To see the other types of publications on this topic, follow the link: LSTM-CNN.

Journal articles on the topic 'LSTM-CNN'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'LSTM-CNN.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Zhou, Xiu, Xutao Wu, Pei Ding, Xiuguang Li, Ninghui He, Guozhi Zhang, and Xiaoxing Zhang. "Research on Transformer Partial Discharge UHF Pattern Recognition Based on Cnn-lstm." Energies 13, no. 1 (December 20, 2019): 61. http://dx.doi.org/10.3390/en13010061.

Full text
Abstract:
In view of the fact that the statistical feature quantity of traditional partial discharge (PD) pattern recognition relies on expert experience and lacks certain generalization, this paper develops PD pattern recognition based on the convolutional neural network (cnn) and long-term short-term memory network (lstm). Firstly, we constructed the cnn-lstm PD pattern recognition model, which combines the advantages of cnn in mining local spatial information of the PD spectrum and the advantages of lstm in mining the PD spectrum time series feature information. Then, the transformer PD UHF (Ultra High Frequency) experiment was carried out. The performance of the constructed cnn-lstm pattern recognition network was tested by using different types of typical PD spectrums. Experimental results show that: (1) for the floating potential defects, the recognition rates of cnn-lstm and cnn are both 100%; (2) cnn-lstm has better recognition ability than cnn for metal protrusion defects, oil paper void defects, and surface discharge defects; and (3) cnn-lstm has better overall recognition accuracy than cnn and lstm.
APA, Harvard, Vancouver, ISO, and other styles
2

Lu, Wenxing, Haidong Rui, Changyong Liang, Li Jiang, Shuping Zhao, and Keqing Li. "A Method Based on GA-CNN-LSTM for Daily Tourist Flow Prediction at Scenic Spots." Entropy 22, no. 3 (February 25, 2020): 261. http://dx.doi.org/10.3390/e22030261.

Full text
Abstract:
Accurate tourist flow prediction is key to ensuring the normal operation of popular scenic spots. However, one single model cannot effectively grasp the characteristics of the data and make accurate predictions because of the strong nonlinear characteristics of daily tourist flow data. Accordingly, this study predicts daily tourist flow in Huangshan Scenic Spot in China. A prediction method (GA-CNN-LSTM) which combines convolutional neural network (CNN) and long-short-term memory network (LSTM) and optimized by genetic algorithm (GA) is established. First, network search data, meteorological data, and other data are constructed into continuous feature maps. Then, feature vectors are extracted by convolutional neural network (CNN). Finally, the feature vectors are input into long-short-term memory network (LSTM) in time series for prediction. Moreover, GA is used to scientifically select the number of neurons in the CNN-LSTM model. Data is preprocessed and normalized before prediction. The accuracy of GA-CNN-LSTM is evaluated using mean absolute percentage error (MAPE), mean absolute error (MAE), Pearson correlation coefficient and index of agreement (IA). For a fair comparison, GA-CNN-LSTM model is compared with CNN-LSTM, LSTM, CNN and the back propagation neural network (BP). The experimental results show that GA-CNN-LSTM model is approximately 8.22% higher than CNN-LSTM on the performance of MAPE.
APA, Harvard, Vancouver, ISO, and other styles
3

Hermanto, Dedi Tri, Arief Setyanto, and Emha Taufiq Luthfi. "Algoritma LSTM-CNN untuk Binary Klasifikasi dengan Word2vec pada Media Online." Creative Information Technology Journal 8, no. 1 (March 31, 2021): 64. http://dx.doi.org/10.24076/citec.2021v8i1.264.

Full text
Abstract:
Media online banyak menghasilkan berbagai macam berita, baik ekonomi, politik, kesehatan, olahraga atau ilmu pengetahuan. Di antara itu semua, ekonomi adalah salah satu topik menarik untuk dibahas. Ekonomi memiliki dampak langsung kepada warga negara, perusahaan, bahkan pasar tradisional tergantung pada kondisi ekonomi di suatu negara. Sentimen yang terkandung dalam berita dapat mempengaruhi pandangan masyarakat terhadap suatu hal atau kebijakan pemerintah. Topik ekonomi adalah bahasan yang menarik untuk dilakukan penelitian karena memiliki dampak langsung kepada masyarakat Indonesia. Namun, masih sedikit penelitian yang menerapkan metode deep learning yaitu Long Short-Term Memory dan CNN untuk analisis sentimen pada artikel finance di Indonesia. Penelitian ini bertujuan untuk melakukan pengklasifikasian judul berita berbahasa Indonesia berdasarkan sentimen positif, negatif dengan menggunakan metode LSTM, LSTM-CNN, CNN-LSTM. Dataset yang digunakan adalah data judul artikel berbahasa Indonesia yang diambil dari situs Detik Finance. Berdasarkan hasil pengujian memperlihatkan bahwa metode LSTM, LSTM-CNN, CNN-LSTM memiliki hasil akurasi sebesar, 62%, 65% dan 74%.Kata Kunci — LSTM, sentiment analysis, CNNOnline media produce a lot of various kinds of news, be it economics, politics, health, sports or science. Among them, economics is one interesting topic to discuss. The economy has a direct impact on citizens, companies, and even traditional markets depending on the economic conditions in a country. The sentiment contained in the news can influence people's views on a matter or government policy. The topic of economics is an interesting topic for research because it has a direct impact on Indonesian society. However, there are still few studies that apply deep learning methods, namely Long Short-Term Memory and CNN for sentiment analysis on finance articles in Indonesia. This study aims to classify Indonesian news headlines based on positive and negative sentiments using the LSTM, LSTM-CNN, CNN-LSTM methods. The dataset used is data on Indonesian language article titles taken from the Detik Finance website. Based on the test results, it shows that the LSTM, LSTM-CNN, CNN-LSTM methods have an accuracy of, 62%, 65% and 74%.Keywords — LSTM, sentiment analysis, CNN
APA, Harvard, Vancouver, ISO, and other styles
4

Xiong, Ying, Xue Shi, Shuai Chen, Dehuan Jiang, Buzhou Tang, Xiaolong Wang, Qingcai Chen, and Jun Yan. "Cohort selection for clinical trials using hierarchical neural network." Journal of the American Medical Informatics Association 26, no. 11 (July 15, 2019): 1203–8. http://dx.doi.org/10.1093/jamia/ocz099.

Full text
Abstract:
Abstract Objective Cohort selection for clinical trials is a key step for clinical research. We proposed a hierarchical neural network to determine whether a patient satisfied selection criteria or not. Materials and Methods We designed a hierarchical neural network (denoted as CNN-Highway-LSTM or LSTM-Highway-LSTM) for the track 1 of the national natural language processing (NLP) clinical challenge (n2c2) on cohort selection for clinical trials in 2018. The neural network is composed of 5 components: (1) sentence representation using convolutional neural network (CNN) or long short-term memory (LSTM) network; (2) a highway network to adjust information flow; (3) a self-attention neural network to reweight sentences; (4) document representation using LSTM, which takes sentence representations in chronological order as input; (5) a fully connected neural network to determine whether each criterion is met or not. We compared the proposed method with its variants, including the methods only using the first component to represent documents directly and the fully connected neural network for classification (denoted as CNN-only or LSTM-only) and the methods without using the highway network (denoted as CNN-LSTM or LSTM-LSTM). The performance of all methods was measured by micro-averaged precision, recall, and F1 score. Results The micro-averaged F1 scores of CNN-only, LSTM-only, CNN-LSTM, LSTM-LSTM, CNN-Highway-LSTM, and LSTM-Highway-LSTM were 85.24%, 84.25%, 87.27%, 88.68%, 88.48%, and 90.21%, respectively. The highest micro-averaged F1 score is higher than our submitted 1 of 88.55%, which is 1 of the top-ranked results in the challenge. The results indicate that the proposed method is effective for cohort selection for clinical trials. Discussion Although the proposed method achieved promising results, some mistakes were caused by word ambiguity, negation, number analysis and incomplete dictionary. Moreover, imbalanced data was another challenge that needs to be tackled in the future. Conclusion In this article, we proposed a hierarchical neural network for cohort selection. Experimental results show that this method is good at selecting cohort.
APA, Harvard, Vancouver, ISO, and other styles
5

Kurniawan, Antonius Angga, and Metty Mustikasari. "Implementasi Deep Learning Menggunakan Metode CNN dan LSTM untuk Menentukan Berita Palsu dalam Bahasa Indonesia." Jurnal Informatika Universitas Pamulang 5, no. 4 (December 31, 2021): 544. http://dx.doi.org/10.32493/informatika.v5i4.6760.

Full text
Abstract:
This research aims to implement deep learning techniques to determine fact and fake news in Indonesian language. The methods used are Convolutional Neural Network (CNN) and Long Short Term Memory (LSTM). The stages of the research consisted of collecting data, labeling data, preprocessing data, word embedding, splitting data, forming CNN and LSTM models, evaluating, testing new input data and comparing evaluations of the established CNN and LSTM models. The Data are collected from a fact and fake news provider site that is valid, namely TurnbackHoax.id. There are 1786 news used in this study, with 802 fact and 984 fake news. The results indicate that the CNN and LSTM methods were successfully applied to determine fact and fake news in Indonesian language properly. CNN has an accuracy test, precision and recall value of 0.88, while the LSTM model has an accuracy test and precision value of 0.84 and a recall of 0.83. In testing the new data input, all of the predictions obtained by CNN are correct, while the prediction results obtained by LSTM have 1 wrong prediction. Based on the evaluation results and the results of testing the new data input, the model produced by the CNN method is better than the model produced by the LSTM method.
APA, Harvard, Vancouver, ISO, and other styles
6

Shao, Bilin, Xiaoli Hu, Genqing Bian, and Yu Zhao. "A Multichannel LSTM-CNN Method for Fault Diagnosis of Chemical Process." Mathematical Problems in Engineering 2019 (December 5, 2019): 1–14. http://dx.doi.org/10.1155/2019/1032480.

Full text
Abstract:
The identification and classification of faults in chemical processes can provide decision basis for equipment maintenance personnel to ensure the safe operation of the production process. In this paper, we combine long short-term memory neural network (LSTM) with convolutional neural network (CNN) and propose a new fault diagnosis method based on multichannel LSTM-CNN (MCLSTM-CNN). The primary methodology here includes three aspects. In the initial state, the fault data are input into the LSTM to obtain the output of the hidden layer, which stores the relevant temporal and spatial domain information. Due to the diversity of data features, convolutional kernels with different sizes are utilized to form multiple channels to extract the output characteristics of the hidden layer simultaneously. Finally, the fault data are classified by fully connected layers. The Tennessee Eastman (TE) chemical process is used for experimental analysis, and the MCLSTM-CNN model is compared with the LSTM-CNN, LSTM, CNN, RF and KPCA + SVM models. The experimental results show that the MCLSTM-CNN model has higher diagnostic accuracy, and the fault classification results are superior to other models.
APA, Harvard, Vancouver, ISO, and other styles
7

Fu, Lei, Qizhi Tang, Peng Gao, Jingzhou Xin, and Jianting Zhou. "Damage Identification of Long-Span Bridges Using the Hybrid of Convolutional Neural Network and Long Short-Term Memory Network." Algorithms 14, no. 6 (June 8, 2021): 180. http://dx.doi.org/10.3390/a14060180.

Full text
Abstract:
The shallow features extracted by the traditional artificial intelligence algorithm-based damage identification methods pose low sensitivity and ignore the timing characteristics of vibration signals. Thus, this study uses the high-dimensional feature extraction advantages of convolutional neural networks (CNNs) and the time series modeling capability of long short-term memory networks (LSTM) to identify damage to long-span bridges. Firstly, the features extracted by CNN and LSTM are fused as the input of the fully connected layer to train the CNN-LSTM model. After that, the trained CNN-LSTM model is employed for damage identification. Finally, a numerical example of a large-span suspension bridge was carried out to investigate the effectiveness of the proposed method. Furthermore, the performance of CNN-LSTM and CNN under different noise levels was compared to test the feasibility of application in practical engineering. The results demonstrate the following: (1) the combination of CNN and LSTM is satisfactory with 94% of the damage localization accuracy and only 8.0% of the average relative identification error (ARIE) of damage severity identification; (2) in comparison to the CNN, the CNN-LSTM results in superior identification accuracy; the damage localization accuracy is improved by 8.13%, while the decrement of ARIE of damage severity identification is 5.20%; and (3) the proposed method is capable of resisting the influence of environmental noise and acquires an acceptable recognition effect for multi-location damage; in a database with a lower signal-to-noise ratio of 3.33, the damage localization accuracy of the CNN-LSTM model is 67.06%, and the ARIE of the damage severity identification is 31%. This work provides an innovative idea for damage identification of long-span bridges and is conducive to promote follow-up studies regarding structural condition evaluation.
APA, Harvard, Vancouver, ISO, and other styles
8

Nan, Yashi, Nigel H. Lovell, Stephen J. Redmond, Kejia Wang, Kim Delbaere, and Kimberley S. van Schooten. "Deep Learning for Activity Recognition in Older People Using a Pocket-Worn Smartphone." Sensors 20, no. 24 (December 15, 2020): 7195. http://dx.doi.org/10.3390/s20247195.

Full text
Abstract:
Activity recognition can provide useful information about an older individual’s activity level and encourage older people to become more active to live longer in good health. This study aimed to develop an activity recognition algorithm for smartphone accelerometry data of older people. Deep learning algorithms, including convolutional neural network (CNN) and long short-term memory (LSTM), were evaluated in this study. Smartphone accelerometry data of free-living activities, performed by 53 older people (83.8 ± 3.8 years; 38 male) under standardized circumstances, were classified into lying, sitting, standing, transition, walking, walking upstairs, and walking downstairs. A 1D CNN, a multichannel CNN, a CNN-LSTM, and a multichannel CNN-LSTM model were tested. The models were compared on accuracy and computational efficiency. Results show that the multichannel CNN-LSTM model achieved the best classification results, with an 81.1% accuracy and an acceptable model and time complexity. Specifically, the accuracy was 67.0% for lying, 70.7% for sitting, 88.4% for standing, 78.2% for transitions, 88.7% for walking, 65.7% for walking downstairs, and 68.7% for walking upstairs. The findings indicated that the multichannel CNN-LSTM model was feasible for smartphone-based activity recognition in older people.
APA, Harvard, Vancouver, ISO, and other styles
9

Geng, Yue, Lingling Su, Yunhong Jia, and Ce Han. "Seismic Events Prediction Using Deep Temporal Convolution Networks." Journal of Electrical and Computer Engineering 2019 (April 2, 2019): 1–14. http://dx.doi.org/10.1155/2019/7343784.

Full text
Abstract:
Seismic events prediction is a crucial task for preventing coal mine rock burst hazards. Currently, this task attracts increasing research enthusiasms from many mining experts. Considering the temporal characteristics of monitoring data, seismic events prediction can be abstracted as a time series prediction task. This paper contributes to address the problem of long-term historical dependence on seismic time series prediction with deep temporal convolution neural networks (CNN). We propose a dilated causal temporal convolution network (DCTCNN) and a CNN long short-term memory hybrid model (CNN-LSTM) to forecast seismic events. In particular, DCTCNN is designed with dilated CNN kernels, causal strategy, and residual connections; CNN-LSTM is established in a hybrid modeling way by utilizing advantage of CNN and LSTM. Based on these manners, both of DCTCNN and CNN-LSTM can extract long-term historical features from the monitoring seismic data. The proposed models are experimentally tested on two real-life coal mine seismic datasets. Furthermore, they are also compared with one traditional time series prediction method, two classic machine learning algorithms, and two standard deep learning networks. Results show that DCTCNN and CNN-LSTM are superior than the other five algorithms, and they successfully complete the seismic prediction task.
APA, Harvard, Vancouver, ISO, and other styles
10

Bilgera, Christian, Akifumi Yamamoto, Maki Sawano, Haruka Matsukura, and Hiroshi Ishida. "Application of Convolutional Long Short-Term Memory Neural Networks to Signals Collected from a Sensor Network for Autonomous Gas Source Localization in Outdoor Environments." Sensors 18, no. 12 (December 18, 2018): 4484. http://dx.doi.org/10.3390/s18124484.

Full text
Abstract:
Convolutional Long Short-Term Memory Neural Networks (CNN-LSTM) are a variant of recurrent neural networks (RNN) that can extract spatial features in addition to classifying or making predictions from sequential data. In this paper, we analyzed the use of CNN-LSTM for gas source localization (GSL) in outdoor environments using time series data from a gas sensor network and anemometer. CNN-LSTM is used to estimate the location of a gas source despite the challenges created from inconsistent airflow and gas distribution in outdoor environments. To train CNN-LSTM for GSL, we used temporal data taken from a 5 × 6 metal oxide semiconductor (MOX) gas sensor array, spaced 1.5 m apart, and an anemometer placed in the center of the sensor array in an open area outdoors. The output of the CNN-LSTM is one of thirty cells approximating the location of a gas source. We show that by using CNN-LSTM, we were able to determine the location of a gas source from sequential data. In addition, we compared several artificial neural network (ANN) architectures as well as trained them without wind vector data to estimate the complexity of the task. We found that ANN is a promising prospect for GSL tasks.
APA, Harvard, Vancouver, ISO, and other styles
11

He, Wei, Jufeng Li, Zhihe Tang, Beng Wu, Hui Luan, Chong Chen, and Huaqing Liang. "A Novel Hybrid CNN-LSTM Scheme for Nitrogen Oxide Emission Prediction in FCC Unit." Mathematical Problems in Engineering 2020 (August 17, 2020): 1–12. http://dx.doi.org/10.1155/2020/8071810.

Full text
Abstract:
Fluid Catalytic Cracking (FCC), a key unit for secondary processing of heavy oil, is one of the main pollutant emissions of NOx in refineries which can be harmful for the human health. Owing to its complex behaviour in reaction, product separation, and regeneration, it is difficult to accurately predict NOx emission during FCC process. In this paper, a novel deep learning architecture formed by integrating Convolutional Neural Network (CNN) and Long Short-Term Memory Network (LSTM) for nitrogen oxide emission prediction is proposed and validated. CNN is used to extract features among multidimensional data. LSTM is employed to identify the relationships between different time steps. The data from the Distributed Control System (DCS) in one refinery was used to evaluate the performance of the proposed architecture. The results indicate the effectiveness of CNN-LSTM in handling multidimensional time series datasets with the RMSE of 23.7098, and the R2 of 0.8237. Compared with previous methods (CNN and LSTM), CNN-LSTM overcomes the limitation of high-quality feature dependence and handles large amounts of high-dimensional data with better efficiency and accuracy. The proposed CNN-LSTM scheme would be a beneficial contribution to the accurate and stable prediction of irregular trends for NOx emission from refining industry, providing more reliable information for NOx risk assessment and management.
APA, Harvard, Vancouver, ISO, and other styles
12

Widiputra, Harya, Adele Mailangkay, and Elliana Gautama. "Prediksi Indeks BEI dengan Ensemble Convolutional Neural Network dan Long Short-Term Memory." Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 5, no. 3 (June 19, 2021): 456–65. http://dx.doi.org/10.29207/resti.v5i3.3111.

Full text
Abstract:
The Indonesian Stock Exchange (IDX) stock market index is one of the main indicators commonly used as a reference for national economic conditions. The value of the stock market index is often being used by investment companies and individual investors to help making investment decisions. Therefore, the ability to predict the stock market index value is a critical need. In the fields of statistics and probability theory as well as machine learning, various methods have been developed to predict the value of the stock market index with a good accuracy. However, previous research results have found that no one method is superior to other methods. This study proposes an ensemble model based on deep learning architecture, namely Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM), called the CNN-LSTM. To be able to predict financial time series data, CNN-LSTM takes feature from CNN for extraction of important features from time series data, which are then integrated with LSTM feature that is reliable in processing time series data. Results of experiments on the proposed CNN-LSTM model confirm that the hybrid model effectively provides better predictive accuracy than the stand-alone time series data forecasting models, such as CNN and LSTM.
APA, Harvard, Vancouver, ISO, and other styles
13

Banda, Anish. "Image Captioning using CNN and LSTM." International Journal for Research in Applied Science and Engineering Technology 9, no. 8 (August 31, 2021): 2666–69. http://dx.doi.org/10.22214/ijraset.2021.37846.

Full text
Abstract:
Abstract: In the model we proposed, we examine the deep neural networks-based image caption generation technique. We give image as input to the model, the technique give output in three different forms i.e., sentence in three different languages describing the image, mp3 audio file and an image file is also generated. In this model, we use the techniques of both computer vision and natural language processing. We are aiming to develop a model using the techniques of Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) to build a model to generate a Caption. Target image is compared with the training images, we have a large dataset containing the training images, this is done by convolutional neural network. This model generates a decent description utilizing the trained data. To extract features from images we need encoder, we use CNN as encoder. To decode the description of image generated we use LSTM. To evaluate the accuracy of generated caption we use BLEU metric algorithm. It grades the quality of content generated. Performance is calculated by the standard calculation matrices. Keywords: CNN, RNN, LSTM, BLEU score, encoder, decoder, captions, image description.
APA, Harvard, Vancouver, ISO, and other styles
14

Du, Wenjun, Bo Sun, Jiating Kuai, Jiemin Xie, Jie Yu, and Tuo Sun. "Highway Travel Time Prediction of Segments Based on ANPR Data considering Traffic Diversion." Journal of Advanced Transportation 2021 (July 9, 2021): 1–16. http://dx.doi.org/10.1155/2021/9512501.

Full text
Abstract:
Travel time is one of the most critical parameters in proactive traffic management and the deployment of advanced traveler information systems. This paper proposes a hybrid model named LSTM-CNN for predicting the travel time of highways by integrating the long short-term memory (LSTM) and the convolutional neural networks (CNNs) with the attention mechanism and the residual network. The highway is divided into multiple segments by considering the traffic diversion and the relative location of automatic number plate recognition (ANPR). There are four steps in this hybrid approach. First, the average travel time of each segment in each interval is calculated from ANPR and fed into LSTM in the form of a multidimensional array. Second, the attention mechanism is adopted to combine the hidden layer of LSTM with dynamic temporal weights. Third, the residual network is introduced to increase the network depth and overcome the vanishing gradient problem, which consists of three pairs of one-dimensional convolutional layers (Conv1D) and batch normalization (BatchNorm) with the rectified linear unit (ReLU) as the activation function. Finally, a series of Conv1D layers is connected to extract features further and reduce dimensionality. The proposed LSTM-CNN approach is tested on the three-month ANPR data of a real-world 39.25 km highway with four pairs of ANPR detectors of the uplink and downlink, Zhejiang, China. The experimental results indicate that LSTM-CNN learns spatial, temporal, and depth information better than the state-of-the-art traffic forecasting models, so LSTM-CNN can predict more accurate travel time. Moreover, LSTM-CNN outperforms the state-of-the-art methods in nonrecurrent prediction, multistep-ahead prediction, and long-term prediction. LSTM-CNN is a promising model with scalability and portability for highway traffic prediction and can be further extended to improve the performance of the advanced traffic management system (ATMS) and advanced traffic information system (ATIS).
APA, Harvard, Vancouver, ISO, and other styles
15

Garcia, Carlos Iturrino, Francesco Grasso, Antonio Luchetta, Maria Cristina Piccirilli, Libero Paolucci, and Giacomo Talluri. "A Comparison of Power Quality Disturbance Detection and Classification Methods Using CNN, LSTM and CNN-LSTM." Applied Sciences 10, no. 19 (September 27, 2020): 6755. http://dx.doi.org/10.3390/app10196755.

Full text
Abstract:
The use of electronic loads has improved many aspects of everyday life, permitting more efficient, precise and automated process. As a drawback, the nonlinear behavior of these systems entails the injection of electrical disturbances on the power grid that can cause distortion of voltage and current. In order to adopt countermeasures, it is important to detect and classify these disturbances. To do this, several Machine Learning Algorithms are currently exploited. Among them, for the present work, the Long Short Term Memory (LSTM), the Convolutional Neural Networks (CNN), the Convolutional Neural Networks Long Short Term Memory (CNN-LSTM) and the CNN-LSTM with adjusted hyperparameters are compared. As a preliminary stage of the research, the voltage and current time signals are simulated using MATLAB Simulink. Thanks to the simulation results, it is possible to acquire a current and voltage dataset with which the identification algorithms are trained, validated and tested. These datasets include simulations of several disturbances such as Sag, Swell, Harmonics, Transient, Notch and Interruption. Data Augmentation techniques are used in order to increase the variability of the training and validation dataset in order to obtain a generalized result. After that, the networks are fed with an experimental dataset of voltage and current field measurements containing the disturbances mentioned above. The networks have been compared, resulting in a 79.14% correct classification rate with the LSTM network versus a 84.58% for the CNN, 84.76% for the CNN-LSTM and a 83.66% for the CNN-LSTM with adjusted hyperparameters. All of these networks are tested using real measurements.
APA, Harvard, Vancouver, ISO, and other styles
16

Qi, Xianjun, Xiwei Zheng, and Qinghui Chen. "A short term load forecasting of integrated energy system based on CNN-LSTM." E3S Web of Conferences 185 (2020): 01032. http://dx.doi.org/10.1051/e3sconf/202018501032.

Full text
Abstract:
The accurate forecast of integrated energy loads, which has important practical significance, is the premise of the design, operation, scheduling and management of integrated energy systems. In order to make full use of the coupling characteristics of electricity, cooling and heating loads which is difficult to deal with by traditional methods, this paper proposes a new forecast model of integrated energy system loads based on the combination of convolutional neural network (CNN) and long short term memory (LSTM). Firstly, the Pearson correlation coefficients among the electricity, cooling and heating load series of the integrated energy system are calculated, and the results show that there is a strong coupling relationship between the loads of an integrated energy system. Then, the CNN-LSTM composite model is constructed, and CNN is used to extract the characteristic quantity which reflects the load coupling characteristics of the integrated energy system. Then, the characteristic quantity is converted into the time series input to LSTM, and the excellent time series processing ability of LSTM is used for load forecasting. The results show that the CNN-LSTM composite model proposed in this paper has higher prediction accuracy than the wavelet neural network model, CNN model and LSTM model.
APA, Harvard, Vancouver, ISO, and other styles
17

Zhen, Hao, Dongxiao Niu, Min Yu, Keke Wang, Yi Liang, and Xiaomin Xu. "A Hybrid Deep Learning Model and Comparison for Wind Power Forecasting Considering Temporal-Spatial Feature Extraction." Sustainability 12, no. 22 (November 15, 2020): 9490. http://dx.doi.org/10.3390/su12229490.

Full text
Abstract:
The inherent intermittency and uncertainty of wind power have brought challenges in accurate wind power output forecasting, which also cause tricky problems in the integration of wind power to the grid. In this paper, a hybrid deep learning model bidirectional long short term memory-convolutional neural network (BiLSTM-CNN) is proposed for short-term wind power forecasting. First, the grey correlation analysis is utilized to select the inputs for forecasting model; Then, the proposed hybrid model extracts multi-dimension features of inputs to predict the wind power from the temporal-spatial perspective, where the Bi-LSTM model is utilized to mine the bidirectional temporal characteristics while the convolution and pooling operations of CNN are utilized to extract the spatial characteristics from multiple input time series. Lastly, a case study is conducted to verify the superiority of the proposed model. Other deep learning models (Bi-LSTM, LSTM, CNN, LSTM-CNN, CNN-BiLSTM, CNN-LSTM) are also simulated to conduct comparison from three aspects. The results show that the BiLSTM-CNN model has the best accuracy with the lowest RMSE of 2.5492, MSE of 6.4984, MAE of 1.7344 and highest R2 of 0.9929. CNN has the fastest speed with an average computational time of 0.0741s. The hybrid model that mines the spatial feature based on the extracted temporal feature has a better performance than the model mines the temporal feature based on the extracted spatial feature.
APA, Harvard, Vancouver, ISO, and other styles
18

Liu, Tianyuan, Jinsong Bao, Junliang Wang, and Yiming Zhang. "A Hybrid CNN–LSTM Algorithm for Online Defect Recognition of CO2 Welding." Sensors 18, no. 12 (December 10, 2018): 4369. http://dx.doi.org/10.3390/s18124369.

Full text
Abstract:
At present, realizing high-quality automatic welding through online monitoring is a research focus in engineering applications. In this paper, a CNN–LSTM algorithm is proposed, which combines the advantages of convolutional neural networks (CNNs) and long short-term memory networks (LSTMs). The CNN–LSTM algorithm establishes a shallow CNN to extract the primary features of the molten pool image. Then the feature tensor extracted by the CNN is transformed into the feature matrix. Finally, the rows of the feature matrix are fed into the LSTM network for feature fusion. This process realizes the implicit mapping from molten pool images to welding defects. The test results on the self-made molten pool image dataset show that CNN contributes to the overall feasibility of the CNN–LSTM algorithm and LSTM network is the most superior in the feature hybrid stage. The algorithm converges at 300 epochs and the accuracy of defects detection in CO2 welding molten pool is 94%. The processing time of a single image is 0.067 ms, which fully meets the real-time monitoring requirement based on molten pool image. The experimental results on the MNIST and FashionMNIST datasets show that the algorithm is universal and can be used for similar image recognition and classification tasks.
APA, Harvard, Vancouver, ISO, and other styles
19

Ibrahim, Bibi, and Luis Rabelo. "A Deep Learning Approach for Peak Load Forecasting: A Case Study on Panama." Energies 14, no. 11 (May 24, 2021): 3039. http://dx.doi.org/10.3390/en14113039.

Full text
Abstract:
Predicting the future peak demand growth becomes increasingly important as more consumer loads and electric vehicles (EVs) start connecting to the grid. Accurate forecasts will enable energy suppliers to meet demand more reliably. However, this is a challenging problem since the peak demand is very nonlinear. This study addresses the research question of how deep learning methods, such as convolutional neural networks (CNNs) and long-short term memory (LSTM) can provide better support to these areas. The goal is to build a suitable forecasting model that can accurately predict the peak demand. Several data from 2004 to 2019 was collected from Panama’s power system to validate this study. Input features such as residential consumption and monthly economic index were considered for predicting peak demand. First, we introduced three different CNN architectures which were multivariate CNN, multivariate CNN-LSTM and multihead CNN. These were then benchmarked against LSTM. We found that the CNNs outperformed LSTM, with the multivariate CNN being the best performing model. To validate our initial findings, we then evaluated the robustness of the models against Gaussian noise. We demonstrated that CNNs were far more superior than LSTM and can support spatial-temporal time series data.
APA, Harvard, Vancouver, ISO, and other styles
20

Mou, Hanlin, and Junsheng Yu. "CNN-LSTM Prediction Method for Blood Pressure Based on Pulse Wave." Electronics 10, no. 14 (July 13, 2021): 1664. http://dx.doi.org/10.3390/electronics10141664.

Full text
Abstract:
Cardiovascular disease (CVD), which seriously threatens human health, can be prevented by blood pressure (BP) measurement. However, convenient and accurate BP measurement is a vital problem. Although the easily-collected pulse wave (PW)-based methods make it possible to monitor BP at all times and places, the current methods still require professional knowledge to process the medical data. In this paper, we combine the advantages of Convolutional Neural Networks (CNN) and Long Short-Term Memory (LSTM) networks, to propose a CNN-LSTM BP prediction method based on PW data. In detailed, CNN first extract features from PW data, and then the features are input into LSTM for further training. The numerical results based on real-life data sets show that the proposed method can achieve high predicted accuracy of BP while saving training time. As a result, CNN-LSTM can achieve convenient BP monitoring in daily health.
APA, Harvard, Vancouver, ISO, and other styles
21

Zhang, Chen, Qingxu Li, and Xue Cheng. "Text Sentiment Classification Based on Feature Fusion." Revue d'Intelligence Artificielle 34, no. 4 (September 30, 2020): 515–20. http://dx.doi.org/10.18280/ria.340418.

Full text
Abstract:
The convolutional neural network (CNN) and long short-term memory (LSTM) network are adept at extracting local and global features, respectively. Both can achieve excellent classification effects. However, the CNN performs poorly in extracting the global contextual information of the text, while LSTM often overlooks the features hidden between words. For text sentiment classification, this paper combines the CNN with bidirectional LSTM (BiLSTM) into a parallel hybrid model called CNN_BiLSTM. Firstly, the CNN was adopted to extract the local features of the text quickly. Next, the BiLSTM was employed to obtain the global text features containing contextual semantics. After that, the features extracted by the two neural networks (NNs) were fused, and processed by Softmax classifier for text sentiment classification. To verify its performance, the CNN_BiLSTM was compared with single NNs like CNN and LSTM, as well as other deep learning (DL) NNs through experiments. The experimental results show that the proposed parallel hybrid model outperformed the contrastive methods in F1-score and accuracy. Therefore, our model can solve text sentiment classification tasks effectively, and boast better practical value than other NNs.
APA, Harvard, Vancouver, ISO, and other styles
22

Lu, Wenjie, Jiazheng Li, Yifan Li, Aijun Sun, and Jingyang Wang. "A CNN-LSTM-Based Model to Forecast Stock Prices." Complexity 2020 (November 23, 2020): 1–10. http://dx.doi.org/10.1155/2020/6622927.

Full text
Abstract:
Stock price data have the characteristics of time series. At the same time, based on machine learning long short-term memory (LSTM) which has the advantages of analyzing relationships among time series data through its memory function, we propose a forecasting method of stock price based on CNN-LSTM. In the meanwhile, we use MLP, CNN, RNN, LSTM, CNN-RNN, and other forecasting models to predict the stock price one by one. Moreover, the forecasting results of these models are analyzed and compared. The data utilized in this research concern the daily stock prices from July 1, 1991, to August 31, 2020, including 7127 trading days. In terms of historical data, we choose eight features, including opening price, highest price, lowest price, closing price, volume, turnover, ups and downs, and change. Firstly, we adopt CNN to efficiently extract features from the data, which are the items of the previous 10 days. And then, we adopt LSTM to predict the stock price with the extracted feature data. According to the experimental results, the CNN-LSTM can provide a reliable stock price forecasting with the highest prediction accuracy. This forecasting method not only provides a new research idea for stock price forecasting but also provides practical experience for scholars to study financial time series data.
APA, Harvard, Vancouver, ISO, and other styles
23

Reddy, Dinesh, and Abhinav Karthik. "Forecasting Stock Price using LSTM-CNN Method." International Journal of Engineering and Advanced Technology 11, no. 1 (October 30, 2021): 1–8. http://dx.doi.org/10.35940/ijeat.a3117.1011121.

Full text
Abstract:
Foreseeing assumes an indispensable part in setting an exchanging methodology or deciding the ideal opportunity to purchase or sell stock. We propose an element combination long transient memory-convolutional neural organization (LSTM-CNN) model, which joins highlights gained from various presentations of similar information, i.e., stock timetable and stock outline pictures, to anticipate stock costs. The proposed model is created by LSTM and CNN, which extricate impermanent and picture components. We assessed the proposed single model (CNN and LSTM) utilizing SPDR S&P 500 ETF information. Our LSTM-CNN combination highlight model surpasses single models in foreseeing evaluating. Also, we track down that the candle graph is the most precise image of a stock diagram that you can use to anticipate costs. Subsequently, this examination shows that prescient mistake can be viably decreased by utilizing a blend of transitory and picture components from similar information as opposed to utilizing these provisions independently.
APA, Harvard, Vancouver, ISO, and other styles
24

Chen, Zhixin, Xu Zhang, Zhiyuan Li, and Anchu Li. "Construction of the Open Oral Evaluation Model Based on the Neural Network." Scientific Programming 2021 (September 22, 2021): 1–11. http://dx.doi.org/10.1155/2021/3928246.

Full text
Abstract:
According to the problem of low efficiency and low scoring accuracy of the traditional oral language scoring system, this study builds an open oral language evaluation model based on the basic principles of deep learning technology. Firstly, the basic methods of the convolutional neural network (CNN) and long short-term memory (LSTM) neural network are introduced. Then, we combine the convolutional neural network (CNN) and long short-term memory (LSTM) neural network to design an open oral scoring model based on CNN + LSTM, which divides the oral evaluation model into the speech scoring model and text scoring model and makes a specific implementation of two scoring models, respectively. An experimental environment is then built to preprocess the data, and finally, the model built in this study is trained and simulated. The experimental results show that the CNN + LSTM network evaluation model has a better comprehensive scoring performance, higher scoring efficiency, and higher accuracy and has feasibility and practicability.
APA, Harvard, Vancouver, ISO, and other styles
25

Prasad, G. Shyam Chandra, and K. Adi Narayana Reddy. "Sentiment Analysis Using Multi-Channel CNN-LSTM Model." Journal of Advanced Research in Dynamical and Control Systems 11, no. 12-SPECIAL ISSUE (December 31, 2019): 489–94. http://dx.doi.org/10.5373/jardcs/v11sp12/20193243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Xu, Lingfeng, Xiang Chen, Shuai Cao, Xu Zhang, and Xun Chen. "Feasibility Study of Advanced Neural Networks Applied to sEMG-Based Force Estimation." Sensors 18, no. 10 (September 25, 2018): 3226. http://dx.doi.org/10.3390/s18103226.

Full text
Abstract:
To find out the feasibility of different neural networks in sEMG-based force estimation, in this paper, three types of networks, namely convolutional neural network (CNN), long short-term memory (LSTM) network and their combination (C-LSTM) were applied to predict muscle force generated in static isometric elbow flexion across three different circumstances (multi-subject, subject-dependent and subject-independent). Eight healthy men were recruited for the experiments, and the results demonstrated that all the three models were applicable for force estimation, and LSTM and C-LSTM achieved better performances. Even under subject-independent situation, they maintained mean RMSE% of as low as 9.07 ± 1.29 and 8.67 ± 1.14. CNN turned out to be a worse choice, yielding a mean RMSE% of 12.13 ± 1.98. To our knowledge, this work was the first to employ CNN, LSTM and C-LSTM in sEMG-based force estimation, and the results not only prove the strength of the proposed networks, but also pointed out a potential way of achieving high accuracy in real-time, subject-independent force estimation.
APA, Harvard, Vancouver, ISO, and other styles
27

Wang, Changyuan, Ting Yan, and Hongbo Jia. "Spatial-Temporal Feature Representation Learning for Facial Fatigue Detection." International Journal of Pattern Recognition and Artificial Intelligence 32, no. 12 (August 27, 2018): 1856018. http://dx.doi.org/10.1142/s0218001418560189.

Full text
Abstract:
In order to reduce the serious problems caused by the operators’ fatigue, we propose a novel network model Convolutional Neural Network and Long Short-Term Memory Network (CNN-LSTM) — for fatigue detection in the inter-frame images of video sequences, which mainly consists of CNN and LSTM network. Firstly, in order to improve the accuracy of the deep network structure, the Viola–Jones detection algorithm and the Kernelized Correlation Filter (KCF) tracking algorithm are used in the face detection to normalize the size of the inter-frame images of video sequences. Secondly, we use the CNN and the LSTM network to detect the fatigue state in real time and efficiently. The fatigue-related facial features are extracted by the CNN. Then, the temporal symptoms of the whole fatigue process can be extracted by LSTM networks, the input data which is the facial feature vector can be obtained by the CNN. Thirdly, we train and test the network in a step-by-step approach. Finally, we experiment with the proposed network model. The experimental results demonstrate that the network structure can effectively detect the fatigue state, and the overall accuracy rate can rise to 82.8%.
APA, Harvard, Vancouver, ISO, and other styles
28

He, Yanfeng, Yali Liu, Shuai Shao, Xuhang Zhao, Guojun Liu, Xiangji Kong, and Lu Liu. "Application of CNN-LSTM in Gradual Changing Fault Diagnosis of Rod Pumping System." Mathematical Problems in Engineering 2019 (November 3, 2019): 1–9. http://dx.doi.org/10.1155/2019/4203821.

Full text
Abstract:
Owing to the importance of rod pumping system fault detection using an indicator diagram, indicator diagram identification has been a challenging task in the computer-vision field. The gradual changing fault is a special type of fault because it is not clearly indicated in the indicator diagram at the onset of its occurrence and can only be identified when an irreversible damage in the well has been caused. In this paper, we proposed a new method that combines the convolutional neural network (CNN) and long short-term memory (LSTM) network to perform a gradual changing fault classification. In particular, we employed CNN to extract the indicator diagram multilevel abstraction features based on its hierarchical structure. We considered the change in the time series of indicator diagrams as a sequence and employed LSTM to perform recognition. Compared with traditional mathematical model diagnosis methods, CNN-LSTM overcame the limitations of the traditional mathematical model theoretical analysis such as unclear assumption conditions and improved the diagnosis accuracy. Finally, 1.3 million sets of well production were set as a training dataset and used to evaluate CNN-LSTM. The results demonstrated the effectiveness of utilizing CNN and LSTM to recognize a gradual changing fault using the indicator diagram and characteristic parameters. The accuracy reached 98.4%, and the loss was less than 0.9%.
APA, Harvard, Vancouver, ISO, and other styles
29

Jang, Beakcheol, Myeonghwi Kim, Gaspard Harerimana, Sang-ug Kang, and Jong Wook Kim. "Bi-LSTM Model to Increase Accuracy in Text Classification: Combining Word2vec CNN and Attention Mechanism." Applied Sciences 10, no. 17 (August 24, 2020): 5841. http://dx.doi.org/10.3390/app10175841.

Full text
Abstract:
There is a need to extract meaningful information from big data, classify it into different categories, and predict end-user behavior or emotions. Large amounts of data are generated from various sources such as social media and websites. Text classification is a representative research topic in the field of natural-language processing that categorizes unstructured text data into meaningful categorical classes. The long short-term memory (LSTM) model and the convolutional neural network for sentence classification produce accurate results and have been recently used in various natural-language processing (NLP) tasks. Convolutional neural network (CNN) models use convolutional layers and maximum pooling or max-overtime pooling layers to extract higher-level features, while LSTM models can capture long-term dependencies between word sequences hence are better used for text classification. However, even with the hybrid approach that leverages the powers of these two deep-learning models, the number of features to remember for classification remains huge, hence hindering the training process. In this study, we propose an attention-based Bi-LSTM+CNN hybrid model that capitalize on the advantages of LSTM and CNN with an additional attention mechanism. We trained the model using the Internet Movie Database (IMDB) movie review data to evaluate the performance of the proposed model, and the test results showed that the proposed hybrid attention Bi-LSTM+CNN model produces more accurate classification results, as well as higher recall and F1 scores, than individual multi-layer perceptron (MLP), CNN or LSTM models as well as the hybrid models.
APA, Harvard, Vancouver, ISO, and other styles
30

Xia, Kun, Jianguang Huang, and Hanyu Wang. "LSTM-CNN Architecture for Human Activity Recognition." IEEE Access 8 (2020): 56855–66. http://dx.doi.org/10.1109/access.2020.2982225.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Nurdin, A., and N. U. Maulidevi. "5W1H Information Extraction with CNN-Bidirectional LSTM." Journal of Physics: Conference Series 978 (March 2018): 012078. http://dx.doi.org/10.1088/1742-6596/978/1/012078.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Guo, Yanan, Xiaoqun Cao, Bainian Liu, and Kecheng Peng. "El Niño Index Prediction Using Deep Learning with Ensemble Empirical Mode Decomposition." Symmetry 12, no. 6 (June 1, 2020): 893. http://dx.doi.org/10.3390/sym12060893.

Full text
Abstract:
El Niño is an important quasi-cyclical climate phenomenon that can have a significant impact on ecosystems and societies. Due to the chaotic nature of the atmosphere and ocean systems, traditional methods (such as statistical methods) are difficult to provide accurate El Niño index predictions. The latest research shows that Ensemble Empirical Mode Decomposition (EEMD) is suitable for analyzing non-linear and non-stationary signal sequences, Convolutional Neural Network (CNN) is good at local feature extraction, and Recurrent Neural Network (RNN) can capture the overall information of the sequence. As a special RNN, Long Short-Term Memory (LSTM) has significant advantages in processing and predicting long, complex time series. In this paper, to predict the El Niño index more accurately, we propose a new hybrid neural network model, EEMD-CNN-LSTM, which combines EEMD, CNN, and LSTM. In this hybrid model, the original El Niño index sequence is first decomposed into several Intrinsic Mode Functions (IMFs) using the EEMD method. Next, we filter the IMFs by setting a threshold, and we use the filtered IMFs to reconstruct the new El Niño data. The reconstructed time series then serves as input data for CNN and LSTM. The above data preprocessing method, which first decomposes the time series and then reconstructs the time series, uses the idea of symmetry. With this symmetric operation, we extract valid information about the time series and then make predictions based on the reconstructed time series. To evaluate the performance of the EEMD-CNN-LSTM model, the proposed model is compared with four methods including the traditional statistical model, machine learning model, and other deep neural network models. The experimental results show that the prediction results of EEMD-CNN-LSTM are not only more accurate but also more stable and reliable than the general neural network model.
APA, Harvard, Vancouver, ISO, and other styles
33

Hsu, Fu-Shun, Shang-Ran Huang, Chien-Wen Huang, Chao-Jung Huang, Yuan-Ren Cheng, Chun-Chieh Chen, Jack Hsiao, et al. "Benchmarking of eight recurrent neural network variants for breath phase and adventitious sound detection on a self-developed open-access lung sound database—HF_Lung_V1." PLOS ONE 16, no. 7 (July 1, 2021): e0254134. http://dx.doi.org/10.1371/journal.pone.0254134.

Full text
Abstract:
A reliable, remote, and continuous real-time respiratory sound monitor with automated respiratory sound analysis ability is urgently required in many clinical scenarios—such as in monitoring disease progression of coronavirus disease 2019—to replace conventional auscultation with a handheld stethoscope. However, a robust computerized respiratory sound analysis algorithm for breath phase detection and adventitious sound detection at the recording level has not yet been validated in practical applications. In this study, we developed a lung sound database (HF_Lung_V1) comprising 9,765 audio files of lung sounds (duration of 15 s each), 34,095 inhalation labels, 18,349 exhalation labels, 13,883 continuous adventitious sound (CAS) labels (comprising 8,457 wheeze labels, 686 stridor labels, and 4,740 rhonchus labels), and 15,606 discontinuous adventitious sound labels (all crackles). We conducted benchmark tests using long short-term memory (LSTM), gated recurrent unit (GRU), bidirectional LSTM (BiLSTM), bidirectional GRU (BiGRU), convolutional neural network (CNN)-LSTM, CNN-GRU, CNN-BiLSTM, and CNN-BiGRU models for breath phase detection and adventitious sound detection. We also conducted a performance comparison between the LSTM-based and GRU-based models, between unidirectional and bidirectional models, and between models with and without a CNN. The results revealed that these models exhibited adequate performance in lung sound analysis. The GRU-based models outperformed, in terms of F1 scores and areas under the receiver operating characteristic curves, the LSTM-based models in most of the defined tasks. Furthermore, all bidirectional models outperformed their unidirectional counterparts. Finally, the addition of a CNN improved the accuracy of lung sound analysis, especially in the CAS detection tasks.
APA, Harvard, Vancouver, ISO, and other styles
34

Gunasekaran, Hemalatha, K. Ramalakshmi, A. Rex Macedo Arokiaraj, S. Deepa Kanmani, Chandran Venkatesan, and C. Suresh Gnana Dhas. "Analysis of DNA Sequence Classification Using CNN and Hybrid Models." Computational and Mathematical Methods in Medicine 2021 (July 15, 2021): 1–12. http://dx.doi.org/10.1155/2021/1835056.

Full text
Abstract:
In a general computational context for biomedical data analysis, DNA sequence classification is a crucial challenge. Several machine learning techniques have used to complete this task in recent years successfully. Identification and classification of viruses are essential to avoid an outbreak like COVID-19. Regardless, the feature selection process remains the most challenging aspect of the issue. The most commonly used representations worsen the case of high dimensionality, and sequences lack explicit features. It also helps in detecting the effect of viruses and drug design. In recent days, deep learning (DL) models can automatically extract the features from the input. In this work, we employed CNN, CNN-LSTM, and CNN-Bidirectional LSTM architectures using Label and K -mer encoding for DNA sequence classification. The models are evaluated on different classification metrics. From the experimental results, the CNN and CNN-Bidirectional LSTM with K -mer encoding offers high accuracy with 93.16% and 93.13%, respectively, on testing data.
APA, Harvard, Vancouver, ISO, and other styles
35

Ben Ismail, Mohamed Maher. "Insult detection using a partitional CNN-LSTM model." Computer Science and Information Technologies 1, no. 2 (July 1, 2020): 84–92. http://dx.doi.org/10.11591/csit.v1i2.p84-92.

Full text
Abstract:
Recently, deep learning has been coupled with notice- able advances in Natural Language Processing related research. In this work, we propose a general framework to detect verbal offense in social networks comments. We introduce a partitional CNN-LSTM architecture in order to automatically recognize ver- bal offense patterns in social network comments. Specifically, we use a partitional CNN along with a LSTM model to map the social network comments into two predefined classes. In particular, rather than considering a whole document/comments as input as performed using typical CNN, we partition the comments into parts in order to capture and weight the locally relevant information in each partition. The resulting local information is then sequentially exploited across partitions using LSTM for verbal offense detection. The combination of the partitional CNN and LSTM yields the integration of the local within comments information and the long distance correlation across comments. The proposed approach was assessed using real dataset, and the obtained results proved that our solution outperforms existing relevant solutions.
APA, Harvard, Vancouver, ISO, and other styles
36

Sun, Tuo, Chenwei Yang, Ke Han, Wanjing Ma, and Fan Zhang. "Bidirectional Spatial–Temporal Network for Traffic Prediction with Multisource Data." Transportation Research Record: Journal of the Transportation Research Board 2674, no. 8 (July 5, 2020): 78–89. http://dx.doi.org/10.1177/0361198120927393.

Full text
Abstract:
Urban traffic congestion has an obvious spatial and temporal relationship and is relevant to real traffic conditions. Traffic speed is a significant parameter for reflecting congestion of road networks, which is feasible to predict. Traditional traffic forecasting methods have poor accuracy for complex urban road networks, and do not take into account weather and other multisource data. This paper proposes a convolutional neural network (CNN)-based bidirectional spatial–temporal network (CNN-BDSTN) using traffic speed and weather data by crawling electric map information. In CNN-BDSTN, the spatial dependence of traffic network is captured by CNN to compose the time-series input dataset. Bidirectional long short-term memory (LSTM) is introduced to train the convolutional time-series dataset. Compared with linear regression, autoregressive integrated moving average, extreme gradient boosting, LSTM, and CNN-LSTM, CNN-BDSTN presents its ability of spatial and temporal extension and achieves more accurately predicted results. In this case study, traffic speed data of 155 roads and weather information in Urumqi, Xinjiang, People’s Republic of China, with 1-min interval for 5 months are tested by CNN-BDSTN. The experiment results show that the accuracy of CNN-BDSTN with input of weather information is better than the scenario of no weather information, and the average predicted error is less than 5%.
APA, Harvard, Vancouver, ISO, and other styles
37

Imamverdiyev, Yadigar N., and Fargana J. Abdullayeva. "Condition Monitoring of Equipment in Oil Wells using Deep Learning." Advances in Data Science and Adaptive Analysis 12, no. 01 (January 2020): 2050001. http://dx.doi.org/10.1142/s2424922x20500011.

Full text
Abstract:
In this paper, a fault prediction method for oil well equipment based on the analysis of time series data obtained from multiple sensors is proposed. The proposed method is based on deep learning (DL). For this purpose, comparative analysis of single-layer long short-term memory (LSTM) with the convolutional neural network (CNN) and stacked LSTM methods is provided. To demonstrate the efficacy of the proposed method, some experiments are conducted on the real data set obtained from eight sensors installed in oil wells. In this paper, compared to the single-layer LSTM model, the CNN and stacked LSTM predicted the faulty time series with a minimal loss.
APA, Harvard, Vancouver, ISO, and other styles
38

Sharma, Richa, Sudha Morwal, and Basant Agarwal. "Entity-Extraction Using Hybrid Deep-Learning Approach for Hindi text." International Journal of Cognitive Informatics and Natural Intelligence 15, no. 3 (July 2021): 1–11. http://dx.doi.org/10.4018/ijcini.20210701.oa1.

Full text
Abstract:
This article presents a neural network-based approach to develop named entity recognition for Hindi text. In this paper, the authors propose a deep learning architecture based on convolutional neural network (CNN) and bi-directional long short-term memory (Bi-LSTM) neural network. Skip-gram approach of word2vec model is used in the proposed model to generate word vectors. In this research work, several deep learning models have been developed and evaluated as baseline systems such as recurrent neural network (RNN), long short-term memory (LSTM), Bi-LSTM. Furthermore, these baseline systems are promoted to a proposed model with the integration of CNN and conditional random field (CRF) layers. After a comparative analysis of results, it is verified that the performance of the proposed model (i.e., Bi-LSTM-CNN-CRF) is impressive. The proposed system achieves 61% precision, 56% recall, and 58% F-measure.
APA, Harvard, Vancouver, ISO, and other styles
39

Liu, Tingliang, Jing Yan, Yanxin Wang, Yifan Xu, and Yiming Zhao. "GIS Partial Discharge Pattern Recognition Based on a Novel Convolutional Neural Networks and Long Short-Term Memory." Entropy 23, no. 6 (June 18, 2021): 774. http://dx.doi.org/10.3390/e23060774.

Full text
Abstract:
Distinguishing the types of partial discharge (PD) caused by different insulation defects in gas-insulated switchgear (GIS) is a great challenge in the power industry, and improving the recognition accuracy of the relevant models is one of the key problems. In this paper, a convolutional neural network and long short-term memory (CNN-LSTM) model is proposed, which can effectively extract and utilize the spatiotemporal characteristics of PD input signals. First, the spatial characteristics of higher-level PD signals can be obtained through the CNN network, but because CNN is a deep feedforward neural network, it does not have the ability to process time-series data. The PD voltage signal is related to the time dimension, so LSTM saves and analyzes the previous voltage signal information, realizes the modeling of the time dependence of the data, and improves the accuracy of the PD signal pattern recognition. Finally, the pattern recognition results based on CNN-LSTM are given and compared with those based on other traditional analysis methods. The results show that the pattern recognition rate of this method is the highest, with an average of 97.9%, and its overall accuracy is better than that of other traditional analysis methods. The CNN-LSTM model provides a reliable reference for GIS PD diagnosis.
APA, Harvard, Vancouver, ISO, and other styles
40

Punitha, K. "A Novel Mixed Wide and PSO-Bi-LSTM-CNN Model for the Effective Web Services Classification." Webology 17, no. 2 (December 21, 2020): 218–37. http://dx.doi.org/10.14704/web/v17i2/web17026.

Full text
Abstract:
In software technology, over the diversified environment, services can be rendered using an innovative mechanism of a novel paradigm called web services. In a business environment, rapid changes and requirements from various customers can be adapted using this service. For service management and discovery, the classification of Web services having the same functions is an efficient technique. However, there will be short lengthened Web services functional description documents, having less information, and sparse features. This makes difficulties in modelling short text in various topic models and leads to make an effect in the classification of Web services. A Mixed Wide and PSO-Bi-LSTM-CNN model (MW-PSO-Bi-LSTM-CNN) is proposed in this work for solving this issue. In this technique, the Web service category‟s breadth prediction is performed by combining Web services description document‟s discrete features, which exploits the wide learning model. In the next stage, the PSO-Bi-LSTM-CNN model is used for mining Web services description document word‟s context information and word order, for performing the Web service category‟s depth prediction. Here, particle swarm optimization (PSO) is integrated with the Bi-LSTM-CNN network for computing various hyper-parameters in an automatic manner. In third stage, Web service categories, results of depth, and breadth prediction are integrated using a linear regression model as final service classification result. At last, MW-PSO-Bi-LSTM-CNN, Wide&Bi-LSTM, and Wide&Deep web service classification techniques are compared and a better result with respect to web service classification accuracy is obtained using the proposed technique as shown in experimental results.
APA, Harvard, Vancouver, ISO, and other styles
41

Park, Boogi, Sang hoon Bae, and Bokyung Jung. "Speed Prediction of Urban Freeway Using LSTM and CNN-LSTM Neural Network." Journal of The Korea Institute of Intelligent Transport Systems 20, no. 1 (February 28, 2021): 86–99. http://dx.doi.org/10.12815/kits.2021.20.1.86.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Wei, Jun, Fan Yang, Xiao-Chen Ren, and Silin Zou. "A Short-Term Prediction Model of PM2.5 Concentration Based on Deep Learning and Mode Decomposition Methods." Applied Sciences 11, no. 15 (July 27, 2021): 6915. http://dx.doi.org/10.3390/app11156915.

Full text
Abstract:
Based on a set of deep learning and mode decomposition methods, a short-term prediction model for PM2.5 concentration for Beijing city is established in this paper. An ensemble empirical mode decomposition (EEMD) algorithm is first used to decompose the original PM2.5 timeseries to several high- to low-frequency intrinsic mode functions (IMFs). Each IMF component is then trained and predicted by a combination of three neural networks: back propagation network (BP), long short-term memory network (LSTM), and a hybrid network of a convolutional neural network (CNN) + LSTM. The results showed that both BP and LSTM are able to fit the low-frequency IMFs very well, and the total prediction errors of the summation of all IMFs are remarkably reduced from 21 g/m3 in the single BP model to 4.8 g/m3 in the EEMD + BP model. Spatial information from 143 stations surrounding Beijing city is extracted by CNN, which is then used to train the CNN+LSTM. It is found that, under extreme weather conditions of PM2.5 <35 g/m3 and PM2.5 >150 g/m3, the prediction errors of the CNN + LSTM model are improved by ~30% compared to the single LSTM model. However, the prediction of the very high-frequency IMF mode (IMF-1) remains a challenge for all neural networks, which might be due to microphysical turbulences and chaotic processes that cannot be resolved by the above-mentioned neural networks based on variable–variable relationship.
APA, Harvard, Vancouver, ISO, and other styles
43

Yu, Dian, and Shouqian Sun. "A Systematic Exploration of Deep Neural Networks for EDA-Based Emotion Recognition." Information 11, no. 4 (April 15, 2020): 212. http://dx.doi.org/10.3390/info11040212.

Full text
Abstract:
Subject-independent emotion recognition based on physiological signals has become a research hotspot. Previous research has proved that electrodermal activity (EDA) signals are an effective data resource for emotion recognition. Benefiting from their great representation ability, an increasing number of deep neural networks have been applied for emotion recognition, and they can be classified as a Convolutional Neural Network (CNN), a Recurrent Neural Network (RNN), or a combination of these (CNN+RNN). However, there has been no systematic research on the predictive power and configurations of different deep neural networks in this task. In this work, we systematically explore the configurations and performances of three adapted deep neural networks: ResNet, LSTM, and hybrid ResNet-LSTM. Our experiments use the subject-independent method to evaluate the three-class classification on the MAHNOB dataset. The results prove that the CNN model (ResNet) reaches a better accuracy and F1 score than the RNN model (LSTM) and the CNN+RNN model (hybrid ResNet-LSTM). Extensive comparisons also reveal that our three deep neural networks with EDA data outperform previous models with handcraft features on emotion recognition, which proves the great potential of the end-to-end DNN method.
APA, Harvard, Vancouver, ISO, and other styles
44

Kumar, Naresh, Jatin Bindra, Rajat Sharma, and Deepali Gupta. "Air Pollution Prediction Using Recurrent Neural Network, Long Short-Term Memory and Hybrid of Convolutional Neural Network and Long Short-Term Memory Models." Journal of Computational and Theoretical Nanoscience 17, no. 9 (July 1, 2020): 4580–84. http://dx.doi.org/10.1166/jctn.2020.9283.

Full text
Abstract:
Air pollution prediction was not an easy task few years back. With the increasing computation power and wide availability of the datasets, air pollution prediction problem is solved to some extend. Inspired by the deep learning models, in this paper three techniques for air pollution prediction have been proposed. The models used includes recurrent neural network (RNN), Long short-term memory (LSTM) and a hybrid combination of Convolutional neural network (CNN) and LSTM models. These models are tested by comparing MSE loss on air pollution test of Belgium. The validation loss on RNN is 0.0045, LSTM is 0.00441 and CNN and LSTM is 0.0049. The loss on testing dataset for these models are 0.00088, 0.00441 and 0.0049 respectively.
APA, Harvard, Vancouver, ISO, and other styles
45

Shao, Xiaorui, Chang-Soo Kim, and Palash Sontakke. "Accurate Deep Model for Electricity Consumption Forecasting Using Multi-channel and Multi-Scale Feature Fusion CNN–LSTM." Energies 13, no. 8 (April 12, 2020): 1881. http://dx.doi.org/10.3390/en13081881.

Full text
Abstract:
Electricity consumption forecasting is a vital task for smart grid building regarding the supply and demand of electric power. Many pieces of research focused on the factors of weather, holidays, and temperatures for electricity forecasting that requires to collect those data by using kinds of sensors, which raises the cost of time and resources. Besides, most of the existing methods only focused on one or two types of forecasts, which cannot satisfy the actual needs of decision-making. This paper proposes a novel hybrid deep model for multiple forecasts by combining Convolutional Neural Networks (CNN) and Long-Short Term Memory (LSTM) algorithm without additional sensor data, and also considers the corresponding statistics. Different from the conventional stacked CNN–LSTM, in the proposed hybrid model, CNN and LSTM extracted features in parallel, which can obtain more robust features with less loss of original information. Chiefly, CNN extracts multi-scale robust features by various filters at three levels and wide convolution technology. LSTM extracts the features which think about the impact of different time-steps. The features extracted by CNN and LSTM are combined with six statistical components as comprehensive features. Therefore, comprehensive features are the fusion of multi-scale, multi-domain (time and statistic domain) and robust due to the utilization of wide convolution technology. We validate the effectiveness of the proposed method on three natural subsets associated with electricity consumption. The comparative study shows the state-of-the-art performance of the proposed hybrid deep model with good robustness for very short-term, short-term, medium-term, and long-term electricity consumption forecasting.
APA, Harvard, Vancouver, ISO, and other styles
46

Sun, Jie, Liping Di, Ziheng Sun, Yonglin Shen, and Zulong Lai. "County-Level Soybean Yield Prediction Using Deep CNN-LSTM Model." Sensors 19, no. 20 (October 9, 2019): 4363. http://dx.doi.org/10.3390/s19204363.

Full text
Abstract:
Yield prediction is of great significance for yield mapping, crop market planning, crop insurance, and harvest management. Remote sensing is becoming increasingly important in crop yield prediction. Based on remote sensing data, great progress has been made in this field by using machine learning, especially the Deep Learning (DL) method, including Convolutional Neural Network (CNN) or Long Short-Term Memory (LSTM). Recent experiments in this area suggested that CNN can explore more spatial features and LSTM has the ability to reveal phenological characteristics, which both play an important role in crop yield prediction. However, very few experiments combining these two models for crop yield prediction have been reported. In this paper, we propose a deep CNN-LSTM model for both end-of-season and in-season soybean yield prediction in CONUS at the county-level. The model was trained by crop growth variables and environment variables, which include weather data, MODIS Land Surface Temperature (LST) data, and MODIS Surface Reflectance (SR) data; historical soybean yield data were employed as labels. Based on the Google Earth Engine (GEE), all these training data were combined and transformed into histogram-based tensors for deep learning. The results of the experiment indicate that the prediction performance of the proposed CNN-LSTM model can outperform the pure CNN or LSTM model in both end-of-season and in-season. The proposed method shows great potential in improving the accuracy of yield prediction for other crops like corn, wheat, and potatoes at fine scales in the future.
APA, Harvard, Vancouver, ISO, and other styles
47

Fei, Rong, Quanzhu Yao, Yuanbo Zhu, Qingzheng Xu, Aimin Li, Haozheng Wu, and Bo Hu. "Deep Learning Structure for Cross-Domain Sentiment Classification Based on Improved Cross Entropy and Weight." Scientific Programming 2020 (June 29, 2020): 1–20. http://dx.doi.org/10.1155/2020/3810261.

Full text
Abstract:
Within the sentiment classification field, the convolutional neural network (CNN) and long short-term memory (LSTM) are praised for their classification and prediction performance, but their accuracy, loss rate, and time are not ideal. To this purpose, a deep learning structure combining the improved cross entropy and weight for word is proposed for solving cross-domain sentiment classification, which focuses on achieving better text sentiment classification by optimizing and improving recurrent neural network (RNN) and CNN. Firstly, we use the idea of hinge loss function (hinge loss) and the triplet loss function (triplet loss) to improve the cross entropy loss. The improved cross entropy loss function is combined with the CNN model and LSTM network which are tested in the two classification problems. Then, the LSTM binary-optimize (LSTM-BO) model and CNN binary-optimize (CNN-BO) model are proposed, which are more effective in fitting the predicted errors and preventing overfitting. Finally, considering the characteristics of the processing text of the recurrent neural network, the influence of input words for the final classification is analysed, which can obtain the importance of each word to the classification results. The experiment results show that within the same time, the proposed weight-recurrent neural network (W-RNN) model gives higher weight to words with stronger emotional tendency to reduce the loss of emotional information, which improves the accuracy of classification.
APA, Harvard, Vancouver, ISO, and other styles
48

Ranjan, Navin, Sovit Bhandari, Hong Ping Zhao, Hoon Kim, and Pervez Khan. "City-Wide Traffic Congestion Prediction Based on CNN, LSTM and Transpose CNN." IEEE Access 8 (2020): 81606–20. http://dx.doi.org/10.1109/access.2020.2991462.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Yan, Rui, Jiaqiang Liao, Jie Yang, Wei Sun, Mingyue Nong, and Feipeng Li. "Multi-hour and multi-site air quality index forecasting in Beijing using CNN, LSTM, CNN-LSTM, and spatiotemporal clustering." Expert Systems with Applications 169 (May 2021): 114513. http://dx.doi.org/10.1016/j.eswa.2020.114513.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Wang, Na, Yunxia Liu, Liang Ma, Yang Yang, and Hongjun Wang. "Multidimensional CNN-LSTM Network for Automatic Modulation Classification." Electronics 10, no. 14 (July 11, 2021): 1649. http://dx.doi.org/10.3390/electronics10141649.

Full text
Abstract:
Automatic modulation classification (AMC) is the premise for signal detection and demodulation applications, especially in non-cooperative communication scenarios. It has been a popular topic for decades and has gained significant progress with the development of deep learning methods. To further improve classification accuracy, a hierarchical multifeature fusion (HMF) based on a multidimensional convolutional neural network (CNN)-long short-term memory (LSTM) network is proposed in this paper. First, a multidimensional CNN module (MD-CNN) is proposed for feature compensation between interactive features extracted by two-dimensional convolutional filters and respective features extracted by one-dimensional filters. Second, learnt features of the MD-CNN module are fed into an LSTM layer for further exploitation of temporal features. Finally, classification results are obtained by the Softmax classifier. The effectiveness of the proposed method is verified by abundant experimental results on two public datasets, RadioML.2016.10a and RadioML.2016.10b. Satisfying results are obtained as compared with state-of-the-art methods.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography