Journal articles on the topic 'Low temperature photoluminescence'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Low temperature photoluminescence.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Lacroix, Y., C. A. Tran, S. P. Watkins, and M. L. W. Thewalt. "Low‐temperature photoluminescence of epitaxial InAs." Journal of Applied Physics 80, no. 11 (1996): 6416–24. http://dx.doi.org/10.1063/1.363660.
Full textKini, R. N., A. Mascarenhas, R. France, and A. J. Ptak. "Low temperature photoluminescence from dilute bismides." Journal of Applied Physics 104, no. 11 (2008): 113534. http://dx.doi.org/10.1063/1.3041479.
Full textMisiewicz, J. "The low temperature photoluminescence in Zn3P2." Physica Status Solidi (a) 107, no. 1 (1988): K65—K68. http://dx.doi.org/10.1002/pssa.2211070161.
Full textLiu, Yichun, and Yanhong Tong. "Growth and Optical Properties of ZnO Low-Dimensional Nanostructures." Journal of Nanoscience and Nanotechnology 8, no. 3 (2008): 1101–9. http://dx.doi.org/10.1166/jnn.2008.18158.
Full textKim, Soo-Yong. "A Study on Phosphor Synthetic and Low Temperature Photoluminescence Spectrum." Journal of the Korean Institute of Illuminating and Electrical Installation Engineers 24, no. 4 (2010): 10–16. http://dx.doi.org/10.5207/jieie.2010.24.4.010.
Full textKasai, Jun‐ichi, and Yoshifumi Katayama. "Low‐temperature micro‐photoluminescence using confocal microscopy." Review of Scientific Instruments 66, no. 7 (1995): 3738–43. http://dx.doi.org/10.1063/1.1145431.
Full textPickin, William. "Low-temperature photoluminescence spectrum of amorphous semiconductors." Physical Review B 40, no. 17 (1989): 12030–33. http://dx.doi.org/10.1103/physrevb.40.12030.
Full textKovalev, D., J. Diener, H. Heckler, et al. "Low-temperature photoluminescence upconversion in porous Si." Physical Review B 61, no. 23 (2000): 15841–47. http://dx.doi.org/10.1103/physrevb.61.15841.
Full textChurmanov, V. N., N. B. Gruzdev, V. I. Sokolov, V. A. Pustovarov, V. Yu Ivanov, and N. A. Mironova-Ulmane. "Low-temperature photoluminescence in NixMg1−xO nanocrystals." Low Temperature Physics 41, no. 3 (2015): 233–35. http://dx.doi.org/10.1063/1.4915911.
Full textFeng, W., F. Chen, Q. Huang, and J. M. Zhou. "Photoluminescence of low-temperature multiple quantum wells." Journal of Crystal Growth 175-176 (May 1997): 1173–77. http://dx.doi.org/10.1016/s0022-0248(96)01041-x.
Full textLan, Y. C., X. L. Chen, Y. G. Cao, et al. "Low-temperature synthesis and photoluminescence of AlN." Journal of Crystal Growth 207, no. 3 (1999): 247–50. http://dx.doi.org/10.1016/s0022-0248(99)00448-0.
Full textBezrodna, T., V. Melnyk, V. Vorobjev, and G. Puchkovska. "Low-temperature photoluminescence of 5CB liquid crystal." Journal of Luminescence 130, no. 7 (2010): 1134–41. http://dx.doi.org/10.1016/j.jlumin.2010.02.009.
Full textGASANLY, N. M. "Low-temperature photoluminescence in CuIn5S8 single crystals." Pramana 86, no. 6 (2016): 1383–90. http://dx.doi.org/10.1007/s12043-015-1181-7.
Full textPal, S., A. Sarkar, P. Kumar, et al. "Low temperature photoluminescence from disordered granular ZnO." Journal of Luminescence 169 (January 2016): 326–33. http://dx.doi.org/10.1016/j.jlumin.2015.09.015.
Full textCho, Hak Dong, Im Taek Yoon, Kwun Bum Chung, Deuk Young Kim, Tae Won Kang, and Sh U. Yuldashev. "Low-temperature photoluminescence of WO 3 nanoparticles." Journal of Luminescence 195 (March 2018): 344–47. http://dx.doi.org/10.1016/j.jlumin.2017.11.053.
Full textBodnar’, I. V., and M. V. Yakushev. "Low-temperature photoluminescence in AgGaSe2 single crystals." Technical Physics 49, no. 3 (2004): 335–37. http://dx.doi.org/10.1134/1.1688420.
Full textPosavec, T., S. Nepal, and S. V. Dordevic. "Low Temperature Photoluminescence in Some Common Polymers." Materials Performance and Characterization 7, no. 1 (2018): 20170138. http://dx.doi.org/10.1520/mpc20170138.
Full textAndreev, B. A., N. A. Sobolev, Yu A. Nikolaev, D. I. Kuritsin, M. I. Makovijchuk, and E. O. Parshin. "Low-temperature photoluminescence in holmium-doped silicon." Semiconductors 33, no. 4 (1999): 407–9. http://dx.doi.org/10.1134/1.1187703.
Full textTronc, P., B. Reid, H. Mani, et al. "Low Temperature Photoluminescence Spectra of Ga0.77In0.23As0.19SB0.81 Compounds." physica status solidi (b) 180, no. 2 (1993): K87—K91. http://dx.doi.org/10.1002/pssb.2221800240.
Full textTian, Peng, Chong Qing Huang, Wen Hua Luo, and Jing Liu. "MOCVD Growth and Optical Properties of Self-Assembled InAs/GaAs Quantum Dots." Advanced Materials Research 571 (September 2012): 265–68. http://dx.doi.org/10.4028/www.scientific.net/amr.571.265.
Full textKitada, Nobuo, and Takayuki Ishida. "Polymeric one- and two-dimensional copper(i) iodide complexes showing photoluminescence tunable by azaaromatic ligands." CrystEngComm 16, no. 34 (2014): 8035–40. http://dx.doi.org/10.1039/c4ce01231c.
Full textSagara, Yoshimitsu, Tatsuya Muramatsu, and Nobuyuki Tamaoki. "A 1,6-Diphenylpyrene-Based, Photoluminescent Cyclophane Showing a Nematic Liquid-Crystalline Phase at Room Temperature." Crystals 9, no. 2 (2019): 92. http://dx.doi.org/10.3390/cryst9020092.
Full textTifouti, I., B. Meriane, S. Rahmouni, N. Boukhenoufa, and H. Bendjeffal. "Investigation of Temperature-Dependent Photoluminescence Mechanisms in Porous Silicon Layer for Optoelectronic Devices." Acta Physica Polonica A 147, no. 6 (2025): 449. https://doi.org/10.12693/aphyspola.147.449.
Full textHwang, Seongmi, Youngmin Choi, and Beyong-Hwan Ryu. "Low Temperature Synthesis of Colloidal CdSe Quantum Dots." Journal of Nanoscience and Nanotechnology 7, no. 11 (2007): 3780–83. http://dx.doi.org/10.1166/jnn.2007.026.
Full textHwang, Seongmi, Youngmin Choi, and Beyong-Hwan Ryu. "Low Temperature Synthesis of Colloidal CdSe Quantum Dots." Journal of Nanoscience and Nanotechnology 7, no. 11 (2007): 3780–83. http://dx.doi.org/10.1166/jnn.2007.18071.
Full textByrne, Daragh, Aidan Cowley, Nick Bennett, and Enda McGlynn. "The luminescent properties of CuAlO2." J. Mater. Chem. C 2, no. 37 (2014): 7859–68. http://dx.doi.org/10.1039/c4tc01311e.
Full textHatayama, Tomoaki, Anne Henry, Hiroshi Yano, and Takashi Fuyuki. "Low-temperature photoluminescence of 8H-SiC homoepitaxial layer." Japanese Journal of Applied Physics 55, no. 2 (2016): 020303. http://dx.doi.org/10.7567/jjap.55.020303.
Full textPark, Jin Won, Dong Jae Lee, Dong Hwan Kim, and Yunsang Lee. "Low-temperature Photoluminescence for Polycrystalline SrZrO3 and SrHfO3." Journal of the Korean Physical Society 58, no. 2 (2011): 316–20. http://dx.doi.org/10.3938/jkps.58.316.
Full textJames, R. B., X. J. Bao, T. E. Schlesinger, J. M. Markakis, A. Y. Cheng, and C. Ortale. "Low‐temperature photoluminescence studies of mercuric‐iodide photodetectors." Journal of Applied Physics 66, no. 6 (1989): 2578–84. http://dx.doi.org/10.1063/1.344222.
Full textLee, Jaesun, and N. C. Giles. "Low‐temperature photoluminescence from bulk CdTe and Cd0.967Zn0.033Te." Journal of Applied Physics 78, no. 2 (1995): 1191–95. http://dx.doi.org/10.1063/1.360356.
Full textAbay, B., H. Efeoglu, Y. K. Yogurtçu, and M. Alieva. "Low-temperature visible photoluminescence spectra of Tl2GaInSe4layered crystals." Semiconductor Science and Technology 16, no. 9 (2001): 745–49. http://dx.doi.org/10.1088/0268-1242/16/9/302.
Full textHuang, Jia-Yao, Lin Shang, Shu-Fang Ma, et al. "Low temperature photoluminescence study of GaAs defect states." Chinese Physics B 29, no. 1 (2020): 010703. http://dx.doi.org/10.1088/1674-1056/ab5fb8.
Full textZHU, DELIANG, QIANWANG CHEN, and YUHENG ZHANG. "STABLE PHOTOLUMINESCENCE IN LOW-TEMPERATURE ANNEALED POROUS SILICON." Modern Physics Letters B 15, no. 24 (2001): 1077–85. http://dx.doi.org/10.1142/s0217984901002920.
Full textGasanly, N. M., and A. Aydinli. "Low-temperature photoluminescence spectra of InS single crystals." Solid State Communications 101, no. 11 (1997): 797–99. http://dx.doi.org/10.1016/s0038-1098(96)00704-1.
Full textKim, Seong‐Il, Moo‐Sung Kim, Yong Kim, Kyung Sook Eom, Suk‐Ki Min, and Choochon Lee. "Low temperature photoluminescence characteristics of carbon doped GaAs." Journal of Applied Physics 73, no. 9 (1993): 4703–5. http://dx.doi.org/10.1063/1.352740.
Full textAydınlı, A., N. M. Gasanly, and K. Gökşen. "Low-temperature photoluminescence study of GaS0.5Se0.5 layered crystals." Materials Research Bulletin 36, no. 10 (2001): 1823–32. http://dx.doi.org/10.1016/s0025-5408(01)00635-3.
Full textShinde, Aparna, Richa Gahlaut, and Shailaja Mahamuni. "Low-Temperature Photoluminescence Studies of CsPbBr3 Quantum Dots." Journal of Physical Chemistry C 121, no. 27 (2017): 14872–78. http://dx.doi.org/10.1021/acs.jpcc.7b02982.
Full textHudait, M. K., P. Modak, K. S. R. K. Rao, and S. B. Krupanidhi. "Low temperature photoluminescence properties of Zn-doped GaAs." Materials Science and Engineering: B 57, no. 1 (1998): 62–70. http://dx.doi.org/10.1016/s0921-5107(98)00259-1.
Full textGasanly, N. M., A. Aydinli, A. Bek, and I. Yilmaz. "Low-temperature photoluminescence spectra of layered semiconductor TlGaS2." Solid State Communications 105, no. 1 (1998): 21–24. http://dx.doi.org/10.1016/s0038-1098(97)10027-8.
Full textNikitin, T., S. Kopyl, V. Ya Shur, Y. V. Kopelevich, and A. L. Kholkin. "Low-temperature photoluminescence in self-assembled diphenylalanine microtubes." Physics Letters A 380, no. 18-19 (2016): 1658–62. http://dx.doi.org/10.1016/j.physleta.2016.02.043.
Full textKalem, S., T. Curtis, W. B. de Boer, and G. E. Stillman. "Low-temperature photoluminescence in SiGe single quantum wells." Applied Physics A: Materials Science & Processing 66, no. 1 (1998): 23–28. http://dx.doi.org/10.1007/s003390050632.
Full textGasanly, N. M. "Low-temperature photoluminescence in layered structured TlGa0.5In0.5Se2 crystals." Journal of Alloys and Compounds 547 (January 2013): 33–36. http://dx.doi.org/10.1016/j.jallcom.2012.08.134.
Full textPei, Haiyue, Yihan Lu, Limin Qi, Dongli Liu, Ding Zhao, and Min Qiu. "Low-temperature photoluminescence measurement with a micromachined Joule-Thomson cooler." IOP Conference Series: Materials Science and Engineering 1301, no. 1 (2024): 012150. http://dx.doi.org/10.1088/1757-899x/1301/1/012150.
Full textXia, Yijie, Shuaishuai Du, Pengju Huang, et al. "Temperature-Dependent Photoluminescence of Manganese Halide with Tetrahedron Structure in Anti-Perovskites." Nanomaterials 11, no. 12 (2021): 3310. http://dx.doi.org/10.3390/nano11123310.
Full textTu, Ya Fang, and Qiu Ming Fu. "Low Temperature Synthesis and Characterization of Flower-Like ZnO Nanostructures." Advanced Materials Research 664 (February 2013): 605–8. http://dx.doi.org/10.4028/www.scientific.net/amr.664.605.
Full textZinoviev, P. V., and V. N. Zoryansky. "Short notes: Photoluminescence of C60 fullerite intercalated with nitrogen molecules wide range of temperatures." Low Temperature Physics 48, no. 3 (2022): 268–70. http://dx.doi.org/10.1063/10.0009547.
Full textQu, Liu, Rui Wan, Yanjie Zhao, and Yu Wang. "Study on Interfacial Effects on Thermal, Mechanical and Fluorescent Properties for SrTiO3-SrCeO3 Composites." Journal of Physics: Conference Series 2459, no. 1 (2023): 012009. http://dx.doi.org/10.1088/1742-6596/2459/1/012009.
Full textMorales, A. Escobedo, R. Aceves, U. Pal, and J. Z. Zhang. "Low Temperature Photoluminescence Characteristics of Chemically Synthesized Indium Doped Zinc Oxide Nanostructures." Journal of Nanoscience and Nanotechnology 8, no. 12 (2008): 6538–44. http://dx.doi.org/10.1166/jnn.2008.18422.
Full textTanner, Peter A., and Lixin Yu. "Photoluminescence of ZnO:Eu3+ Nanoflowers." Journal of Nanoscience and Nanotechnology 8, no. 3 (2008): 1307–11. http://dx.doi.org/10.1166/jnn.2008.18187.
Full textWang, Yingtao, and Xian Zhang. "Experimental and Theoretical Investigations of Direct and Indirect Band Gaps of WSe2." Micromachines 15, no. 6 (2024): 761. http://dx.doi.org/10.3390/mi15060761.
Full text