Academic literature on the topic 'Low temperature sintering'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Low temperature sintering.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Low temperature sintering"
Bernard, Janez, Andreja Benčan, Tadej Rojac, Janez Holc, Barbara Malič, and Marija Kosec. "Low-Temperature Sintering of K0.5Na0.5NbO3Ceramics." Journal of the American Ceramic Society 91, no. 7 (July 2008): 2409–11. http://dx.doi.org/10.1111/j.1551-2916.2008.02447.x.
Full textMedesi, A., T. Greiner, M. Benkler, C. Megnin, and T. Hanemann. "Low Temperature Sintering of PZT." Journal of Physics: Conference Series 557 (November 27, 2014): 012132. http://dx.doi.org/10.1088/1742-6596/557/1/012132.
Full textBalakrishna, P., B. P. Varma, T. S. Krishnan, T. R. R. Mohan, and P. Ramakrishnan. "Low-temperature sintering of thoria." Journal of Materials Science Letters 7, no. 6 (June 1988): 657–60. http://dx.doi.org/10.1007/bf01730326.
Full textZajc, I., and M. Drofenik. "Semiconducting BaTiO3 ceramic prepared by low temperature liquid phase sintering." Journal of Materials Research 13, no. 3 (March 1998): 660–64. http://dx.doi.org/10.1557/jmr.1998.0082.
Full textWatari, Koji, Hae J. Hwang, Motohiro Toriyama, and Shuzo Kanzaki. "Effective Sintering Aids for Low-temperature Sintering of AlN Ceramics." Journal of Materials Research 14, no. 4 (April 1999): 1409–17. http://dx.doi.org/10.1557/jmr.1999.0191.
Full textTomizawa, Jun, Tomoyuki Hasegawa, Yoshikazu Akiyama, and Takashi Hayashi. "Low-Temperature Sintering of PZT with a Sintering Aid." Key Engineering Materials 228-229 (September 2002): 207–10. http://dx.doi.org/10.4028/www.scientific.net/kem.228-229.207.
Full textRamesh, T., S. R. Murthy, and R. S. Shinde. "Low Temperature Sintering of YIG Using Microwave Sintering Method." Integrated Ferroelectrics 118, no. 1 (November 12, 2010): 67–75. http://dx.doi.org/10.1080/10584587.2010.503786.
Full textQuercioli, Regis, Jerome Bernard, Jean-Marie Haussonne, Jean-Michel Reboul, and David Houivet. "Low sintering temperature of ZnNb2O6 for silver co-sintering." Ceramics International 40, no. 1 (January 2014): 1771–79. http://dx.doi.org/10.1016/j.ceramint.2013.07.077.
Full textTorii, Hideo, Satoru Yuhaku, and Hideyuki Okinaka. "Low-temperature sintering of zirconia ceramics." Journal of the Japan Society of Powder and Powder Metallurgy 33, no. 2 (1986): 98–102. http://dx.doi.org/10.2497/jjspm.33.98.
Full textYEH, TSUNG-SHOU, and MICHAEL D. SACKS. "Low-Temperature Sintering of Aluminum Oxide." Journal of the American Ceramic Society 71, no. 10 (October 1988): 841–44. http://dx.doi.org/10.1111/j.1151-2916.1988.tb07533.x.
Full textDissertations / Theses on the topic "Low temperature sintering"
Matović, Branko. "Low temperature sintering additives for silicon nitride." [S.l. : s.n.], 2003. http://www.bsz-bw.de/cgi-bin/xvms.cgi?SWB10806387.
Full textWu, Wenzhong. "Low Temperature Sintering Semiconductive Barium Strontium Titanate." FIU Digital Commons, 2007. http://digitalcommons.fiu.edu/etd/76.
Full textLewis, Gene Stacey. "Low temperature sintering of solid oxide fuel cell electrolytes." Thesis, Imperial College London, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.402178.
Full textKim, Hyungchan. "Low temperature sintering of nanosized ceramic powder YSZ-bismuth oxide system /." Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1092765117.
Full textTitle from first page of PDF file. Document formatted into pages; contains xxvi, 249 p.; also includes graphics (some col.). Includes bibliographical references (p. 241-249).
Toledo, Dos Santos Daniel. "High temperature sintering: investigation of the dimensional precision and mechanical properties of low alloyed steels." Doctoral thesis, Università degli studi di Trento, 2021. http://hdl.handle.net/11572/310431.
Full textBai, Guofeng. "Low-Temperature Sintering of Nanoscale Silver Paste for Semiconductor Device Interconnection." Diss., Virginia Tech, 2005. http://hdl.handle.net/10919/29409.
Full textPh. D.
Woodruff, Mark A. "Agglomeration of Bed Particles in Low-Temperature Black Liquor Gasification." Diss., CLICK HERE for online access, 2006. http://contentdm.lib.byu.edu/ETD/image/etd1567.pdf.
Full textBoonyongmaneerat, Yuttanant. "Sintering and joining of low temperature co-fired tungsten and aluminum oxide." Thesis, Massachusetts Institute of Technology, 2006. http://hdl.handle.net/1721.1/36204.
Full textIncludes bibliographical references (p. 181-189).
Conventional methods used to fabricate co-fired tungsten/alumina composites usually rely on high temperature processing (>1500C). As it would be beneficial or even necessary for some applications to produce such composites at relatively low firing temperatures, low-temperature processing techniques and the attendant knowledge of processing-property relationships need to be developed. In this thesis, a set of experiments and simulations are performed to obtain a better understanding of sintering and joining of the tungsten/alumina system processed at temperatures near or below 12000C. The technique of activated sintering for tungsten is investigated, whereby a minimal content of additives enables low firing temperatures through a change in the sintering mechanism for tungsten. Tungsten compacts produced by this method are found to sinter only to the "initial stage" and are characterized by high residual porosity level. Hardness and fracture toughness of such partially-sintered materials are examined experimentally and analytically, and dependence of mechanical properties on the relative particle neck size is observed. Various studies are carried out to examine both fundamental and practical aspects of joining co-fired tungsten/alumina.
(cont.) First, contributions to adhesion of co-sintered bilayers are studied where the properties of the tungsten layer are controlled using the process of activated sintering. Using a bending delamination test, improvements in sintered density of tungsten are found to increase the adhesive strength of the system only up to a point, beyond which shrinkage mismatch compromises the intrinsic toughness of the interface. A study of low-temperature co-fired tungsten/alumina is then focused on composite shells for an investment casting application. The influences of various processing parameters in a slurry-based route on the sintering and adhesion properties of tungsten/alumina are investigated. Binder content, stucco sand application, and powder characteristics are among the parameters found to critically control the quality of tungsten/alumina shells produced. Finally, the feasibility of several joining strategies, which involve the use of chemical additives, is examined on co-fired tungsten/alumina compacts processed at low temperatures. Some bonding techniques are verified to help improve the bonding of the co-sintered composites.
by Yuttanant Boonyongmaneerat.
Ph.D.
Chen, M. Y. (Mei-Yu). "Ultra-low sintering temperature glass ceramic compositions based on bismuth-zinc borosilicate glass." Doctoral thesis, Oulun yliopisto, 2017. http://urn.fi/urn:isbn:9789526215600.
Full textTiivistelmä Väitöstyön ensimmäisessä osassa tutkittiin ja kehitettiin uudentyyppisiä, ultramatalissa sintrauslämpötiloissa (ULTCC) valmistettuja lasi-keraami komposiitteja käyttäen vismuttisinkkiborosilikaatti -pohjaista lasia (BBSZ). Täyteaineina olivat alumiinioksidi (Al2O3) ja bariumtitanaatti (BaTiO3). Materiaaleille saatiin riittävän suuren lasipitoisuuden avulla tiheät mikrorakenteet ja sovelluskelpoiset dielektriset ominaisuudet. BaTiO3:n komposiitti, joka sisälsi 70 p-% BBSZ lasia, saavutti 450 °C lämpötilassa sintrattuna korkeimman suhteellisen permittiivisyyden: εr=132 (@100 kHz) ja εr=207 (@100 MHz). Komposiittien dielektrisiä ominaisuuksia määrittivät tällöin lasi-, BaTiO3- ja Bi24Si2O40- faasien ominaisuudet ja erityisesti Bi24Si2O40 -faasi näytteissä, joissa on 70-90 p-% lasia. Sekundäärinen faasi Bi24Si2O40 ei välttämättä heikentänyt, vaan jopa paransi dielektrisiä ominaisuuksia. Vastaavilla Al2O3-BBSZ –komposiiteilla saavutettiin samanlaisia tuloksia tihentymisen, mikrorakenteiden ja faasien (Al2O3, BBSZ, Bi24Si2O40) suhteen. Lisäksi tässä tapauksessa saavutetut dielektriset ominaisuudet voidaan selittää näiden kolmen faasin yhdistelmän olemassaololla. Väitöstyön toinen osa käsitteli pääasiassa eritavoin lämpökäsiteltyjä BaTiO3:n komposiitteja, joissa on 50 p-% BBSZ-lasia. Näillä saavutettiin tiheä mikrorakenne sintrattaessa 720 °C lämpötilassa ja havaitiin Bi4BaTi4O15-, Bi24Si2O40-faasien muodostuminen BaTiO3 lähtöfaasin rinnalle. Tulokset osoittivat myös, että lasijauheen partikkelikoko ei vaikuttanut sintrattujen näytteiden dielektrisiin ominaisuuksiin (εr = 263-267, tan δ = 0.013 (@100 kHz)). LiF -lisäys sen sijaan heikensi dielektrisiä ominaisuuksia ja vähensi Bi4BaTi4O15 faasin muodostumista. Tämä aiheutui Bi4BaTi4O15-faasin ominaisuuksista ja oli riippuvainen kyseisen faasin määrästä. Nämä tulokset osoittivat BBSZ -pohjaisten komposiittien käytettävyyden myös korkeampien sintrauslämpötilojen teknologioihin. Viimeisenä kehitettiin uudentyyppinen sideainesysteemi, joka mahdollistaa ultramatalien keraamien yhteissintraamisen jopa noin 300 °C lämpötilassa. Hyödyntäen kehitettyä sideainesysteemiä monikerrosrakenne, jossa käytettiin dielektrisiä BaTiO3-BBSZ- ja Al2O3-BBSZ-komposiitteja ja hopeaelektrodeja, yhteissintrattiin 450 °C lämpötilassa. Valmistetuissa rakenteissa ei havaittu murtumia eikä diffuusioita. Tulokset osoittavat, että kehitetyt lasi-keraami komposiitit mahdollistavat ympäristöystävällisten ULTCC -materiaalien valmistuksen. Lisäksi osoitettiin kehitettyjen materiaalien soveltuvuus monikerroksisten rakenteiden käyttöön monimateriaali-3D-elektroniikan pakkauksissa ja suurtaajuuskomponteissa
Patha, Venu Gopal. "Characterization of TiO2 Photoelectrodes Fabricated via a Low Temperature Sintering Process." Youngstown State University / OhioLINK, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=ysu1310266733.
Full textBook chapters on the topic "Low temperature sintering"
Hirota, Ken, Mitsuo Satomi, and Koichi Kugimiya. "Low-Temperature Sintering of Mn-Zn Ferrites." In Sintering ’87, 1203–8. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1373-8_202.
Full textLi, Gui Zhilun, Longtu Gao Suhua, and Zhang Xiaowen. "Low Temperature Sintering of Lead-Based Piezoelectric Ceramics with Transient Liquid Phase." In Sintering ’87, 920–25. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1373-8_155.
Full textMaisnam, Mamata. "Low Temperature Sintering of Lithium Based Ferrites." In Materials Horizons: From Nature to Nanomaterials, 265–83. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-8307-0_13.
Full textKimura, Nobuo, Shinji Abe, Junichi Morishita, and Hiromichi Okamura. "Low-Temperature Sintering of Y-TZP and Y-TZP-AL2O3 Composites with Transition Metal Oxide Additives." In Sintering ’87, 1142–48. Dordrecht: Springer Netherlands, 1988. http://dx.doi.org/10.1007/978-94-009-1373-8_192.
Full textRehspringer, Jean-Luc, Sami Dick, and Marc Daire. "Chemical Preparation of Alumina-Zirconia Powders for Low Temperature Sintering and Particulate Composites." In Science of Sintering, 127–34. Boston, MA: Springer US, 1989. http://dx.doi.org/10.1007/978-1-4899-0933-6_9.
Full textZago, Marco, Ilaria Cristofolini, and Sasan Amirabdollahian. "Designing Powder Metallurgy Process - The Influence of High Sintering Temperature on Dimensional and Geometrical Precision." In Lecture Notes in Mechanical Engineering, 3–8. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-70566-4_2.
Full textPark, Hwi-Yeol, and Sahn Nahm. "Low Temperature Sintering of the Alkali-Niobate Ceramics." In Lead-Free Piezoelectrics, 121–37. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-9598-8_4.
Full textZhang, Yuanbo, Wei Luo, Zhixiong You, Zijian Su, Guanghui Li, and Tao Jiang. "Optimizing the Sintering Process of Low-Grade Ferromanganese Ores." In 4th International Symposium on High-Temperature Metallurgical Processing, 527–34. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118663448.ch64.
Full textBian, Pei, and Dong Ying Ju. "A New Low-Temperature Sintering Method for NiCuZn Ferrite." In Key Engineering Materials, 695–98. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-410-3.695.
Full textChaim, Rachman, Zhijian Shen, and Mats Nygren. "Transparent Nanocrystalline MgO by Low Temperature Spark Plasma Sintering." In Ceramic Transactions Series, 21–30. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118407158.ch3.
Full textConference papers on the topic "Low temperature sintering"
Carter, Michael, Jacob Colvin, and James Sears. "Sintering nano-particles on low temperature materials." In ICALEO® 2006: 25th International Congress on Laser Materials Processing and Laser Microfabrication. Laser Institute of America, 2006. http://dx.doi.org/10.2351/1.5060872.
Full textYesner, G., M. Kuciej, and A. Safari. "Low temperature sintering of Bi0.5Na0.5TiO3 based ceramics." In 2015 Joint IEEE International Symposium on the Applications of Ferroelectric (ISAF), International Symposium on Integrated Functionalities (ISIF), and Piezoelectric Force Microscopy Workshop (PFM). IEEE, 2015. http://dx.doi.org/10.1109/isaf.2015.7172658.
Full textBronchy, Maxime, Jean-Charles Souriau, Jean-Marc Heintz, Celine Feautrier, David Henry, Etienne Duguet, Laurent Mendizabal, Gilles Simon, and Mona Treguer-Delapierre. "Low-temperature silver sintering by colloidal approach." In 2020 IEEE 8th Electronics System-Integration Technology Conference (ESTC). IEEE, 2020. http://dx.doi.org/10.1109/estc48849.2020.9229830.
Full textMuralithran, G., and S. Ramesh. "LOW TEMPERATURE SINTERING OF MnO2-DOPED HYDROXYAPATITE." In Processing and Fabrication of Advanced Materials VIII. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812811431_0042.
Full textLu, Guo-Quan, Yunhui Mei, Meiyu Wang, and Xin Li. "Low-temperature Silver Sintering for Bonding 3D Power Modules." In 2019 6th International Workshop on Low Temperature Bonding for 3D Integration (LTB-3D). IEEE, 2019. http://dx.doi.org/10.23919/ltb-3d.2019.8735123.
Full textKawase, Kinya, Koichiro Morimoto, Tohru Kohno, and Hiroki Yanagawa. "High Temperature Sintering of Low Alloy Steel Powders." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1996. http://dx.doi.org/10.4271/960381.
Full textWang, Lingen. "Low temperature hermertic packaging with Ag sintering process." In 2015 16th International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2015. http://dx.doi.org/10.1109/icept.2015.7236821.
Full textDeng, Dunying, Yunxia Jin, Yuanrong Chen, Tianke Qi, and Fei Xiao. "Preparation of copper nanoparticles with low sintering temperature." In 2012 14th International Conference on Electronic Materials and Packaging (EMAP). IEEE, 2012. http://dx.doi.org/10.1109/emap.2012.6507927.
Full textYang, Hui, and Zhengbang Zhan. "Progress on low temperature sintering of nano-silver." In 2021 IEEE 23rd Electronics Packaging Technology Conference (EPTC). IEEE, 2021. http://dx.doi.org/10.1109/eptc53413.2021.9663963.
Full textLi, Rui, and Yuemin Zhou. "High Temperature Creep Properties of UO2 Fuel Pellets Manufactured by Low Temperature Sintering Technology." In 2013 21st International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/icone21-15038.
Full textReports on the topic "Low temperature sintering"
Christopher J. Zygarlicke, Donald P. McCollor, and John P. Kay. LOW-TEMPERATURE ASH SINTERING AND STRENGTH DEVELOPMENT. Office of Scientific and Technical Information (OSTI), October 1999. http://dx.doi.org/10.2172/824981.
Full textNicholas, Jason Dale. Low Temperature Constrained Sintering of Cerium Gadolinium OxideFilms for Solid Oxide Fuel Cell Applications. Office of Scientific and Technical Information (OSTI), January 2007. http://dx.doi.org/10.2172/926303.
Full textNenoff, Tina Maria, Patrick Vane Brady, Curtis D. Mowry, and Terry J. Garino. AgI-MOR Loading Effect on the Durability of the Sandia Low Temperature Sintering GCM Waste Form. Office of Scientific and Technical Information (OSTI), September 2014. http://dx.doi.org/10.2172/1171567.
Full text