Journal articles on the topic 'Low temperature heat valorisation'

To see the other types of publications on this topic, follow the link: Low temperature heat valorisation.

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Low temperature heat valorisation.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Buchin, Oliver, and Felix Ziegler. "Valorisation of low-temperature heat: Impact of the heat sink on performance and economics." Applied Thermal Engineering 50, no. 2 (February 2013): 1543–48. http://dx.doi.org/10.1016/j.applthermaleng.2011.10.002.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Laurenz, Eric, Gerrit Füldner, Lena Schnabel, and Gerhard Schmitz. "A Novel Approach for the Determination of Sorption Equilibria and Sorption Enthalpy Used for MOF Aluminium Fumarate with Water." Energies 13, no. 11 (June 11, 2020): 3003. http://dx.doi.org/10.3390/en13113003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
Adsorption chillers offer an environmentally friendly solution for the valorisation of waste or solar heat for cooling demands. A recent application is high efficiency data centre cooling, where heat from CPUs is used to drive the process, providing cooling for auxiliary loads. The metal organic framework aluminium fumarate with water is potentially a suitable material pair for this low temperature driven application. A targeted heat exchanger design is a prerequisite for competitiveness, requiring, amongst other things, a sound understanding of adsorption equilibria and adsorption enthalpy. A novel method is employed for their determination based on small isothermal and isochoric state changes, applied with an apparatus developed initially for volume swing frequency response measurement, to samples with a binder-based adsorbent coating. The adsorption enthalpy is calculated through the Clausius–Clapeyron equation from the obtained slopes of the isotherm and isobar, while the absolute uptake is determined volumetrically. The isotherm confirms the step-like form known for aluminium fumarate, with a temperature dependent inflection point at p rel ≈ 0.25, 0.28 and 0.33 for 30 °C, 40 °C and 60 °C. The calculated differential enthalpy of adsorption is 2.90 ± 0.05 MJ/kg (52.2 ± 1.0 kJ/mol) on average, which is about 10–15% higher than expected by a simple Dubinin approximation.
3

Grocholski, Brent. "Recovering low-temperature heat." Science 370, no. 6514 (October 15, 2020): 305.2–305. http://dx.doi.org/10.1126/science.370.6514.305-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vasiliev, L. L. "Low-temperature heat pipes." Journal of Heat Recovery Systems 5, no. 3 (January 1985): 203–16. http://dx.doi.org/10.1016/0198-7593(85)90078-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Beyermann, W. P., M. F. Hundley, J. D. Thompson, F. N. Diederich, and G. Grüner. "Low-temperature specific heat ofC60." Physical Review Letters 68, no. 13 (March 30, 1992): 2046–49. http://dx.doi.org/10.1103/physrevlett.68.2046.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lasjaunias, J. C., M. Saint-Paul, O. Laborde, O. Thomas, J. P. Sénateur, and R. Madar. "Low-temperature specific heat ofMoSi2." Physical Review B 37, no. 17 (June 15, 1988): 10364–66. http://dx.doi.org/10.1103/physrevb.37.10364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Feng, Y. P., A. Jin, D. Finotello, K. A. Gillis, M. H. W. Chan, and J. E. Greedan. "Low-temperature specific heat ofLa1.85Sr0.15CuO4andLa2CuO4." Physical Review B 38, no. 10 (October 1, 1988): 7041–44. http://dx.doi.org/10.1103/physrevb.38.7041.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Oeschler, N., S. Hartmann, A. P. Pikul, C. Krellner, C. Geibel, and F. Steglich. "Low-temperature specific heat of." Physica B: Condensed Matter 403, no. 5-9 (April 2008): 1254–56. http://dx.doi.org/10.1016/j.physb.2007.10.119.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tokiwa, Y., F. Ronning, V. Fritsch, R. Movshovich, J. D. Thompson, and J. L. Sarrao. "Low-temperature specific heat of." Journal of Magnetism and Magnetic Materials 310, no. 2 (March 2007): 325–27. http://dx.doi.org/10.1016/j.jmmm.2006.10.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Hamilton, J. J., E. L. Keatley, H. L. Ju, A. K. Raychaudhuri, V. N. Smolyaninova, and R. L. Greene. "Low-temperature specific heat ofLa0.67Ba0.33MnO3andLa0.8Ca0.2MnO3." Physical Review B 54, no. 21 (December 1, 1996): 14926–29. http://dx.doi.org/10.1103/physrevb.54.14926.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Seyfouri, Zeynab, Mehran Ameri, and Mozaffar Ali Mehrabian. "A Totally Heat-Driven Refrigeration System Using Low-Temperature Heat Sources for Low-Temperature Applications." International Journal of Air-Conditioning and Refrigeration 27, no. 02 (June 2019): 1950012. http://dx.doi.org/10.1142/s2010132519500123.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
In the present study, a totally heat-driven refrigeration system is proposed and thermodynamically analyzed. This system uses a low-temperature heat source such as geothermal energy or solar energy to produce cooling at freezing temperatures. The proposed system comprises a Rankine cycle (RC) and a hybrid GAX (HGAX) refrigeration cycle, in which the RC provides the power requirement of the HGAX cycle. An ammonia–water mixture is used in both RC and HGAX cycles as the working fluid. A comparative study is conducted in which the proposed system is compared with two other systems using GAX cycle and/or a single stage cycle, as the refrigeration cycle. The study shows that the proposed system is preferred to produce cooling at temperatures from 2∘C to [Formula: see text]C. A detailed parametric analysis of the proposed system is carried out. The results of the analysis show that the system can produce cooling at [Formula: see text]C using a low-temperature heat source at 133.5∘C with the exergy efficiency of about 20% without any input power. By increasing the heat source temperature to 160∘C, an exergy efficiency of 25% can be achieved.
12

Matsuda, Satoshi, Kazuhiko Yamaya, Yutaka Abe, and Takashi Sambongi. "Low Temperature Specific Heat of ZrTe3." Japanese Journal of Applied Physics 26, S3-2 (January 1, 1987): 973. http://dx.doi.org/10.7567/jjaps.26s3.973.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Andronikashvili, E. L., and G. M. Mrevlishvili. "Low-temperature heat capacity of DNA." Uspekhi Fizicheskih Nauk 150, no. 12 (1986): 625. http://dx.doi.org/10.3367/ufnr.0150.198612h.0625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Zorovic, Dinko, and Aleksandar Zorovic. "The Exploitation of Low Temperature Heat." Key Engineering Materials 20-28 (January 1991): 843–46. http://dx.doi.org/10.4028/www.scientific.net/kem.20-28.843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Stupp, S. E., M. E. Reeves, D. M. Ginsberg, D. G. Hinks, B. Dabrowski, and K. G. Vandervoort. "Low-temperature specific heat of polycrystallineBa0.6K0.4BiO3." Physical Review B 40, no. 16 (December 1, 1989): 10878–81. http://dx.doi.org/10.1103/physrevb.40.10878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Langhammer, C., F. Steglich, M. Lang, and T. Sasaki. "Low-temperature specific heat of Sr2RuO4." European Physical Journal B 26, no. 4 (April 2002): 413–16. http://dx.doi.org/10.1140/epjb/e20020108.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Andronikashvili, É. L., and George M. Mrevlishvili. "Low-temperature heat capacity of DNA." Soviet Physics Uspekhi 29, no. 12 (December 31, 1986): 1151–52. http://dx.doi.org/10.1070/pu1986v029n12abeh003626.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Glavin, B. A. "Low-Temperature Heat Transfer in Nanowires." Physical Review Letters 86, no. 19 (May 7, 2001): 4318–21. http://dx.doi.org/10.1103/physrevlett.86.4318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Suzuki, Eriko, Kunihisa Nakajima, Masahiko Osaka, Yuji Ohishi, Hiroaki Muta, and Ken Kurosaki. "Low temperature heat capacity of Cs2Si4O9." Journal of Nuclear Science and Technology 57, no. 7 (February 13, 2020): 852–57. http://dx.doi.org/10.1080/00223131.2020.1727374.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Gavrichev, K. S., V. N. Guskov, J. H. Greenberg, T. Feltgen, M. Fiederle, and K. W. Benz. "Low-temperature heat capacity of ZnTe." Journal of Chemical Thermodynamics 34, no. 12 (December 2002): 2041–47. http://dx.doi.org/10.1016/s0021-9614(02)00256-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Dahlhauser, Karl J., A. C. Anderson, and George Mozurkewich. "Excess low-temperature specific heat inK0.3MoO3." Physical Review B 34, no. 6 (September 15, 1986): 4432–35. http://dx.doi.org/10.1103/physrevb.34.4432.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Castellanos-Guzman, A. G., V. M. Soto García, L. Bayarjargal, E. Haussühl, and B. Winkler. "Low temperature heat capacities of boracites." Ferroelectrics 498, no. 1 (May 18, 2016): 36–39. http://dx.doi.org/10.1080/00150193.2016.1166849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Pattalwar, S. M., R. N. Dixit, S. Y. Shete, and B. K. Basu. "Low-temperature specific heat of PdPb2." Physical Review B 38, no. 10 (October 1, 1988): 7067–69. http://dx.doi.org/10.1103/physrevb.38.7067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ho, James C., Royce C. Liang, and D. P. Dandekar. "Low‐temperature heat capacities of Ni3Al." Journal of Applied Physics 59, no. 4 (February 15, 1986): 1397–98. http://dx.doi.org/10.1063/1.336488.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Affronte, M., J. C. Lasjaunias, A. Cornia, and A. Caneschi. "Low-temperature specific heat ofFe6andFe10molecular magnets." Physical Review B 60, no. 2 (July 1, 1999): 1161–66. http://dx.doi.org/10.1103/physrevb.60.1161.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Thiriet, C., R. J. M. Konings, and F. Wastin. "Low temperature heat capacity of PuPO4." Journal of Nuclear Materials 344, no. 1-3 (September 2005): 56–60. http://dx.doi.org/10.1016/j.jnucmat.2005.04.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Taniguchi, T., H. Morimoto, Y. Miyako, and S. Ramakrishnan. "Low-temperature specific heat of UNiSi2." Journal of Magnetism and Magnetic Materials 177-181 (January 1998): 55–56. http://dx.doi.org/10.1016/s0304-8853(97)00425-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Nakamura, S., O. Suzuki, T. Goto, T. Matsumura, T. Suzuki, S. Sakatsume, and S. Kunii. "Low-temperature specific heat of Ce0.5La0.5B6." Physica B: Condensed Matter 230-232 (February 1997): 233–35. http://dx.doi.org/10.1016/s0921-4526(96)00660-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Nambudripad, N., and S. K. Dhar. "Low temperature heat capacity of YBa2Cu3O7." Pramana 29, no. 4 (October 1987): L433—L435. http://dx.doi.org/10.1007/bf02845783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

CASPARY, R., P. HELLMANN, T. WOLF, and F. STEGLICH. "LOW TEMPERATURE SPECIFIC HEAT OF YBa2Cu3O7." International Journal of Modern Physics B 07, no. 01n03 (January 1993): 166–69. http://dx.doi.org/10.1142/s0217979293000378.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
We show specific heat data in magnetic fields to B = 8T on new polycrystals with different oxygen content and compare them with earlier results. The analysis reveals a field dependent residual linear term which is discussed within theoretical models of Bulaevskii and for a spin-glass.
31

Ho, J. C., H. H. Hamdeh, M. W. Barsoum, and T. El-Raghy. "Low temperature heat capacity of Ti3SiC2." Journal of Applied Physics 85, no. 11 (June 1999): 7970–71. http://dx.doi.org/10.1063/1.370618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Berezovskii, Gleb A., Valeri A. Drebushchak, and Tatyana A. Kravchenko. "Low-temperature heat capacity of pentlandite." American Mineralogist 86, no. 10 (October 2001): 1312–13. http://dx.doi.org/10.2138/am-2001-1020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Jin, D. S., T. F. Rosenbaum, J. S. Kim, and G. R. Stewart. "Low-temperature specific heat ofU1−xThxBe13." Physical Review B 49, no. 2 (January 1, 1994): 1540–43. http://dx.doi.org/10.1103/physrevb.49.1540.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Bagot, D., S. Rolland, R. Triboulet, and R. Granger. "Low-temperature specific heat in Hg0.88Zn0.12Te." Semiconductor Science and Technology 8, no. 5 (May 1, 1993): 638–42. http://dx.doi.org/10.1088/0268-1242/8/5/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Aldzhanov, M. A., A. A. Abdurragimov, S. G. Sultanova, and M. D. Nadzhafzade. "Low-temperature specific heat of TlCrS2." Physics of the Solid State 49, no. 2 (February 2007): 320–21. http://dx.doi.org/10.1134/s1063783407020229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Dahn, D. C., J. F. Carolan, and R. R. Haering. "Low-temperature specific heat ofLixNbS2intercalation compounds." Physical Review B 33, no. 8 (April 15, 1986): 5214–20. http://dx.doi.org/10.1103/physrevb.33.5214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Brandato, D. E., M. A. Boff, G. L. F. Fraga, and T. A. Grandi. "Low-Temperature Specific Heat of Co2NbSn." physica status solidi (b) 176, no. 2 (April 1, 1993): K45—K46. http://dx.doi.org/10.1002/pssb.2221760228.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Drebushchak, V. A., Yulia A. Kovalevskaya, I. E. Paukov, and Elena V. Boldyreva. "Low-temperature heat capacity of diglycylglycine." Journal of Thermal Analysis and Calorimetry 93, no. 3 (September 2008): 865–69. http://dx.doi.org/10.1007/s10973-007-8891-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Andersson, O., T. Matsuo, H. Suga, and P. Ferloni. "Low-temperature heat capacity of urea." International Journal of Thermophysics 14, no. 1 (January 1993): 149–58. http://dx.doi.org/10.1007/bf00522668.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Averfalk, Helge, and Sven Werner. "Novel low temperature heat distribution technology." Energy 145 (February 2018): 526–39. http://dx.doi.org/10.1016/j.energy.2017.12.157.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Briggs, A., O. Thomas, R. Madar, and J. P. Senateur. "Low temperature specific heat of CoSi2." Applied Surface Science 53 (November 1991): 240–42. http://dx.doi.org/10.1016/0169-4332(91)90270-t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

TAKEDA, Tsunehiro, Takayuki KUNIMATSU, and Hiromitsu NOGI. "Ultra-low Temperature Electric Valve with Low Heat Generation." TEION KOGAKU (Journal of Cryogenics and Superconductivity Society of Japan) 52, no. 6 (2017): 465–68. http://dx.doi.org/10.2221/jcsj.52.465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Brogioli, Doriano, and Fabio La Mantia. "Heat recovery in energy production from low temperature heat sources." AIChE Journal 65, no. 3 (December 27, 2018): 980–91. http://dx.doi.org/10.1002/aic.16496.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Yang, Zongming, Volodymyr Korobko, Mykola Radchenko, and Roman Radchenko. "Improving Thermoacoustic Low-Temperature Heat Recovery Systems." Sustainability 14, no. 19 (September 27, 2022): 12306. http://dx.doi.org/10.3390/su141912306.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The existence and development of modern society require significant amounts of available energy. Combustion engines are the main sources of heat. Their operation is accompanied by the formation of large volumes of emissions, which have different temperatures and contain harmful substances ejected into the environment. Therefore, the urgent problem today is the reduction in heat emissions. This might be achieved through a reduction in the amount of these pollutants by improving primary heat engines, converting to new, alternative types of fuel, and at the same time, to carbon-free fuel. However, such measures only reduce the temperature level of waste heat but not its volume. Conventional technologies for the utilization of heat emissions are ineffective for using heat with temperatures below 500 K. Thermoacoustic technologies can be used to convert such low-temperature heat emissions into mechanical work or electricity. This article is focused on analyzing the possibilities of improving the thermoacoustic engines of energy-saving systems through the rational organization of thermoacoustic energy conversion processes. An original mathematical model of energy exchange between the internal elements of thermoacoustic engines is developed. It is shown that the use of recuperative heat exchangers in thermoacoustic engines leads to a decrease in their efficiency by 10–30%. From the research results, new methods of increasing the efficiency of low-temperature engines of energy-saving systems are proposed.
45

bin Ismail, Azhar, Li Ang, Kyaw Thu, and Kim Choon Ng. "Low Temperature Waste Heat Driven Refrigeration Cycle." Applied Mechanics and Materials 819 (January 2016): 241–44. http://dx.doi.org/10.4028/www.scientific.net/amm.819.241.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
This work explores the utilization of alternative refrigerants to the conventional silica gel + water adsorption pair for the adsorption chiller cycle. Water as the working fluid in the cycle limits the cooling temperatures to above 0°C due to its triple point. The activated carbon Maxsorb III is thus considered as the adsorbent due to its high micro-porous characteristics which lead to higher uptake values. The isotherms of this adsorbent with natural refrigerant Propane, n-butane as well as refrigerants HFC-134a, R507a and R-32 are fitted to the Dubinin-Astakhov equation and the parameters tabulated. With these isotherms, the performances of these pairs with respect to their Specific Cooling Effects (SCE) are compared for assorted cooling temperature, ambient temperature and waste temperature requirements. It was found that the natural refrigerant propane exhibits the most favorable operational conditions when the required cooling temperature is below 0°C. A mathematical model is thus developed to predict the cycle of the propane cycle and is found to show a good fit to the experimental results.
46

Lou, L. F. "Low‐temperature specific heat of (SN)x." Journal of Applied Physics 66, no. 2 (July 15, 1989): 979–81. http://dx.doi.org/10.1063/1.343479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Rapp, R. E., M. L. Siqueira, R. J. Viana, and L. C. Norte. "A very low‐temperature specific heat calorimeter." Review of Scientific Instruments 63, no. 11 (November 1992): 5390–93. http://dx.doi.org/10.1063/1.1143842.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Lin, G. J., J. C. Ho, and D. P. Dandekar. "Low‐temperature heat capacities of silicon carbide." Journal of Applied Physics 61, no. 11 (June 1987): 5198. http://dx.doi.org/10.1063/1.338302.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Han, Zhiyong, and Zhenzhu Jing. "The Low Temperature Specific Heat of Pr0.65Ca0.35MnO3." Advances in Condensed Matter Physics 2014 (2014): 1–4. http://dx.doi.org/10.1155/2014/394296.

Full text
APA, Harvard, Vancouver, ISO, and other styles
Abstract:
The low temperature specific heat of polycrystalline perovskite-type Pr0.65Ca0.35MnO3manganese oxide has been investigated experimentally. It is found that the low temperature electron specific heat in zero magnetic field is obviously larger than that of ordinary rare-earth manganites oxide. To get the contribution of phonon to the specific heat precisely, the lattice specific heat is calculated by Debye model fitting. Results confirm that the low temperature specific heat of Pr0.65Ca0.35MnO3is related to the itinerant electrons in ferromagnetic clusters and the disorder in the sample.
50

Woodfield, B. F., M. L. Wilson, and J. M. Byers. "Low-Temperature Specific Heat ofLa1−xSrxMnO3+δ." Physical Review Letters 78, no. 16 (April 21, 1997): 3201–4. http://dx.doi.org/10.1103/physrevlett.78.3201.

Full text
APA, Harvard, Vancouver, ISO, and other styles

To the bibliography