Academic literature on the topic 'LPC coefficients'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'LPC coefficients.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "LPC coefficients"
Choi, Jae-Seung. "Speaker Recognition using LPC cepstrum Coefficients and Neural Network." Journal of the Korean Institute of Information and Communication Engineering 15, no. 12 (December 31, 2011): 2521–26. http://dx.doi.org/10.6109/jkiice.2011.15.12.2521.
Full textOlive, Joseph P. "Mixed spectral representation—Formants and LPC coefficients." Journal of the Acoustical Society of America 85, S1 (May 1989): S59. http://dx.doi.org/10.1121/1.2027054.
Full textJung, Won-Jin, and Moo-Young Kim. "Quantization of LPC Coefficients Using a Multi-frame AR-model." Journal of the Acoustical Society of Korea 31, no. 2 (February 29, 2012): 93–99. http://dx.doi.org/10.7776/ask.2012.31.2.093.
Full textPérez, María Salomé, and Enrique Carrera. "LPC-based Feature Coefficients for Voice Authentication Tasks." MASKAY 2, no. 1 (November 1, 2012): 73. http://dx.doi.org/10.24133/maskay.v2i1.151.
Full textHong Kook Kim, Seung Ho Choi, and Hwang Soo Lee. "On approximating line spectral frequencies to LPC cepstral coefficients." IEEE Transactions on Speech and Audio Processing 8, no. 2 (March 2000): 195–99. http://dx.doi.org/10.1109/89.824705.
Full textSanches, I. "From LPC to normalised autocorrelation coefficients through a matrix." Electronics Letters 34, no. 4 (1998): 333. http://dx.doi.org/10.1049/el:19980310.
Full textMohd Ali, Yusnita, Alhan Farhanah Abd Rahim, Emilia Noorsal, Zuhaila Mat Yassin, Nor Fadzilah Mokhtar, and Mohamad Helmy Ramlan. "Fuzzy-based voiced-unvoiced segmentation for emotion recognition using spectral feature fusions." Indonesian Journal of Electrical Engineering and Computer Science 19, no. 1 (July 1, 2020): 196. http://dx.doi.org/10.11591/ijeecs.v19.i1.pp196-206.
Full textSingh, Mandeep, and Gurpreet Singh. "Word recognition from speech signal using linear predictive coding and spectrum analysis." International Journal of Engineering & Technology 7, no. 3 (July 16, 2018): 1531. http://dx.doi.org/10.14419/ijet.v7i3.13285.
Full text., PPS Subhashini. "TEXT-INDEPENDENT SPEAKER RECOGNITION USING COMBINED LPC AND MFC COEFFICIENTS." International Journal of Research in Engineering and Technology 03, no. 06 (June 25, 2014): 508–14. http://dx.doi.org/10.15623/ijret.2014.0306095.
Full textMoriya, Takehiro. "Method for the modification of LPC coefficients of acoustic signals." Journal of the Acoustical Society of America 104, no. 5 (November 1998): 2554. http://dx.doi.org/10.1121/1.423836.
Full textDissertations / Theses on the topic "LPC coefficients"
Crosmer, Joel R. "Very low bit rate speech coding using the line spectrum pair transformation of the LPC coefficients." Diss., Georgia Institute of Technology, 1985. http://hdl.handle.net/1853/15739.
Full textAlvarenga, Rodrigo Jorge. "Reconhecimento de comandos de voz por redes neurais." Universidade de Taubaté, 2012. http://www.bdtd.unitau.br/tedesimplificado/tde_busca/arquivo.php?codArquivo=587.
Full textSystems for speech recognition have widespread use in the industrial universe, in the improvement of human operations and procedures and in the area of entertainment and recreation. The specific objective of this study was to design and develop a voice recognition system, capable of identifying voice commands, regardless of the speaker. The main purpose of the system is to control movement of robots, with applications in industry and in aid of disabled people. We used the approach of decision making, by means of a neural network trained with the distinctive features of the speech of 16 speakers. The samples of the voice commands were collected under the criterion of convenience (age and sex), to ensure a greater discrimination between the voice characteristics and to reach the generalization of the neural network. Preprocessing consisted in the determination of the endpoints of each command signal and in the adaptive Wiener filtering. Each speech command was segmented into 200 windows with overlapping of 25%. The features used were the zero crossing rate, the short-term energy and the mel-frequency ceptral coefficients. The first two coefficients of the linear predictive coding and its error were also tested. The neural network classifier was a multilayer perceptron, trained by the backpropagation algorithm. Several experiments were performed for the choice of thresholds, practical values, features and neural network configurations. Results were considered very good, reaching an acceptance rate of 89,16%, under the `worst case conditions for the sampling of the commands.
Kubánková, Anna. "Automatická klasifikace digitálních modulací." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2008. http://www.nusl.cz/ntk/nusl-233424.
Full textFayad, Layal. "Caractérisation de la nouvelle chambre de simulation atmosphérique CHARME et étude de la réaction d’ozonolyse d’un COV biogénique, le γ-terpinène." Thesis, Littoral, 2019. https://documents.univ-littoral.fr/access/content/group/50b76a52-4e4b-4ade-a198-f84bc4e1bc3c/BULCO/Th%C3%A8ses/LPCA/These_Fayad_Layal.pdf.
Full textThe study of atmospheric processes is among the central topics of current environmental research. The most direct and significant way to investigate the transformation of pollutants and the formation of aerosols in the atmosphere, is to simulate these processes under controlled and simplified conditions. In this regard, a new simulation chamber, CHARME (CHamber for the Atmospheric Reactivity and the Metrology of the Environment) has been designed in the Laboratory of Physico-Chemistry of the Atmosphere (LPCA) in the University of Littoral Côte d’Opale (ULCO). CHAE is also dedicated to the development and validation of new spectroscopic approaches for the metrology of atmospheric species including gases, particles and radicals.The first aim of this research was to characterize all the technical, physical and chemical parameters of this new chamber and to optimize the methods for studying the atmospheric reactivity of volatile organic compounds (VOCs) and simulating the formation of secondary organic aerosols (SOA). The results of numerous experiments and tests show that CHARME is a convenient tool to reproduce chemical reactions occurring in the troposphere. The second research objective was to investigate the reaction of the biogenic VOC, γ-terpinene, with ozone. The rate coefficient at (294 ± 2) K and atmospheric pressure was determined and the gas-phase oxidation products were identified. The physical state and hygroscopicity of the secondary organic aerosols was also studied. To our knowledge, this work represents the first study on SOA formation from the ozonolysis of γ-terpinene
Guérin, Frédéric. "ÉMISSION DE GAZ A EFFET DE SERRE (CO2, CH4) PAR UNE RETENUE DE BARRAGE HYDROÉLECTRIQUE EN ZONE TROPICALE (PETIT-SAUT, GUYANE FRANÇAISE) :EXPÉRIMENTATION ET MODÉLISATION." Phd thesis, Université Paul Sabatier - Toulouse III, 2006. http://tel.archives-ouvertes.fr/tel-00079947.
Full textSur 10 ans, les émissions atmosphériques se sont avérées très significatives, notamment les trois premières années ayant suivies la mise en eau, puis décroissent au cours du temps. Tandis que 50% des émissions de CO2 ont lieu à la surface du lac, les émissions de CH4 sont principalement localisées en aval des turbines.
Les émissions atmosphériques résultent de la dégradation de la MO (sol et biomasse issus de la forêt tropicale) immergée lors de la mise en eau et leur diminution au cours du temps découle de l'épuisement du stock de MO. Au terme de 10 ans, 20% du stock de carbone a été minéralisé et émis vers l'atmosphère sous forme de CO2 et de CH4. L'oxydation aérobie du CH4 transforme plus de 95% du CH4 diffusant depuis l'hypolimnion en CO2 dans la colonne d'eau du lac et 40% du CH4 entrant dans la rivière à l'aval. A l'échelle du barrage ce processus est responsable de l'oxydation de 90% du CH4 produit et de 30% des émissions totales de CO2. Le CH4 et le CO2 qui atteignent les eaux de surface du barrage sont émis vers l'atmosphère par flux diffusifs. L'étude de ce processus de transfert gazeux à l'interface air-eau montre que, en milieu tropical, les flux diffusifs sont accélérés par les fortes températures et les phénomènes pluvieux.
Le modèle est basé sur le modèle hydrodynamique SYMPHONIE 2D et les modules biogéochimiques développés dans le cadre de cette étude à partir des données cinétiques des processus étudiés. Les profils verticaux simulés de température, d'oxygène, de CO2 et de CH4 sont bien reproduits. Ce modèle pose les bases d'un outil opérationnel de modélisation pour la retenue de Petit Saut ainsi que pour d'autres réservoirs en milieu tropical.
Guérin, Frédéric. "Emission de gaz à effet de serre (CO2,CH4) par une retenue de barrage hydroélectrique en zone tropicale (Petit-saut, Guyane française) : expérimentation et modélisation." Toulouse 3, 2006. https://tel.archives-ouvertes.fr/tel-00079947.
Full textThe emissions of carbon dioxide (CO2) and methane (CH4) and the carbon cycle in the Petit-Saut reservoir and in the Sinnamary River (French Guiana) were studied with an aim of developing a coupled physical/biogeochemical model. The development of this model required the study of three processes controlling these emissions: (i) CO2 and CH4 production during the mineralization in anoxic condition of organic matter (OM) from soils and plants, (ii) aerobic CH4 oxidation in the water column of the lake and (iii) the processes involved in gas exchange at the air-water interface. Over 10 years, atmospheric emissions were shown to be very significant, in particular the first three years having followed the reservoir impoundment and then decreased with time. While 50% of the CO2 emissions take place at the surface of the lake, the emissions of CH4 are mainly localized downstream from the turbines. The atmospheric emissions result from the degradation of OM (soil and biomass originating from the tropical forest) flooded during impoundment and their reduction with time rises from the exhaustion of the OM stock. 10 years after impoundement, 20% of the carbon stock were mineralized and emitted to the atmosphere in the form of CO2 and of CH4. Aerobic CH4 oxidation transforms more than 95% of the CH4 diffusing upward from the hypolimnion into CO2 in the water column of the lake and 40% of the CH4 entering the river downstream of the dam. In the whole Petit Saut system, this process is responsible for the oxidation of 90% of the produced CH4 and 30% of the total CO2 emissions. The CH4 and CO2 which reach the water surface of the reservoir and of the river downstream of the dam are emitted to the atmosphere by diffusive flux. The study of this process of gas transfer to the interface air-water shows that, in tropical environment, diffusive fluxes are enhanced by the elevated temperatures and the rainy phenomena. The model is based on the hydrodynamic model SYMPHONY 2D and the biogeochemical model developed during this study starting from the kinetic data of the studied processes. The simulated vertical profiles of temperature, oxygen, CO2 and CH4 are well reproduced. This model poses the bases of an operational tool of modeling for the Petit-Saut reservoir like for other reservoirs in tropical environments
Hong, Wei-ping, and 洪偉玶. "Usefulness of the LPC-Residue and LPC Coefficient in Text-Independent Speaker Verification." Thesis, 2007. http://ndltd.ncl.edu.tw/handle/95586261639335208085.
Full text國立高雄第一科技大學
電腦與通訊工程所
95
This thesis focuses on usefulness of the LPC-Residue and LPC Coefficient in the speaker verification system. First step in the front-end feature extraction get the magnitude spectrum of the speech signal from a 32ms short-time segment of speech that is pre-emphasized and processed by a mel-scale filterbank. And the output of the filterbank is then cosine transformed to produce the cepstral coefficients. The zeroth cepstral coefficient isn’t used in the feature vector. When we gotten the coefficients, passed the coefficients to the Gaussian mixture models (GMM). The GMM are interpreted to represent some broad acoustic classes. Finally, the maximum-likelihood parameter estimates the system. The inputs of system have two elements, one is original speech, and other is residual signal. In the experiment, we can find the data of output that the MFCC’s EER is better than LPCC’s EER. And we also find the calculation of new feature vector. The new feature vector is combined the original signal extracted by MFCC with the residual signal extracted by LPCC. The new feature vector is complementary the MFCC and LPCC for the identify file. Finally, we get the most eer than the prior feature vector of MFCC.
Book chapters on the topic "LPC coefficients"
Ratanpara, Tushar, and Narendra Patel. "Singer Identification Using MFCC and LPC Coefficients from Indian Video Songs." In Advances in Intelligent Systems and Computing, 275–82. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-13728-5_31.
Full textSoto-Murillo, Manuel A., Karen E. Villagrana Bañuelos, Julieta G. Rodriguez-Ruiz, Jared D. Salinas-González, Carlos E. Galván-Tejada, Hamurabi Gamboa-Rosales, and Jorge I. Galván-Tejada. "Classification of Heart Health by LPC and MFCC Coefficients and Statistical Features." In IFMBE Proceedings, 104–12. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30648-9_15.
Full textTrabelsi, Imen, and Med Salim Bouhlel. "Comparison of Several Acoustic Modeling Techniques for Speech Emotion Recognition." In Cognitive Analytics, 283–93. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-2460-2.ch015.
Full text"Appendix A: Alternative Representations of the LPC Coefficients." In Speech Recognition Over Digital Channels, 225–26. Chichester, UK: John Wiley & Sons, Ltd, 2006. http://dx.doi.org/10.1002/0470024720.app1.
Full textAggarwal, Gaurav, and Latika Singh. "Comparisons of Speech Parameterisation Techniques for Classification of Intellectual Disability Using Machine Learning." In Research Anthology on Physical and Intellectual Disabilities in an Inclusive Society, 828–47. IGI Global, 2022. http://dx.doi.org/10.4018/978-1-6684-3542-7.ch046.
Full textKoppula, Neeraja, K. Sarada, Ibrahim Patel, R. Aamani, and K. Saikumar. "Identification and Recognition of Speaker Voice Using a Neural Network-Based Algorithm." In Handbook of Research on Innovations and Applications of AI, IoT, and Cognitive Technologies, 278–89. IGI Global, 2021. http://dx.doi.org/10.4018/978-1-7998-6870-5.ch019.
Full textKong, Weiping, Yinli Bi, Wenjiang Huang, Lingli Tang, Chuanrong Li, and Lingling Ma. "Nondestructive Evaluation of Inoculation Effects of AMF and Bradyrhizobium japonicum on Soybean under Drought Stress From Reflectance Spectroscopy." In Soybean for Human Consumption and Animal Feed. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.88673.
Full textKaur, Taranjit, and Balwinder Singh Dhaliwal. "Design of Linear Phase FIR Low Pass Filter Using Mutation-Based Particle Swarm Optimization Technique." In Applications of Artificial Intelligence in Electrical Engineering, 344–58. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-2718-4.ch017.
Full textMahapatra, Nirmal Kumar, and Tuhin Bera. "Generalised Single-Valued Neutrosophic Number and Its Application to Neutrosophic Linear Programming." In Neutrosophic Sets in Decision Analysis and Operations Research, 180–214. IGI Global, 2020. http://dx.doi.org/10.4018/978-1-7998-2555-5.ch009.
Full textSrivastava, Prashant K., Swati Suman, and Smita Pandey. "Monitoring Changes in Urban Cover Using Landsat Satellite Images and Demographical Information." In Environmental Information Systems, 981–95. IGI Global, 2019. http://dx.doi.org/10.4018/978-1-5225-7033-2.ch043.
Full textConference papers on the topic "LPC coefficients"
Grass, J., and P. Kabal. "Methods of improving vector-scalar quantization of LPC coefficients." In [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing. IEEE, 1991. http://dx.doi.org/10.1109/icassp.1991.150425.
Full textHyungseob Han, Sangjin Cho, and Uipil Chong. "Fault diagnosis system using LPC coefficients and neural network." In 2010 International Forum on Strategic Technology (IFOST). IEEE, 2010. http://dx.doi.org/10.1109/ifost.2010.5667999.
Full textFeifei, Wang, and Xu Weizhang. "A comparison of algorithms for the calculation of LPC coefficients." In 2014 International Conference on Information Science, Electronics and Electrical Engineering (ISEEE). IEEE, 2014. http://dx.doi.org/10.1109/infoseee.2014.6948119.
Full textEvans, Ward R. "A Comprative Study of the Karhunen-Loeve Transform Applied to Selected LPC Coefficients." In 1987 IEEE Military Communications Conference - Crisis Communications: The Promise and Reality. IEEE, 1987. http://dx.doi.org/10.1109/milcom.1987.4795263.
Full textStruwe, Kevin. "Voiced-Unvoiced Classification of Speech Using a Neural Network Trained with LPC Coefficients." In 2017 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO). IEEE, 2017. http://dx.doi.org/10.1109/iccairo.2017.20.
Full textRamachandran, Ravi P., M. M. Sondhi, N. Seshadri, and B. S. Atal. "Combined vector and scalar codebook for robust quantization of linear predictive coefficients (LPC) parameters." In SPIE's 1994 International Symposium on Optics, Imaging, and Instrumentation, edited by Richard J. Mammone and J. David Murley, Jr. SPIE, 1994. http://dx.doi.org/10.1117/12.191880.
Full textAlshaer, Hisham, Martha Garcia, M. Hossein Radfar, Geoffrey R. Fernie, and T. Douglas Bradley. "Detection of upper airway narrowing via classification of LPC coefficients: Implications for obstructive sleep apnea diagnosis." In ICASSP 2011 - 2011 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2011. http://dx.doi.org/10.1109/icassp.2011.5946495.
Full textGuan, C., Y. Chen, and B. Wu. "Direct modulation on LPC coefficients with application to speech enhancement and improving the performance of speech recognition in noise." In Proceedings of ICASSP '93. IEEE, 1993. http://dx.doi.org/10.1109/icassp.1993.319242.
Full textLeinhos, Dirk C., Norbert R. Schmid, and Leonhard Fottner. "The Influence of Transient Inlet Distortions on the Instability Inception of a Low Pressure Compressor in a Turbofan Engine." In ASME Turbo Expo 2000: Power for Land, Sea, and Air. American Society of Mechanical Engineers, 2000. http://dx.doi.org/10.1115/2000-gt-0505.
Full textKubota, Shohei, Ryoichiro Yoshida, and Yoshimitsu Kuroki. "Coefficient Constraint LIC with ADMM." In 2018 International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS). IEEE, 2018. http://dx.doi.org/10.1109/iciibms.2018.8549950.
Full text