To see the other types of publications on this topic, follow the link: Lower critical solution temperature.

Journal articles on the topic 'Lower critical solution temperature'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Lower critical solution temperature.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Ali, Samim, Markus Bleuel, and Vivek M. Prabhu. "Lower Critical Solution Temperature in Polyelectrolyte Complex Coacervates." ACS Macro Letters 8, no. 3 (March 2019): 289–93. http://dx.doi.org/10.1021/acsmacrolett.8b00952.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Tager, A. A., A. P. Safronov, E. A. Berezyuk, and I. Yu Galaev. "Lower critical solution temperature and hydrophobic hydration in aqueous polymer solutions." Colloid & Polymer Science 272, no. 10 (October 1994): 1234–39. http://dx.doi.org/10.1007/bf00657775.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jia, Di, Murugappan Muthukumar, He Cheng, Charles C. Han, and Boualem Hammouda. "Concentration Fluctuations near Lower Critical Solution Temperature in Ternary Aqueous Solutions." Macromolecules 50, no. 18 (September 7, 2017): 7291–98. http://dx.doi.org/10.1021/acs.macromol.7b01502.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Skripov, P. V., A. A. Igolnikov, S. B. Rutin, and A. V. Melkikh. "Heat transfer by unstable solution having the lower critical solution temperature." International Journal of Heat and Mass Transfer 184 (March 2022): 122290. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2021.122290.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Luna-Bárcenas, Gabriel, Dmitry G. Gromov, J. Carson Meredith, Isaac C. Sanchez, Juan J. de Pablo, and Keith P. Johnston. "Polymer chain collapse near the lower critical solution temperature." Chemical Physics Letters 278, no. 4-6 (October 1997): 302–6. http://dx.doi.org/10.1016/s0009-2614(97)01053-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Lemanowicz, Marcin, Andrzej Gierczycki, Wojciech Kuźnik, Rafał Sancewicz, and Patrycja Imiela. "Determination of Lower Critical Solution Temperature of thermosensitive flocculants." Minerals Engineering 69 (December 2014): 170–76. http://dx.doi.org/10.1016/j.mineng.2014.07.022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Adhikari, Sabin, Vivek M. Prabhu, and Murugappan Muthukumar. "Lower Critical Solution Temperature Behavior in Polyelectrolyte Complex Coacervates." Macromolecules 52, no. 18 (September 9, 2019): 6998–7004. http://dx.doi.org/10.1021/acs.macromol.9b01201.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Uchegbu, I. F., H. Ringsdorf, and R. Duncan. "The lower critical solution temperature of doxorubicin polymer conjugates." European Journal of Pharmaceutical Sciences 4 (September 1996): S154. http://dx.doi.org/10.1016/s0928-0987(97)86471-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Platé, Nikolai A., Tamara L. Lebedeva, and Lev I. Valuev. "Lower Critical Solution Temperature in Aqueous Solutions of N-Alkyl-Substituted Polyacrylamides." Polymer Journal 31, no. 1 (January 1999): 21–27. http://dx.doi.org/10.1295/polymj.31.21.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

McClellan, Alan K., and Mark A. McHugh. "Separating polymer solutions using high pressure lower critical solution temperature (LCST) phenomena." Polymer Engineering and Science 25, no. 17 (December 1985): 1088–92. http://dx.doi.org/10.1002/pen.760251707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Okubo, M., H. Ahmad, and M. Komura. "Preparation of temperature-sensitive polymer particles having different lower critical solution temperatures." Colloid & Polymer Science 274, no. 12 (December 1996): 1188–91. http://dx.doi.org/10.1007/bf00655691.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Gundlach, D. P., and K. A. Burdett. "Lower critical solution temperature (LCST) polymer solution for clear/cloud glazing applications." Journal of Applied Polymer Science 51, no. 4 (January 24, 1994): 731–36. http://dx.doi.org/10.1002/app.1994.070510419.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Matsarskaia, Olga, Michal K. Braun, Felix Roosen-Runge, Marcell Wolf, Fajun Zhang, Roland Roth, and Frank Schreiber. "Cation-Induced Hydration Effects Cause Lower Critical Solution Temperature Behavior in Protein Solutions." Journal of Physical Chemistry B 120, no. 31 (July 29, 2016): 7731–36. http://dx.doi.org/10.1021/acs.jpcb.6b04506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Ali, Samim, Markus Bleuel, and Vivek M. Prabhu. "Correction to “Lower Critical Solution Temperature in Polyelectrolyte Complex Coacervates”." ACS Macro Letters 10, no. 12 (December 6, 2021): 1636. http://dx.doi.org/10.1021/acsmacrolett.1c00727.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Valuev, I. L., L. V. Vanchugova, and L. I. Valuev. "Transport Functions of Polymers with a Lower Critical Solution Temperature." Polymer Science, Series B 61, no. 4 (July 2019): 430–32. http://dx.doi.org/10.1134/s1560090419040146.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Jeon, H. S., A. I. Nakatani, C. C. Han, and R. H. Colby. "Melt Rheology of Lower Critical Solution Temperature Polybutadiene/Polyisoprene Blends." Macromolecules 33, no. 26 (December 2000): 9732–39. http://dx.doi.org/10.1021/ma000714u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Utrata, Alicja, Wojciech Walach, Andrzej Dworak, and Barbara Trzebicka. "Hydrophobically modified polyglycidol - the control of lower critical solution temperature." Polymer Bulletin 50, no. 1-2 (April 1, 2003): 47–54. http://dx.doi.org/10.1007/s00289-003-0140-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Zhang, Hong, and Jin-Chul Kim. "Hydroxyethyl Acrylate-Based Polymeric Amphiphiles Showing Lower Critical Solution Temperature." Journal of Macromolecular Science, Part A 52, no. 2 (January 14, 2015): 138–46. http://dx.doi.org/10.1080/10601325.2015.980764.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Berry, Guy C., Edward F. Casassa, and Pi-Yao Liu. "Polystyrene in cyclopentane: Dilute solution properties from the upper critical to the lower critical solution temperature." Journal of Polymer Science Part B: Polymer Physics 25, no. 3 (March 1987): 673–96. http://dx.doi.org/10.1002/polb.1987.090250317.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Bohossian, Takouhi, Gérard Charlet, and Geneviève Delmas. "Solution properties and characterization of polyisoprenes at a lower critical solution temperature (LCST)." Polymer 30, no. 9 (September 1989): 1695–704. http://dx.doi.org/10.1016/0032-3861(89)90333-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Pino‐Ramos, Victor H., Gerardo Cedillo, Eduardo López‐Barriguete, and Emilio Bucio. "Comonomer effect: Switching the lower critical solution temperature to upper critical solution temperature in thermo‐pH sensitive binary graft copolymers." Journal of Applied Polymer Science 136, no. 44 (June 25, 2019): 48170. http://dx.doi.org/10.1002/app.48170.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Ejraei, Ayoub, Samira Shirvani, Mohammad Ali Aroon, Milad Asgarpour Khansary, and Sepideh Khalaj. "Lower and upper critical solution temperatures of binary polymeric solutions." Fluid Phase Equilibria 425 (October 2016): 465–84. http://dx.doi.org/10.1016/j.fluid.2016.06.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Abidin, A. Z., H. P. R. Graha, and D. A. Trirahayu. "Formulation and synthesis of hydrogels having lower critical solution temperature near body temperature." IOP Conference Series: Materials Science and Engineering 223 (July 2017): 012043. http://dx.doi.org/10.1088/1757-899x/223/1/012043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Liu, Hongwei, and Chongli Zhong. "General Correlation for the Prediction of Theta (Lower Critical Solution Temperature) in Polymer Solutions." Industrial & Engineering Chemistry Research 44, no. 3 (February 2005): 634–38. http://dx.doi.org/10.1021/ie049367t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Lu, Jianlei, Mengdi Xu, Yi Lei, Lihao Gong, and Chuanzhuang Zhao. "Aqueous Synthesis of Upper Critical Solution Temperature and Lower Critical Solution Temperature Copolymers through Combination of Hydrogen‐Donors and Hydrogen‐Acceptors." Macromolecular Rapid Communications 42, no. 7 (January 22, 2021): 2000661. http://dx.doi.org/10.1002/marc.202000661.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Bingham, Nathaniel M., Qamar un Nisa, Sophie H. L. Chua, Lea Fontugne, Matt P. Spick, and Peter J. Roth. "Thioester-Functional Polyacrylamides: Rapid Selective Backbone Degradation Triggers Solubility Switch Based on Aqueous Lower Critical Solution Temperature/Upper Critical Solution Temperature." ACS Applied Polymer Materials 2, no. 8 (June 19, 2020): 3440–49. http://dx.doi.org/10.1021/acsapm.0c00503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Kawahara, Seiichi, Yasuhiro Asada, Yoshinobu Isono, Kiyoshige Muraoka, and Yasuhisa Minagawa. "Lower Critical Solution Temperature Phase Behavior of Natural Rubber/Polybutadiene Blend." Polymer Journal 34, no. 1 (January 2002): 1–8. http://dx.doi.org/10.1295/polymj.34.1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Richards, Gary J., Jan Labuta, Jonathan P. Hill, Toshiyuki Mori, and Katsuhiko Ariga. "Designing Lower Critical Solution Temperature Behavior into a Discotic Small Molecule." Journal of Physical Chemistry Letters 1, no. 9 (April 9, 2010): 1336–40. http://dx.doi.org/10.1021/jz100307y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

PIGLOWSKI, JACEK. "Properties of polymer blends above the lower critical solution temperature (LCST)." Polimery 37, no. 07 (July 1992): 336–40. http://dx.doi.org/10.14314/polimery.1992.336.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Cong, Guangmin, Yuhui Huang, William J. MacKnight, and Frank E. Karasz. "Upper and lower critical solution temperature behavior in thermoplastic polymer blends." Macromolecules 19, no. 11 (November 1986): 2765–70. http://dx.doi.org/10.1021/ma00165a018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Kim, Sun Dal, Sang Youl Kim, and Im Sik Chung. "Unprecedented Lower Critical Solution Temperature Behavior of Polyimides in Organic Media." Macromolecules 47, no. 24 (December 2014): 8846–49. http://dx.doi.org/10.1021/ma501921z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Yu, Ming, and Hideo Nishiumi. "Theory of phase separation in mixtures with lower critical solution temperature." Journal of Physical Chemistry 96, no. 2 (January 1992): 842–45. http://dx.doi.org/10.1021/j100181a058.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Kim, Yong-Hee, Ick Chan Kwon, You Han Bae, and Sung Wan Kim. "Saccharide Effect on the Lower Critical Solution Temperature of Thermosensitive Polymers." Macromolecules 28, no. 4 (July 1995): 939–44. http://dx.doi.org/10.1021/ma00108a022.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Furusawa, K., and T. Tagawa. "Adsorption behavior of water soluble polymers with lower critical solution temperature." Colloid and Polymer Science 263, no. 5 (May 1985): 353–60. http://dx.doi.org/10.1007/bf01410381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Chhajer, Mukesh, and P. D. Gujrati. "Size disparity and lower critical solution temperature: A critical investigation of free-volume disparity." Journal of Chemical Physics 109, no. 20 (November 22, 1998): 9022–37. http://dx.doi.org/10.1063/1.477573.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Constantin, M., M. Cristea, P. Ascenzi, and G. Fundueanu. "Lower critical solution temperature versus volume phase transition temperature in thermoresponsive drug delivery systems." Express Polymer Letters 5, no. 10 (2011): 839–48. http://dx.doi.org/10.3144/expresspolymlett.2011.83.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Schild, Howard G., and David A. Tirrell. "Microcalorimetric detection of lower critical solution temperatures in aqueous polymer solutions." Journal of Physical Chemistry 94, no. 10 (May 1990): 4352–56. http://dx.doi.org/10.1021/j100373a088.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Su, Yang, Meihan Dan, Xin Xiao, Xiaohui Wang, and Wangqing Zhang. "A new thermo-responsive block copolymer with tunable upper critical solution temperature and lower critical solution temperature in the alcohol/water mixture." Journal of Polymer Science Part A: Polymer Chemistry 51, no. 20 (July 19, 2013): 4399–412. http://dx.doi.org/10.1002/pola.26854.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Halligan, Elaine, Shuo Zhuo, Declan Mary Colbert, Mohamad Alsaadi, Billy Shu Hieng Tie, Gilberto S. N. Bezerra, Gavin Keane, and Luke M. Geever. "Modulation of the Lower Critical Solution Temperature of Thermoresponsive Poly(N-vinylcaprolactam) Utilizing Hydrophilic and Hydrophobic Monomers." Polymers 15, no. 7 (March 23, 2023): 1595. http://dx.doi.org/10.3390/polym15071595.

Full text
Abstract:
Four-dimensional printing is primarily based on the concept of 3D printing technology. However, it requires additional stimulus and stimulus-responsive materials. Poly-N-vinylcaprolactam is a temperature-sensitive polymer. Unique characteristics of poly-N-vinylcaprolactam -based hydrogels offer the possibility of employing them in 4D printing. The main aim of this study is to alter the phase transition temperature of poly-N-vinylcaprolactam hydrogels. This research focuses primarily on incorporating two additional monomers with poly-N-vinylcaprolactam: Vinylacetate and N-vinylpyrrolidone. This work contributes to this growing area of research by altering (increasing and decreasing) the lower critical solution temperature of N-vinylcaprolactam through photopolymerisation. Poly-N-vinylcaprolactam exhibits a lower critical solution temperature close to the physiological temperature range of 34–37 °C. The copolymers were analysed using various characterisation techniques, such as FTIR, DSC, and UV-spectrometry. The main findings show that the inclusion of N-vinylpyrrolidone into poly-N-vinylcaprolactam increased the lower critical solution temperature above the physiological temperature. By incorporating vinylacetate, the lower critical solution temperature dropped to 21 °C, allowing for potential self-assembly of 4D-printed objects at room temperature. In this case, altering the lower critical solution temperature of the material can potentially permit the transformation of the 4D-printed object at a particular temperature.
APA, Harvard, Vancouver, ISO, and other styles
40

Liu, Hongwei, and Chongli Zhong. "Modeling of the θ(lower critical solution temperature) in polymer solutions using molecular connectivity indices." European Polymer Journal 41, no. 1 (January 2005): 139–47. http://dx.doi.org/10.1016/j.eurpolymj.2004.08.009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Imre, Attila R., Young Chan Bae, Bong Ho Chang, and Thomas Kraska. "Semiempirical Method for the Prediction of the Theta (Lower Critical Solution Temperature) in Polymer Solutions." Industrial & Engineering Chemistry Research 43, no. 1 (January 2004): 237–42. http://dx.doi.org/10.1021/ie030548p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Ishifune, Manabu, Ryuhei Suzuki, Mikio Yamane, Hiroyuki Tanabe, Yuki Nakagawa, and Kumao Uchida. "Polymerization of Acrylamide in Aqueous Solution of Poly(N‐isopropylacrylamide) at Lower Critical Solution Temperature." Journal of Macromolecular Science, Part A 45, no. 7 (May 2008): 523–28. http://dx.doi.org/10.1080/10601320802100531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Zhang, Qiao, Shengyi Dong, Mingming Zhang, and Feihe Huang. "Supramolecular control over thermo‐responsive systems with lower critical solution temperature behavior." Aggregate 2, no. 1 (January 15, 2021): 35–47. http://dx.doi.org/10.1002/agt2.12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Martwong, Ekkachai, and Yvette Tran. "Lower Critical Solution Temperature Phase Transition of Poly(PEGMA) Hydrogel Thin Films." Langmuir 37, no. 28 (July 8, 2021): 8585–93. http://dx.doi.org/10.1021/acs.langmuir.1c01165.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Ramanan, Vyas V., Kolin C. Hribar, Joshua S. Katz, and Jason A. Burdick. "Nanofiber–nanorod composites exhibiting light-induced reversible lower critical solution temperature transitions." Nanotechnology 22, no. 49 (November 21, 2011): 494009. http://dx.doi.org/10.1088/0957-4484/22/49/494009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Deshmukh, Sanket, Damian A. Mooney, Thomas McDermott, Savita Kulkarni, and J. M. Don MacElroy. "Molecular modeling of thermo-responsive hydrogels: observation of lower critical solution temperature." Soft Matter 5, no. 7 (2009): 1514. http://dx.doi.org/10.1039/b816443f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Halpern, Jeffrey M., Emma Roberge, Tianyu Ren, Joelle LaFreniere, Eva Rose M. Balog, and William Rudolf Seitz. "Shifts of pNIPAM Lower Critical Solution Temperature in an Applied Electric Field." ECS Meeting Abstracts MA2020-01, no. 43 (May 1, 2020): 2513. http://dx.doi.org/10.1149/ma2020-01432513mtgabs.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Narayanan, Amal, Joshua R. Menefee, Qianhui Liu, Ali Dhinojwala, and Abraham Joy. "Lower Critical Solution Temperature-Driven Self-Coacervation of Nonionic Polyester Underwater Adhesives." ACS Nano 14, no. 7 (June 15, 2020): 8359–67. http://dx.doi.org/10.1021/acsnano.0c02396.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Zhang, Cheng, Hui Peng, Wen Li, Lianxiao Liu, Simon Puttick, James Reid, Stefano Bernardi, Debra J. Searles, Afang Zhang, and Andrew K. Whittaker. "Conformation Transitions of Thermoresponsive Dendronized Polymers across the Lower Critical Solution Temperature." Macromolecules 49, no. 3 (January 19, 2016): 900–908. http://dx.doi.org/10.1021/acs.macromol.5b02414.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Christensen, Scott P., Felipe A. Donate, Timothy C. Frank, Randy J. LaTulip, and Loren C. Wilson. "Mutual Solubility and Lower Critical Solution Temperature for Water + Glycol Ether Systems." Journal of Chemical & Engineering Data 50, no. 3 (May 2005): 869–77. http://dx.doi.org/10.1021/je049635u.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography