Academic literature on the topic 'Low-voltage scanning electron microscopy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Low-voltage scanning electron microscopy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Low-voltage scanning electron microscopy"
Joy, David C., and Dale E. Newbury. "Low Voltage Scanning Electron Microscopy." Microscopy and Microanalysis 7, S2 (August 2001): 762–63. http://dx.doi.org/10.1017/s1431927600029883.
Full textJoy, David C., and Dale E. Newbury. "Low Voltage Scanning Electron Microscopy." Microscopy Today 10, no. 2 (March 2002): 22–23. http://dx.doi.org/10.1017/s1551929500057813.
Full textJoy, David C., and Carolyn S. Joy. "Low voltage scanning electron microscopy." Micron 27, no. 3-4 (June 1996): 247–63. http://dx.doi.org/10.1016/0968-4328(96)00023-6.
Full textSchatten, G., J. Pawley, and H. Ris. "Integrated microscopy resource for biomedical research at the university of wisconsin at madison." Proceedings, annual meeting, Electron Microscopy Society of America 45 (August 1987): 594–97. http://dx.doi.org/10.1017/s0424820100127451.
Full textJoy, David C., and Carolyn S. Joy. "Ultra-low voltage scanning electron microscopy." Proceedings, annual meeting, Electron Microscopy Society of America 54 (August 11, 1996): 144–45. http://dx.doi.org/10.1017/s0424820100163186.
Full textJoy, David C., and Carolyn S. Joy. "Ultra-Low Voltage Scanning Electron Microscopy." Microscopy Today 4, no. 7 (September 1996): 12–13. http://dx.doi.org/10.1017/s1551929500060958.
Full textMöller, Lars, Gudrun Holland, and Michael Laue. "Diagnostic Electron Microscopy of Viruses With Low-voltage Electron Microscopes." Journal of Histochemistry & Cytochemistry 68, no. 6 (May 21, 2020): 389–402. http://dx.doi.org/10.1369/0022155420929438.
Full textJones, Arthur V. "Novel Approaches to Low-Voltage Scanning Electron Microscopy." Proceedings, annual meeting, Electron Microscopy Society of America 48, no. 1 (August 12, 1990): 366–67. http://dx.doi.org/10.1017/s0424820100180586.
Full textVaz, O. W., and S. J. Krause. "Low-voltage Scanning Electron Microscopy of polymers." Proceedings, annual meeting, Electron Microscopy Society of America 44 (August 1986): 676–77. http://dx.doi.org/10.1017/s0424820100144772.
Full textBerry, V. K. "Low-Voltage Scanning Electron Microscopy in polymer characterization." Proceedings, annual meeting, Electron Microscopy Society of America 45 (August 1987): 468–69. http://dx.doi.org/10.1017/s0424820100127049.
Full textDissertations / Theses on the topic "Low-voltage scanning electron microscopy"
Kawano, Kayoko. "Application of the ultra high resolution, low voltage scanning electron microscopy in the materials science." Thesis, University of Manchester, 2012. https://www.research.manchester.ac.uk/portal/en/theses/application-of-the-ultra-high-resolution-low-voltage-scanning-electron-microscopy-in-the-materials-science(341c7955-1da7-49be-9dd3-a3f3248bae05).html.
Full textZaggout, Fatima Nouh. "Quantification of SE dopant contrast in low voltage scanning electron microscope." Thesis, University of York, 2007. http://etheses.whiterose.ac.uk/11013/.
Full textMieth, Oliver. "Low Voltage Electron Emission from Ferroelectric Materials." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2010. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-62190.
Full textDie Ursache für Elektronenemission aus ferroelektrischen Materialien ist eine Veränderung des Zustandes der spontanen Polarisation. Gegenstand der vorliegenden Arbeit ist eine Verringerung der dafür nötigen Anregungsspannung, wobei besonderes Augenmerk auf die Rolle der ferroelektrischen Polarisation innerhalb des Emissionsprozesses gelegt wird. Es werden zwei verschiedene Materialien untersucht. Das Relaxor-Ferroelektrikum Bleimagnesiumniobat - Bleititanat (PMN-PT) wurde aufgrund seines geringen Koerzitivfeldes ausgewählt. Es konnten Emissionsstromdichten von bis zu 5·10^(−5) A/cm² bei einer Anregungsspannung von 160 V erreicht werden. Bei Einsetzen eines vollständigen Umschaltens der Polarisation wurde eine deutliche Verstärkung des Emissionsstromes festgestellt. Desweiteren werden Untersuchungen an Bleizirkoniumtitanat (PZT) Dünnfilmen gezeigt. Eine neue Methode, eine Elektrode mit periodisch angeordneten Aperturen im Submikrometerbereich zu präparieren, wird vorgestellt. Diese Strukturen liefern ein stabiles Emissionssignal für Anregungsspannungen < 20 V. Eine detailierte Analyse des Schaltverhaltens der Polarisation der PMN-PT Proben zeigt sowohl eine Rotation des Polarisationsvektors als auch eine Nukleation umgeschaltener Nanodomänen. Beide Prozesse starten bei Feldstärken unterhalb des Koerzitivfeldes. Die ermittelte Zeitabhängigkeit des Schaltprozesses erlaubt Rückschlüsse auf den Emissionsprozess und erlaubt es, die Effizienz der untersuchten Kathoden weiter zu optimieren
Heller, Eric. "Ultra low signals in ballistic electron emission microscopy." Columbus, Ohio : Ohio State University, 2003. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1060979803.
Full textTitle from first page of PDF file. Document formatted into pages; contains xvii, 237 p.; also includes graphics. Includes abstract and vita. Advisor: Jonathan P. Pelz, Dept. of Physics. Includes bibliographical references (p. 232-237).
MacDonald, Kinsey Elizabeth. "Analysis of Frozen Desserts Using Low-Temperature Scanning Electron Microscopy (LT-SEM)." Thesis, Clemson University, 2019. http://pqdtopen.proquest.com/#viewpdf?dispub=10982077.
Full textCommercial vanilla ice cream and other frozen desserts from the United States were analyzed for ice crystal length using low-temperature scanning electron microscopy (LT-SEM). Average ice crystal length was determined using multiple micrographs of each sample/product. Out of the products tested, 11 out of 15 samples had an average ice crystal length above the consumer sensory threshold limit of 55 µm. Products containing stabilizers tended to have smaller average ice crystal lengths than products without stabilizers. With a few exceptions, lower fat products tended to have larger ice crystals because there was less fat to stabilize the ice crystals. Four brands of frozen dessert were studied in detail: a super-premium ice cream (Brand P), a regular ice cream (Brand R), a dietary high protein ice cream (Brand D), and a non-dairy coconut-based frozen dessert (Brand ND). All brands were purchased from two separate supermarket supply chains (Store I and Store P) and analyzed for ice crystal size, weight loss/shrinkage, melting rate, texture, and sensory characteristics before and after being heat-shocked (HS). Brand P, R, and ND all had mean ice crystal sizes that were not significantly different when purchased from either Store I and Store P. The mean ice crystal size increased after HS for all brands except Brand ND. Brand D and Brand P had the highest melting rates, while Brand ND had a much lower melting rate than the other brands tested. Brand ND had a slight decrease in the average ice crystal size and had a decrease in peak force/hardness after HS, while all other brands had an increase in average ice crystal size and an increase in peak force/hardness after HS. Significance was determined using α = 0.05 for all sensory data. The iciness attribute was found to be significantly affected by both brand and HS and an increase in ice crystal size corresponded with an increase in iciness for most samples. The use of stabilizers and emulsifiers in the brands affected various melting characteristics. Additional research is needed on non-dairy frozen desserts and how their physical and sensorial properties are affected by heat-shock.
Long, Renhai. "In-situ Scanning Electron Microscopy for Electron-beam Lithography and In-situ One Dimensional Nano Materials Characterization." ScholarWorks@UNO, 2009. http://scholarworks.uno.edu/td/966.
Full textHopkins, Diane Marie. "Low temperature scanning electron microscopy and X-ray microanalysis of human urothelial neoplasms." Thesis, Lancaster University, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.306296.
Full textJones, Darrell E. "Spontaneous step creation on (001) silicon surfaces studied with scanning tunneling microscopy and low-energy electron microscopy /." The Ohio State University, 1997. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487946776020229.
Full textKarlsson, Linda. "Transmission Electron Microscopy of 2D Materials : Structure and Surface Properties." Doctoral thesis, Linköpings universitet, Tunnfilmsfysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-127526.
Full textSkoupý, Radim. "Quantitative Imaging in Scanning Electron Microscope." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2020. http://www.nusl.cz/ntk/nusl-432610.
Full textBooks on the topic "Low-voltage scanning electron microscopy"
Schatten, Heide, and James B. Pawley, eds. Biological Low-Voltage Scanning Electron Microscopy. New York, NY: Springer New York, 2008. http://dx.doi.org/10.1007/978-0-387-72972-5.
Full textImage formation in low-voltage scanning electron microscopy. Bellingham, Wash: SPIE Optical Engineering Press, 1993.
Find full textBell, David C., and Natasha Erdman, eds. Low Voltage Electron Microscopy. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781118498514.
Full text(Editor), Heide Schatten, and James B. Pawley (Editor), eds. Biological Low-Voltage Scanning Electron Microscopy. Springer, 2007.
Find full textSchatten, Heide, and James Pawley. Biological Low-Voltage Scanning Electron Microscopy. Springer, 2014.
Find full textReimer, Ludwig. Image Formation in Low-Voltage Scanning Electron Microscopy. SPIE, 1993. http://dx.doi.org/10.1117/3.2265074.
Full textAmerom, H. W. J. van. and Lagaaij Robert 1924-, eds. Sem atlas of type and figured material from Robert Lagaaij's "The pliocene bryozoa of the Low Countries", (1952). [s.l: s.n.], 1989.
Find full textUnited States. National Aeronautics and Space Administration., ed. Fine collimator grids using silicon metering structure: Summary of research "final report" : grant no., NAGW-4144 ... period of performance, 3/1/95-3/1/98. Redondo Beach, CA: TRW Space & Electronics Group, 1998.
Find full textBell, David C., and Natasha Erdman. Low Voltage Electron Microscopy: Principles and Applications. Wiley & Sons, Incorporated, John, 2012.
Find full textBook chapters on the topic "Low-voltage scanning electron microscopy"
Brodusch, Nicolas, Hendrix Demers, and Raynald Gauvin. "Low Voltage SEM." In Field Emission Scanning Electron Microscopy, 37–46. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4433-5_4.
Full textLyman, Charles E., Joseph I. Goldstein, Alton D. Romig, Patrick Echlin, David C. Joy, Dale E. Newbury, David B. Williams, et al. "Low-Voltage SEM." In Scanning Electron Microscopy, X-Ray Microanalysis, and Analytical Electron Microscopy, 57–60. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0635-1_10.
Full textLyman, Charles E., Joseph I. Goldstein, Alton D. Romig, Patrick Echlin, David C. Joy, Dale E. Newbury, David B. Williams, et al. "Low-Voltage SEM." In Scanning Electron Microscopy, X-Ray Microanalysis, and Analytical Electron Microscopy, 234–41. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0635-1_39.
Full textKlie, Robert. "Low Voltage Scanning Transmission Electron Microscopy of Oxide Interfaces." In Low Voltage Electron Microscopy, 163–84. Chichester, UK: John Wiley & Sons, Ltd, 2012. http://dx.doi.org/10.1002/9781118498514.ch7.
Full textBrodusch, Nicolas, Hendrix Demers, and Raynald Gauvin. "Low Voltage STEM in the SEM." In Field Emission Scanning Electron Microscopy, 47–53. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-4433-5_5.
Full textOsumi, Masako. "Low-Voltage Scanning Electron Microscopy in Yeast Cells." In Biological Field Emission Scanning Electron Microscopy, 363–84. Chichester, UK: John Wiley & Sons, Ltd, 2019. http://dx.doi.org/10.1002/9781118663233.ch16.
Full textFrey, M. David. "Low kV Scanning Electron Microscopy." In Scanning Microscopy for Nanotechnology, 101–19. New York, NY: Springer New York, 2006. http://dx.doi.org/10.1007/978-0-387-39620-0_4.
Full textBrowning, Nigel D., Ilke Arslan, Rolf Erni, and Bryan W. Reed. "Low-Loss EELS in the STEM." In Scanning Transmission Electron Microscopy, 659–88. New York, NY: Springer New York, 2010. http://dx.doi.org/10.1007/978-1-4419-7200-2_16.
Full textLyman, Charles E., Joseph I. Goldstein, Alton D. Romig, Patrick Echlin, David C. Joy, Dale E. Newbury, David B. Williams, et al. "Voltage Contrast and EBIC." In Scanning Electron Microscopy, X-Ray Microanalysis, and Analytical Electron Microscopy, 81–85. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0635-1_15.
Full textLyman, Charles E., Joseph I. Goldstein, Alton D. Romig, Patrick Echlin, David C. Joy, Dale E. Newbury, David B. Williams, et al. "Voltage Contrast and EBIC." In Scanning Electron Microscopy, X-Ray Microanalysis, and Analytical Electron Microscopy, 279–86. Boston, MA: Springer US, 1990. http://dx.doi.org/10.1007/978-1-4613-0635-1_44.
Full textConference papers on the topic "Low-voltage scanning electron microscopy"
Eastham, D. A., P. Edmondson, S. Donnelly, E. Olsson, K. Svensson, and A. Bleloch. "Construction of a new type of low-energy scanning electron microscope with atomic resolution." In SPIE Scanning Microscopy, edited by Michael T. Postek, Dale E. Newbury, S. Frank Platek, and David C. Joy. SPIE, 2009. http://dx.doi.org/10.1117/12.824180.
Full textYedur, Sanjay K., and Bhanwar Singh. "Evaluation of atomic force microscopy: comparison with electrical CD metrology and low-voltage scanning electron microscopy." In Microlithography '99, edited by Bhanwar Singh. SPIE, 1999. http://dx.doi.org/10.1117/12.350853.
Full textMikhailovskii, V., Yu Petrov, and O. Vyvenko. "Plasmon-enhanced electron scattering in nanostructured thin metal films revealed by low-voltage scanning electron microscopy." In MEDICAL PHYSICS: Fourteenth Mexican Symposium on Medical Physics. Author(s), 2016. http://dx.doi.org/10.1063/1.4954339.
Full textZhou, Jianhua, and Li Shi. "Scanning Probe Microscopy of Carbon Nanotube Electronic Devices." In ASME 2004 International Mechanical Engineering Congress and Exposition. ASMEDC, 2004. http://dx.doi.org/10.1115/imece2004-62318.
Full textKoniuch, Natalia. "Low Dose Scanning Transmission Electron Microscopy methods for the study of crystalline defects in pharmaceutical compounds." In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.318.
Full textS'ari, Mark. "Low-dose Scanning Transmission Electron Microscopy Methods to Obtain High-Resolution Information of Pharmaceutical Organic Crystals." In European Microscopy Congress 2020. Royal Microscopical Society, 2021. http://dx.doi.org/10.22443/rms.emc2020.902.
Full textLazar, A., and P. S. Fodor. "Sparsity based noise removal from low dose scanning electron microscopy images." In IS&T/SPIE Electronic Imaging, edited by Charles A. Bouman and Ken D. Sauer. SPIE, 2015. http://dx.doi.org/10.1117/12.2078438.
Full textPostek, Michael T., András E. Vladár, Dianne L. Poster, Atsushi Muto, and Takeshi Sunaoshi. "Ultra-low landing energy scanning electron microscopy for nanoengineering applications and metrology." In Nanoengineering: Fabrication, Properties, Optics, Thin Films, and Devices XVII, edited by Wounjhang Park, André-Jean Attias, and Balaji Panchapakesan. SPIE, 2020. http://dx.doi.org/10.1117/12.2567051.
Full textMaekawa, Takeshi, Hiroyuki Tanaka, and Masatoshi Kotera. "Collection field dependence of charging-up of insulators in low voltage scanning electron microscope." In 2007 Digest of papers Microprocesses and Nanotechnology. IEEE, 2007. http://dx.doi.org/10.1109/imnc.2007.4456111.
Full textZhang, Chuan, Jochonia Nxumalo, and Esther P. Y. Chen. "Conductive-AFM for Inline Voltage Contrast Defect Characterization at Advanced Technology Nodes." In ISTFA 2018. ASM International, 2018. http://dx.doi.org/10.31399/asm.cp.istfa2018p0555.
Full textReports on the topic "Low-voltage scanning electron microscopy"
Yoon, Hyungsuk Alexander. The structures and dynamics of atomic and molecular adsorbates on metal surfaces by scanning tunneling microscopy and low energy electron diffraction. Office of Scientific and Technical Information (OSTI), December 1996. http://dx.doi.org/10.2172/451213.
Full textKim, Yong Joo. The growth of epitaxial iron oxides on platinum (111) as studied by X-ray photoelectron diffraction, scanning tunneling microscopy, and low energy electron diffraction. Office of Scientific and Technical Information (OSTI), May 1995. http://dx.doi.org/10.2172/109505.
Full textWu, Judy, and Siyuan Han. Low Temperature Scanning Electron Microscope for Fabrication and Characterization of High-Tc Josephson Junctions and Circuits. Fort Belvoir, VA: Defense Technical Information Center, September 2000. http://dx.doi.org/10.21236/ada383240.
Full text