Academic literature on the topic 'LSTM AutoEncoder'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'LSTM AutoEncoder.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "LSTM AutoEncoder"
Wu, Sihong, Qinghua Huang, and Li Zhao. "De-noising of transient electromagnetic data based on the long short-term memory-autoencoder." Geophysical Journal International 224, no. 1 (2020): 669–81. http://dx.doi.org/10.1093/gji/ggaa424.
Full textWei, Wangyang, Honghai Wu, and Huadong Ma. "An AutoEncoder and LSTM-Based Traffic Flow Prediction Method." Sensors 19, no. 13 (2019): 2946. http://dx.doi.org/10.3390/s19132946.
Full textPark, Pangun, Piergiuseppe Di Marco, Hyejeon Shin, and Junseong Bang. "Fault Detection and Diagnosis Using Combined Autoencoder and Long Short-Term Memory Network." Sensors 19, no. 21 (2019): 4612. http://dx.doi.org/10.3390/s19214612.
Full textLin, Fei, Yudi Xu, Yang Yang, and Hong Ma. "A Spatial-Temporal Hybrid Model for Short-Term Traffic Prediction." Mathematical Problems in Engineering 2019 (January 14, 2019): 1–12. http://dx.doi.org/10.1155/2019/4858546.
Full textCai, Jianxian, Xun Dai, Li Hong, Zhitao Gao, and Zhongchao Qiu. "An Air Quality Prediction Model Based on a Noise Reduction Self-Coding Deep Network." Mathematical Problems in Engineering 2020 (May 15, 2020): 1–12. http://dx.doi.org/10.1155/2020/3507197.
Full textRákos, Olivér, Szilárd Aradi, Tamás Bécsi, and Zsolt Szalay. "Compression of Vehicle Trajectories with a Variational Autoencoder." Applied Sciences 10, no. 19 (2020): 6739. http://dx.doi.org/10.3390/app10196739.
Full textMallak, Ahlam, and Madjid Fathi. "Sensor and Component Fault Detection and Diagnosis for Hydraulic Machinery Integrating LSTM Autoencoder Detector and Diagnostic Classifiers." Sensors 21, no. 2 (2021): 433. http://dx.doi.org/10.3390/s21020433.
Full textMallak, Ahlam, and Madjid Fathi. "Sensor and Component Fault Detection and Diagnosis for Hydraulic Machinery Integrating LSTM Autoencoder Detector and Diagnostic Classifiers." Sensors 21, no. 2 (2021): 433. http://dx.doi.org/10.3390/s21020433.
Full textWu, Ji-Yan, Min Wu, Zhenghua Chen, Xiao-Li Li, and Ruqiang Yan. "Degradation-Aware Remaining Useful Life Prediction With LSTM Autoencoder." IEEE Transactions on Instrumentation and Measurement 70 (2021): 1–10. http://dx.doi.org/10.1109/tim.2021.3055788.
Full textPark, Kyungnam, Jaeik Jeong, Dongjoo Kim, and Hongseok Kim. "Missing-Insensitive Short-Term Load Forecasting Leveraging Autoencoder and LSTM." IEEE Access 8 (2020): 206039–48. http://dx.doi.org/10.1109/access.2020.3036885.
Full textDissertations / Theses on the topic "LSTM AutoEncoder"
Wolpher, Maxim. "Anomaly Detection in Unstructured Time Series Datausing an LSTM Autoencoder." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231368.
Full textFarahani, Marzieh. "Anomaly Detection on Gas Turbine Time-series’ Data Using Deep LSTM-Autoencoder." Thesis, Umeå universitet, Institutionen för datavetenskap, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-179863.
Full textDing, Sheng. "A Detachable LSTM with Residual-Autoencoder Features Method for Motion Recognition in Video Sequences." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu160673417735023.
Full textBlanco, Martínez Alejandro. "Study and design of classification algorithms for diagnosis and prognosis of failures in wind turbines from SCADA data." Doctoral thesis, Universitat de Vic - Universitat Central de Catalunya, 2018. http://hdl.handle.net/10803/586097.
Full textLousseief, Elias. "MahlerNet : Unbounded Orchestral Music with Neural Networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-264993.
Full textTomašov, Adrián. "Analýza GPON rámců s využitím strojového učení." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-413085.
Full textGolshan, Arman. "A contemporary machine learning approach to detect transportation mode - A case study of Borlänge, Sweden." Thesis, Högskolan Dalarna, Mikrodataanalys, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:du-35966.
Full textNatvig, Filip. "Knowledge Transfer Applied on an Anomaly Detection Problem Using Financial Data." Thesis, Uppsala universitet, Avdelningen för systemteknik, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-451884.
Full textÅkerström, Emelie. "Real-time Outlier Detection using Unbounded Data Streaming and Machine Learning." Thesis, Luleå tekniska universitet, Datavetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:ltu:diva-80044.
Full textBerenji, Ardestani Sarah. "Time Series Anomaly Detection and Uncertainty Estimation using LSTM Autoencoders." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281354.
Full textBook chapters on the topic "LSTM AutoEncoder"
He, Jie, Xingjiao Wu, Wenxin Hu, and Jing Yang. "LSTMVAEF: Vivid Layout via LSTM-Based Variational Autoencoder Framework." In Document Analysis and Recognition – ICDAR 2021. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-86331-9_12.
Full textXiao, Hui, Donghai Guan, Rui Zhao, Weiwei Yuan, Yaofeng Tu, and Asad Masood Khattak. "Semi-supervised Time Series Anomaly Detection Model Based on LSTM Autoencoder." In Communications in Computer and Information Science. Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-16-3150-4_4.
Full textVavra, Jan, and Martin Hromada. "Optimization of the Novelty Detection Model Based on LSTM Autoencoder for ICS Environment." In Intelligent Systems Applications in Software Engineering. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30329-7_28.
Full textFukuda, Kiyohito, Naoki Mori, and Keinosuke Matsumoto. "A Novel Sentence Vector Generation Method Based on Autoencoder and Bi-directional LSTM." In Distributed Computing and Artificial Intelligence, 15th International Conference. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-94649-8_16.
Full textZhu, Dong, Chengkun Wu, Chuanfu Xu, and Zhenghua Wang. "AA-LSTM: An Adversarial Autoencoder Joint Model for Prediction of Equipment Remaining Useful Life." In Advances in Knowledge Discovery and Data Mining. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75762-5_24.
Full textChouliaras, Spyridon, and Stelios Sotiriadis. "Detecting Performance Degradation in Cloud Systems Using LSTM Autoencoders." In Advanced Information Networking and Applications. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75075-6_38.
Full textNalbach, Oliver, Sebastian Bauer, Nanna Dahlem, and Dirk Werth. "Real-Time Detection of Unusual Customer Behavior in Retail Using LSTM Autoencoders." In Business Information Systems. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-53337-3_7.
Full textHahner, Sara, Rodrigo Iza-Teran, and Jochen Garcke. "Analysis and Prediction of Deforming 3D Shapes Using Oriented Bounding Boxes and LSTM Autoencoders." In Artificial Neural Networks and Machine Learning – ICANN 2020. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-61609-0_23.
Full textCoto-Jiménez, Marvin, John Goddard-Close, and Fabiola Martínez-Licona. "Improving Automatic Speech Recognition Containing Additive Noise Using Deep Denoising Autoencoders of LSTM Networks." In Speech and Computer. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-43958-7_42.
Full textKotenko, Igor, Oleg Lauta, Kseniya Kribel, and Igor Saenko. "LSTM Neural Networks for Detecting Anomalies Caused by Web Application Cyber Attacks." In Frontiers in Artificial Intelligence and Applications. IOS Press, 2021. http://dx.doi.org/10.3233/faia210014.
Full textConference papers on the topic "LSTM AutoEncoder"
Said Elsayed, Mahmoud, Nhien-An Le-Khac, Soumyabrata Dev, and Anca Delia Jurcut. "Network Anomaly Detection Using LSTM Based Autoencoder." In MSWiM '20: 23rd International ACM Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems. ACM, 2020. http://dx.doi.org/10.1145/3416013.3426457.
Full textChen, Mu-Yen, Tien-Chi Huang, Yu Shu, Chia-Chen Chen, Tsung-Che Hsieh, and Neil Y. Yen. "Learning the Chinese Sentence Representation with LSTM Autoencoder." In Companion of the The Web Conference 2018. ACM Press, 2018. http://dx.doi.org/10.1145/3184558.3186355.
Full textNoguchi, Wataru, Hiroyuki Iizuka, and Masahito Yamamoto. "Proposing Multimodal Integration Model Using LSTM and Autoencoder." In 9th EAI International Conference on Bio-inspired Information and Communications Technologies (formerly BIONETICS). ACM, 2016. http://dx.doi.org/10.4108/eai.3-12-2015.2262505.
Full textHuang, Kun-Yi, Chung-Hsien Wu, Tsung-Hsien Yang, Ming-Hsiang Su, and Jia-Hui Chou. "Speech emotion recognition using autoencoder bottleneck features and LSTM." In 2016 International Conference on Orange Technologies (ICOT). IEEE, 2016. http://dx.doi.org/10.1109/icot.2016.8278965.
Full textPaul, Sudipta, and Subhankar Mishra. "LAC: LSTM AUTOENCODER with Community for Insider Threat Detection." In ICBDR 2020: 2020 the 4th International Conference on Big Data Research. ACM, 2020. http://dx.doi.org/10.1145/3445945.3445958.
Full textVan Hoa, Tran, Duong Tuan Anh, and Duong Ngoc Hieu. "Foreign Exchange Rate Forecasting using Autoencoder and LSTM Networks." In ICIIT '21: 2021 6th International Conference on Intelligent Information Technology. ACM, 2021. http://dx.doi.org/10.1145/3460179.3460184.
Full textLiu, Yuyu. "Forecast of photovoltaic power generation using deep-learning algorithms: evaluation of LSTM, LSTM-autoencoder, and LSTM-attention-mechanism." In Physics, Simulation, and Photonic Engineering of Photovoltaic Devices X, edited by Alexandre Freundlich, Karin Hinzer, and Stéphane Collin. SPIE, 2021. http://dx.doi.org/10.1117/12.2583409.
Full textOota, Subba Reddy, Vijay Rowtula, Manish Gupta, and Raju S. Bapi. "StepEncog: A Convolutional LSTM Autoencoder for Near-Perfect fMRI Encoding." In 2019 International Joint Conference on Neural Networks (IJCNN). IEEE, 2019. http://dx.doi.org/10.1109/ijcnn.2019.8852339.
Full textZhao, Xia, Xiao Han, Weijun Su, and Zhen Yan. "Time series prediction method based on Convolutional Autoencoder and LSTM." In 2019 Chinese Automation Congress (CAC). IEEE, 2019. http://dx.doi.org/10.1109/cac48633.2019.8996842.
Full textXu, Zhenyi, Yu Kang, Yang Cao, and Longchuan Yue. "Residual Autoencoder-LSTM for City Region Vehicle Emission Pollution Prediction." In 2018 IEEE 14th International Conference on Control and Automation (ICCA). IEEE, 2018. http://dx.doi.org/10.1109/icca.2018.8444183.
Full text