Journal articles on the topic 'Low temperature physics[Cryogenics]'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Low temperature physics[Cryogenics].'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Gardner, J. B. "Low temperature engineering and cryogenics conference 1990 (LTEC 90)." Cryogenics 31, no. 3 (March 1991): 212. http://dx.doi.org/10.1016/0011-2275(91)90179-z.
Full textMusilova, V., P. Hanzelka, T. Kralik, and A. Srnka. "Low temperature radiative properties of materials used in cryogenics." Cryogenics 45, no. 8 (August 2005): 529–36. http://dx.doi.org/10.1016/j.cryogenics.2004.11.010.
Full textSAXENA, ROHIT, ADITI SONI, S. N. SAXNA, S. S. RATHORE, and P. BARNWAL. "CRYOGENIC GRINDING: A PHYSICAL TECHNIQUE TO RETAIN VOLATILE CONTENT IN NATURAL PRODUCTS." International Journal of Modern Physics: Conference Series 22 (January 2013): 589–92. http://dx.doi.org/10.1142/s2010194513010714.
Full textBondarenko, S. I., and A. M. Kislov. "Cryogenics in space research:Developments of B. Verkin Institute for low-temperature physics and engineering of National Academy of Sciences of Ukraine." Kosmìčna nauka ì tehnologìâ 1, no. 1 (January 30, 1995): 80–95. http://dx.doi.org/10.15407/knit1995.01.080.
Full textKwack, E. Y., P. Shakkottai, T. S. Luchik, K. M. Aaron, G. Fabris, and L. H. Back. "Hot Wire/Film Behavior in Low-Temperature Gases." Journal of Heat Transfer 114, no. 4 (November 1, 1992): 859–65. http://dx.doi.org/10.1115/1.2911893.
Full textHomulle, Harald, and Edoardo Charbon. "Cryogenic low-dropout voltage regulators for stable low-temperature electronics." Cryogenics 95 (October 2018): 11–17. http://dx.doi.org/10.1016/j.cryogenics.2018.08.006.
Full textWU, S. Y., Y. R. LI, and D. L. ZENG. "EXERGO-ECONOMIC PERFORMANCE EVALUATION ON LOW TEMPERATURE HEAT EXCHANGER." International Journal of Modern Physics B 19, no. 01n03 (January 30, 2005): 517–19. http://dx.doi.org/10.1142/s0217979205028943.
Full textOTA, S. B., and SMITA OTA. "THERMOMETRY BETWEEN 10–300 K USING GaAlAs DIODE." Modern Physics Letters B 14, no. 11 (May 10, 2000): 393–99. http://dx.doi.org/10.1142/s0217984900000549.
Full textObukhov, S. A., and V. N. Trofimov. "New Low-Temperature Thermistors InSb:Mn for Nuclear Cryogenic Detectors." Le Journal de Physique IV 06, no. C3 (April 1996): C3–169—C3–174. http://dx.doi.org/10.1051/jp4:1996326.
Full textYang, L., X. D. Yuan, H. X. Deng, X. Xiang, W. G. Zheng, S. B. He, Y. Jiang, et al. "Influence of Ambient Temperature on Nanosecond and Picosecond Laser-Induced Bulk Damage of Fused Silica." Advances in Condensed Matter Physics 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/308918.
Full textMedved, Ivan, Oleksandr Pirogov, Andrey Romin, Vitalii Slovinskyi, and Galyna Venzhego. "Low Cycle Fatigue of Structural Alloys." Materials Science Forum 1038 (July 13, 2021): 3–8. http://dx.doi.org/10.4028/www.scientific.net/msf.1038.3.
Full textLee, Woong Sung. "A low-cost cryogenic temperature measurement system using Arduino microcontroller." Physics Education 55, no. 2 (December 23, 2019): 023002. http://dx.doi.org/10.1088/1361-6552/ab60db.
Full textYang, Taolue, Huaping Wang, and Xingzhe Wang. "Strain Transfer Characteristics of Multi-Layer Optical Fiber Sensors with Temperature-Dependent Properties at Low Temperature." Sensors 21, no. 2 (January 12, 2021): 495. http://dx.doi.org/10.3390/s21020495.
Full textMitin, Vadim F., Yurij A. Tkhorik, and Eugene F. Venger. "Ge films on GaAs: low-temperature electrical properties and application to cryogenic resistance temperature sensors." Czechoslovak Journal of Physics 46, S5 (May 1996): 2855–56. http://dx.doi.org/10.1007/bf02570414.
Full textSápi, Zsombor, and Richard Butler. "Properties of cryogenic and low temperature composite materials – A review." Cryogenics 111 (October 2020): 103190. http://dx.doi.org/10.1016/j.cryogenics.2020.103190.
Full textAnhalt, Klaus, and Graham Machin. "Thermodynamic temperature by primary radiometry." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 374, no. 2064 (March 28, 2016): 20150041. http://dx.doi.org/10.1098/rsta.2015.0041.
Full textIvanov, Boris I., Dmitri I. Volkhin, Ilya L. Novikov, Dmitri K. Pitsun, Dmitri O. Moskalev, Ilya A. Rodionov, Evgeni Il’ichev, and Aleksey G. Vostretsov. "A wideband cryogenic microwave low-noise amplifier." Beilstein Journal of Nanotechnology 11 (September 30, 2020): 1484–91. http://dx.doi.org/10.3762/bjnano.11.131.
Full textMA Hong-liang, 马宏亮, 孙明国 SUN Ming-guo, 曹振松 CAO Zhen-song, 黄印博 HUANG Yin-bo, 王贵师 WANG Gui-shi, 高晓明 GAO Xiao-ming, and 饶瑞中 RAO Rui-zhong. "Cryogenic cell for low-temperature spectral experiments of atmospheric molecules." Optics and Precision Engineering 22, no. 10 (2014): 2617–21. http://dx.doi.org/10.3788/ope.20142210.2617.
Full textCrooks, E. "Pressure system legislation with reference to low temperature and cryogenic systems." Cryogenics 33, no. 8 (August 1993): 794–800. http://dx.doi.org/10.1016/0011-2275(93)90190-y.
Full textGingl, Zoltan, and Robert Mingesz. "Comment on ‘A low-cost cryogenic temperature measurement system using Arduino microcontroller’." Physics Education 56, no. 1 (December 5, 2020): 018001. http://dx.doi.org/10.1088/1361-6552/abc9a8.
Full textYamada, Naofumi, and Masahiro Okaji. "Development of a low-temperature laser interferometric dilatometer using a cryogenic refrigerator." High Temperatures-High Pressures 32, no. 2 (2000): 199–205. http://dx.doi.org/10.1068/htwu356.
Full textTang, C. C., G. Bushnell-Wye, and R. J. Cernik. "New high- and low-temperature apparatus for synchrotron polycrystalline X-ray diffraction." Journal of Synchrotron Radiation 5, no. 3 (May 1, 1998): 929–31. http://dx.doi.org/10.1107/s0909049597015513.
Full textPokhyl, Yu A. "Structural mechanisms of low-temperature work hardening and fracture of cryogenic metallic materials." Low Temperature Physics 30, no. 4 (April 2004): 332–39. http://dx.doi.org/10.1063/1.1705442.
Full textPark, Chang Wook, Sung Won Yoon, Je Hyoung Cho, and Yun Hae Kim. "Analysis of residual stress in welding parts of cryogenic materials for LNG storage tank." Modern Physics Letters B 34, no. 07n09 (March 16, 2020): 2040030. http://dx.doi.org/10.1142/s0217984920400308.
Full textDodson, Leah G., Wyatt Zagorec-Marks, Shuang Xu, James E. T. Smith, and J. Mathias Weber. "Intrinsic photophysics of nitrophenolate ions studied by cryogenic ion spectroscopy." Physical Chemistry Chemical Physics 20, no. 45 (2018): 28535–43. http://dx.doi.org/10.1039/c8cp06078a.
Full textKang, Jang-Won, Bokyung Song, Wenjing Liu, Seong-Ju Park, Ritesh Agarwal, and Chang-Hee Cho. "Room temperature polariton lasing in quantum heterostructure nanocavities." Science Advances 5, no. 4 (April 2019): eaau9338. http://dx.doi.org/10.1126/sciadv.aau9338.
Full textMurakoshi, Atsushi, Tsubasa Harada, Kiyotaka Miyano, Hideaki Harakawa, Tomonori Aoyama, Hirofumi Yamashita, and Yusuke Kohyama. "Boron diffusion layer formation using Ge cryogenic implantation with low-temperature microwave annealing." Japanese Journal of Applied Physics 55, no. 4 (March 2, 2016): 046501. http://dx.doi.org/10.7567/jjap.55.046501.
Full textSteiner, T. W., M. L. W. Thewalt, M. Maciaszek, and R. P. Bult. "A low-temperature, whole-wafer-imaging system for defect and impurity mapping." Canadian Journal of Physics 69, no. 3-4 (March 1, 1991): 333–38. http://dx.doi.org/10.1139/p91-056.
Full textTyshchenko, A. I., W. Theisen, A. Oppenkowski, S. Siebert, O. N. Razumov, A. P. Skoblik, V. A. Sirosh, Yu N. Petrov, and V. G. Gavriljuk. "Low-temperature martensitic transformation and deep cryogenic treatment of a tool steel." Materials Science and Engineering: A 527, no. 26 (October 2010): 7027–39. http://dx.doi.org/10.1016/j.msea.2010.07.056.
Full textGone, Sunil, V. Sridhar, and D. Pamu. "Low-temperature electrical characteristics of nanocrystalline BaTiO3 thin films for cryogenic applications." Materials Letters: X 11 (September 2021): 100090. http://dx.doi.org/10.1016/j.mlblux.2021.100090.
Full textLeyarovski, E. I., J. K. Georgiev, and A. L. Zahariev. "Application of low temperature desorption in systems for adsorptive purification of cryogenic gases." Cryogenics 26, no. 1 (January 1986): 29–32. http://dx.doi.org/10.1016/0011-2275(86)90192-x.
Full textEustache, Julien, Antony Plait, Frédéric Dubas, and Raynal Glises. "Review of Multi-Physics Modeling on the Active Magnetic Regenerative Refrigeration." Mathematical and Computational Applications 26, no. 2 (June 15, 2021): 47. http://dx.doi.org/10.3390/mca26020047.
Full textNagata, H., J. Kobayashi, H. Matsuo, M. Nakahashi, K. Kobayashi, H. Ikeda, and M. Fujiwara. "Fabrication of Cryogenic Readout Circuits with n-type GaAs-JFETs for Low Temperature Detectors." Journal of Low Temperature Physics 151, no. 3-4 (January 17, 2008): 1022–27. http://dx.doi.org/10.1007/s10909-008-9776-8.
Full textJ.Höhne, M. Altmann, G. Angloher, M. Bühler, F. v. Feilitzsch, T. Frank, P. Hettl, et al. "Cryogenic Microcalorimeters for High Resolution Energy Dispersive X-Ray Spectrometry." Microscopy and Microanalysis 5, S2 (August 1999): 604–5. http://dx.doi.org/10.1017/s1431927600016342.
Full textKobayashi, Amane, Yuki Takayama, Koji Okajima, Mao Oide, Takahiro Yamamoto, Yuki Sekiguchi, Tomotaka Oroguchi, et al. "Diffraction apparatus and procedure in tomography X-ray diffraction imaging for biological cells at cryogenic temperature using synchrotron X-ray radiation." Journal of Synchrotron Radiation 25, no. 6 (October 22, 2018): 1803–18. http://dx.doi.org/10.1107/s1600577518012687.
Full textAttar, Sara S., Sormeh Setoodeh, Raafat R. Mansour, and Deepnarayan Gupta. "Low-Temperature Superconducting DC-Contact RF MEMS Switch for Cryogenic Reconfigurable RF Front-Ends." IEEE Transactions on Microwave Theory and Techniques 62, no. 7 (July 2014): 1437–47. http://dx.doi.org/10.1109/tmtt.2014.2327205.
Full textBayer, Robert, Jiří Maxa, and Pavla Šabacká. "Energy Harvesting Using Thermocouple and Compressed Air." Sensors 21, no. 18 (September 9, 2021): 6031. http://dx.doi.org/10.3390/s21186031.
Full textShi, Suguo, and Guoyu Wang. "Numerical analysis of factors influencing thermal effects generated by cavitation flow of cryogenic fluids." Modern Physics Letters B 34, no. 17 (June 18, 2020): 2050184. http://dx.doi.org/10.1142/s0217984920501845.
Full textAleksandrova, I. V., E. R. Koresheva, I. E. Osipov, and L. V. Panina. "Cryogenic targets for modern ICF experiment." Laser and Particle Beams 13, no. 4 (December 1995): 539–57. http://dx.doi.org/10.1017/s0263034600009678.
Full textKim, Geonhyeong, Seyed Amir Arsalan Shams, Jae Nam Kim, Jong Woo Won, Seong Woo Choi, Jae Keun Hong, and Chong Soo Lee. "Enhancing low-cycle fatigue life of commercially-pure Ti by deformation at cryogenic temperature." Materials Science and Engineering: A 803 (January 2021): 140698. http://dx.doi.org/10.1016/j.msea.2020.140698.
Full textPrina, M., J. Borders, P. Bhandari, G. Morgante, D. Pearson, and C. Paine. "Low-heat input cryogenic temperature control with recuperative heat-exchanger in a Joule Thomson cryocooler." Cryogenics 44, no. 6-8 (June 2004): 595–601. http://dx.doi.org/10.1016/j.cryogenics.2004.02.021.
Full textKhanna, Rohit, and Bikramjit Basu. "Low friction and severe wear of alumina in cryogenic environment: A first report." Journal of Materials Research 21, no. 4 (April 1, 2006): 832–43. http://dx.doi.org/10.1557/jmr.2006.0104.
Full textHe, Li, Jiajun Hao, Zhi Deng, Feng Liu, Yinong Liu, Yulan Li, Qian Yue, and Jian Cai. "Comparison of JFET/MOS/HEMT Based Low Noise Charge Sensitive Preamplifiers for HPGe Detectors in Cryogenic Temperature." Journal of Physics: Conference Series 1182 (February 2019): 012001. http://dx.doi.org/10.1088/1742-6596/1182/1/012001.
Full textLang, Lili, Yujie Jiang, Fei Lu, Cailu Wang, Yizhang Chen, Andrew D. Kent, and Li Ye. "A low temperature functioning CoFeB/MgO-based perpendicular magnetic tunnel junction for cryogenic nonvolatile random access memory." Applied Physics Letters 116, no. 2 (January 13, 2020): 022409. http://dx.doi.org/10.1063/1.5129553.
Full textCalabrese, Roberto, Marco Guarise, Alen Khanbekyan, Eleonora Luppi, Luca Tomassetti, Caterina Braggio, Giovanni Carugno, et al. "New ideas on prospective low energy threshold detectors for dark matter searches." International Journal of Modern Physics: Conference Series 50 (January 2020): 2060009. http://dx.doi.org/10.1142/s2010194520600095.
Full textZhou, F., D. Witkin, S. R. Nutt, and E. J. Lavernia. "Formation of nanostructure in Al produced by a low-energy ball milling at cryogenic temperature." Materials Science and Engineering: A 375-377 (July 2004): 917–21. http://dx.doi.org/10.1016/j.msea.2003.10.235.
Full textYang, Chin-Kang, Wen-Hsuan Hsieh, Yun-Liang Chu, C. H. Chang, Cheng-Ying Kuo, Sei-Da Chen, Jui-Che Huang, and Ching-Shiang Hwang. "A Hall Probe Calibration System at Low Temperature for the TPS Cryogenic Permanent Magnet Undulator." IEEE Transactions on Applied Superconductivity 28, no. 3 (April 2018): 1–5. http://dx.doi.org/10.1109/tasc.2018.2795575.
Full textHe, Jianhong, Leoanardo Ajdelsztajn, and Enrique J. Lavernia. "Thermal stability of nanocrystalline WC–Co powder synthesized by using mechanical milling at low temperature." Journal of Materials Research 16, no. 2 (February 2001): 478–88. http://dx.doi.org/10.1557/jmr.2001.0071.
Full textTEMPORAL, M., J. J. LOPEZ CELA, A. R. PIRIZ, N. GRANDJOUAN, N. A. TAHIR, and D. H. H. HOFFMANN. "Compression of a cylindrical hydrogen sample driven by an intense co-axial heavy ion beam." Laser and Particle Beams 23, no. 2 (June 2005): 137–42. http://dx.doi.org/10.1017/s0263034605050226.
Full textTONG, MING-WEI, PENG HU, ZENG-HU QING, QIANG ZHANG, and CAI CHEN. "THE PERFORMANCE CHARACTERISTICS OF A NEW CEILING COOLING PANEL." International Journal of Modern Physics B 27, no. 15 (June 4, 2013): 1362008. http://dx.doi.org/10.1142/s0217979213620087.
Full text