temperature Co-fire Ceramic (LTCC)." FIU Digital Commons, 2004. http://digitalcommons.fiu.edu/etd/1160.
Full textSmarra, Devin A. "Low Temperature Co-Fired Ceramic (LTCC) Substrate for High Temperature Microelectronics." University of Dayton / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1493386231571894.
Full textSobocinski, M. (Maciej). "Embedding of bulk piezoelectric structures in low temperature co-fired ceramic." Doctoral thesis, Oulun yliopisto, 2014. http://urn.fi/urn:isbn:9789526207049.
Full textTiivistelmä Curien veljekset havaitsivat pietsosähköisen ilmiön jo yli sata vuotta sitten. Ilmiöön liittyvä tutkimustieto ja erityisesti siihen perustuvien sovellusten määrä on nykyisin valtava. Uusissa pietsosähköisissä komponenteissa ja varsinkin niissä, jotka on tarkoitettu henkilökohtaisissa laitteissa käytettäviksi, muodot samoinkuin elektroniikapiirit voivat olla monimutkaisia. Siksi tarvitaan tarkoituksenmukaista ja hinnaltaan edullista laitteen pakkausmenetelmää. Hiljattain kehitetyt itseohjautuvat matalan lämpötilan yhteissintattavat keraamit (LTCC), joiden planaarinen kutistuma on lähes olematon, ovat lisänneet LTCC-teknologian sovellusmahdollisuuksia. Muotoon valmistetun sintraamattoman ja lopullisen sintratun keraamin dimensioiden yhtäsuuruus ei ole ainoastaan parantanut älykkäiden monikerrospakkausten suunnittelua, vaan mahdollistanut myös erilaisten materiaalien ja komponenttien upottamisen LTCC-rakenteisiin ja niiden yhteissintrauksen. Väitöstyössä esitetään uusi menetelmä pietsosähköisten bulkrakenteiden upottamiseksi saumattomasti LTCC-rakenteisiin yhteissintrauksella tai liimaliitoksella. Erityistä huomiota on kiinnitetty monivaiheiseen laminointiin ja sintrauksen jälkeiseen pietsosähköisten keraamien polarisointiin. Työssä on esitetty esimerkkejä useista rakenteista pietsosähköisten sovellusten pääalueilta osoituksena uuden tekniikan onnistuneesta käyttöönottamisesta nykyisessä valmistusympäristössä. Tutkittujen uusien rakenteiden ja muilla menetelmillä valmistettujen rakenteiden ominaisuuksia on verrattu keskenään. Pietsosähköisten bulkrakenteiden integroiminen yhteissintrauksella on uusi tekniikka, joka mahdollistaa lukuisia sovelluksia ja soveltuu massatuotantoon olemassa olevilla prosseintilaitteistoilla
Barton, Cecil Edward. "Electrical characterization of a multilayer low temperature co-fireable ceramic multichip module." Thesis, This resource online, 1994. http://scholar.lib.vt.edu/theses/available/etd-09052009-040727/.
Full textJantunen, H. (Heli). "A novel Low Temperature Co-firing Ceramic (LTCC) material for telecommunication devices." Doctoral thesis, University of Oulu, 2001. http://urn.fi/urn:isbn:951426553X.
Full textYucel, Ayse Tugce. "Modeling And Control Of High Temperature Oven For Low Temperature Co-fired Ceramic (ltcc) Device Manufacturing." Master's thesis, METU, 2012. http://etd.lib.metu.edu.tr/upload/12614918/index.pdf.
Full textC) are called Low Temperature Co-Fired Ceramics (LTCC). In this study, a comprehensive thermal model is described for the high temperature oven which belongs to a Low Temperature Co-fired Ceramic (LTCC) substance production line. The model includes detailed energy balances with conduction, convection and radiation heat transfer mechanisms, view factor derivations for the radiative terms, thermocouple balances, heating filaments and cooling mechanisms for the system. Research was conducted mainly on process development and production conditions along with the system modeling of oven. Temperature control was made in high temperature co-firing oven. Radiation View Factors for substrate and thermocouples are determined. View factors between substrate and top-bottom-sides of the oven are calculated, and then inserted into the energy balances. The same arrangement was made for 3 thermocouples at the bottom of the oven. Combination of both expressions gave the final model. Modeling studies were held with energy balance simulations on MATLAB. Data analysis and DOE study were held with JMP Software.
Hu, T. (Tao). "BST-based low temperature co-fired ceramic (LTCC) modules for microwave tunable components." Doctoral thesis, University of Oulu, 2004. http://urn.fi/urn:isbn:9514272927.
Full textLuo, Jin. "The Development and Biocompatibility of Low Temperature Co-Fired Ceramic (LTCC) for Microfluidic and Biosensor Applications." UKnowledge, 2014. http://uknowledge.uky.edu/cme_etds/30.
Full textMercke, William L. "Diagnosis of Systemic Inflammation Using Transendothelial Electrical Resistance and Low-Temperature Co-fired Ceramic Materials." UKnowledge, 2013. http://uknowledge.uky.edu/cme_etds/21.
Full textHo, Christopher M. (Christopher Mark). "Manufacturing operation modeling for product redesign : resistance analysis of low-temperature co-fired ceramic circuits." Thesis, Massachusetts Institute of Technology, 1995. http://hdl.handle.net/1721.1/36521.
Full textBooks on the topic "Low temperature co-fire ceramic"
Herr-Rains, Cheryl. Fire marks: A workbook on low-temperature smoke firing. Vienna, ME: Fire Marks, 1999.
Find full textBook chapters on the topic "Low temperature co-fire ceramic"
Geyer, Richard G., Liang Chai, Aziz Shaikh, and Vern Stygar. "Microwave Properties of Low-Temperature Co-Fired Ceramic Systems." In Ceramic Transactions Series, 261–85. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118380802.ch25.
Full textRabe, Torsten, Markus Eberstein, and Wolfgang A. Schiller. "Low Temperature Co-Fired Ceramics (LTCC) - Design and Characterization of Interfaces." In Ceramic Transactions Series, 173–78. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2011. http://dx.doi.org/10.1002/9781118144145.ch27.
Full textNair, K. M., M. F. McCombs, K. E. Souders, J. M. Parisi, K. H. Hang, D. M. Nair, and S. C. Beers. "DuPontTM Green TapeTM 9K7 Low Temperature Co-fired Ceramic (LTCC) Low Loss Dielectric System for High Frequency Microwave Applications." In Ceramic Transactions Series, 213–29. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2010. http://dx.doi.org/10.1002/9780470930915.ch20.
Full textSawhill, Howard T. "Materials Compatibility and Co-Sintering Aspects in Low Temperature Co-Fired Ceramic Packages." In Cofire Technology: Ceramic Engineering and Science Proceedings, Volume 9, Issue 11/12, 1603–17. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2008. http://dx.doi.org/10.1002/9780470310519.ch5.
Full textBirol, Hansu, Thomas Maeder, Caroline Jacq, Giancarlo Corradini, Marc Boers, Sigfrid Straessler, and Peter Ryser. "Structuration and Fabrication of Sensors Based on LTCC (Low Temperature Co-Fired Ceramic) Technology." In Key Engineering Materials, 1849–52. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-410-3.1849.
Full textRane, Vivek, Varsha Chaware, Shrikant Kulkarni, Siddharth Duttagupta, and Girish Phatak. "Materials for Embedded Capacitors, Inductors, Nonreciprocal Devices, and Solid Oxide Fuel Cells in Low Temperature Co-fired Ceramic." In Springer Tracts in Mechanical Engineering, 285–301. New Delhi: Springer India, 2014. http://dx.doi.org/10.1007/978-81-322-1913-2_17.
Full textBirol, Hansu, Thomas Maeder, and Peter Ryser. "Modification of Thick-Film Conductors Used in IP Technology for Reduction of Warpage during Co-Firing of LTCC (Low Temperature Co-Fired Ceramic) Modules." In Key Engineering Materials, 746–49. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-410-3.746.
Full textBansode, Pranoti S., and D. C. Gharpure. "Design and Analysis of Circular Polarize Micro Strip Patch Antenna for X Band in Low Temperature Co-Fired Ceramic Technology (LTCC)." In Computational Mathematics, Nanoelectronics, and Astrophysics, 49–63. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9708-4_4.
Full textBermejo, Raul, Peter Supancic, Clemens Krautgasser, and Robert Danzer. "Evaluation of Subcritical Crack Growth in Low Temperature Co-Fired Ceramics." In Mechanical Properties and Performance of Engineering Ceramics and Composites VIII, 161–72. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118807514.ch17.
Full textGuo, Yafei, Chuanwen Zhao, Changhai Li, and Shouxiang Lu. "Low-Temperature CO Catalytic Oxidation over KOH-Hopcalite Mixtures and In Situ CO2 Capture from Fire Smoke." In Fire Science and Technology 2015, 725–33. Singapore: Springer Singapore, 2016. http://dx.doi.org/10.1007/978-981-10-0376-9_74.
Full textConference papers on the topic "Low temperature co-fire ceramic"
Tsai, Chung-Hao, and Tzong-Lin Wu. "A GHz common-mode filter using negative permittivity metamaterial on low temperature co-fire ceramic (LTCC) substrate." In 2009 IEEE International Symposium on Electromagnetic Compatibility - EMC 2009. IEEE, 2009. http://dx.doi.org/10.1109/isemc.2009.5284670.
Full textStengel, Bob, and Lei Zhao. "Low Temperature Co-fired Ceramic LTCC Application Testing Alternative." In 57th ARFTG Conference Digest. IEEE, 2001. http://dx.doi.org/10.1109/arftg.2001.327473.
Full textShawver, S., J. Browning, D. Plumlee, S. M. Loo, C. Lee, J. Taff, M. Yates, J. Woldtvedt, L. Knowles, and D. Reis. "Miniaturized electric propulsion in Low Temperature Co-fired Ceramic." In 2011 IEEE 38th International Conference on Plasma Sciences (ICOPS). IEEE, 2011. http://dx.doi.org/10.1109/plasma.2011.5993296.
Full textLi, Qiang, and Fred C. Lee. "Winding AC resistance of low temperature co-fired ceramic inductor." In 2012 IEEE Applied Power Electronics Conference and Exposition - APEC 2012. IEEE, 2012. http://dx.doi.org/10.1109/apec.2012.6166064.
Full textKlima, Martin, Jakub Somer, Lucie Blahova, Michal Prochazka, and Ivan Szendiuch. "Usage of low-temperature co-fired ceramic in hermetic packaging." In 2014 37th ISSE International Spring Seminar in Electronics Technology (ISSE). IEEE, 2014. http://dx.doi.org/10.1109/isse.2014.6887571.
Full textKhalid, Muhamad Kamil, Noriza Othman, and Mohd Khairul Mohd Salleh. "Low-temperature co-fired ceramic coupled-line bandpass filter design." In 2013 IEEE Symposium on Computers & Informatics (ISCI). IEEE, 2013. http://dx.doi.org/10.1109/isci.2013.6612374.
Full textDevrukhakar, Mayur, Mangesh Dayaphule, Varsha Chaware, Vijaya Giramkar, Shany Joseph, and Girish Phatak. "Non-return microvalve using low temperature co-fired ceramic (LTCC)." In 2015 2nd International Symposium on Physics and Technology of Sensors (ISPTS). IEEE, 2015. http://dx.doi.org/10.1109/ispts.2015.7220131.
Full textLi, Yan-Lin, Xu Zhu, Ji-Chao Liu, Li-Jie Zhou, and Zhi-Hua Wang. "Miniaturization of Low Temperature Co-fired Ceramic Packaging for Microwave Filters." In 2018 19th International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2018. http://dx.doi.org/10.1109/icept.2018.8480833.
Full textWei, Wei, Peng Wang, Xu-Bo Wei, Jia-Xuan Liao, Sha-Ou Wang, and Bang-Chao Yang. "Compact radar altimeter simulator using low temperature co-fired ceramic technology." In 2011 International Conference on Computational Problem-Solving (ICCP). IEEE, 2011. http://dx.doi.org/10.1109/iccps.2011.6092236.
Full textSobocinski, Maciej, Mikko Leinonen, Jari Juuti, and Heli Jantunen. "Piezoelectric active mirror suspension embedded into Low Temperature Co-fired Ceramic." In Nanoscale Phenomena in Polar Materials. IEEE, 2011. http://dx.doi.org/10.1109/isaf.2011.6013989.
Full textReports on the topic "Low temperature co-fire ceramic"
Uribe, Fernando R., Alice C. Kilgo, John Mark Grazier, Paul Thomas Vianco, Gary L. Zender, Paul Frank Hlava, and Jerome Andrew Rejent. An analysis of the pull strength behaviors of fine-pitch, flip chip solder interconnections using a Au-Pt-Pd thick film conductor on Low-Temperature, Co-fired Ceramic (LTCC) substrates. Office of Scientific and Technical Information (OSTI), September 2008. http://dx.doi.org/10.2172/942186.
Full textUribe, Fernando, Paul Thomas Vianco, and Gary L. Zender. Pull strength evaluation of Sn-Pb solder joints made to Au-Pt-Pd and Au thick film structures on low-temperature co-fired ceramic -final report for the MC4652 crypto-coded switch (W80). Office of Scientific and Technical Information (OSTI), June 2006. http://dx.doi.org/10.2172/887252.
Full textMoll, Amy J., Judi Steciak, and Donald G. Plumlee. Micro-Propulsion Devices in Low Temperature Co-Fired Ceramics. Fort Belvoir, VA: Defense Technical Information Center, February 2009. http://dx.doi.org/10.21236/ada495405.
Full text