Journal articles on the topic 'LSTM-CNN'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'LSTM-CNN.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zhou, Xiu, Xutao Wu, Pei Ding, Xiuguang Li, Ninghui He, Guozhi Zhang, and Xiaoxing Zhang. "Research on Transformer Partial Discharge UHF Pattern Recognition Based on Cnn-lstm." Energies 13, no. 1 (December 20, 2019): 61. http://dx.doi.org/10.3390/en13010061.
Full textLu, Wenxing, Haidong Rui, Changyong Liang, Li Jiang, Shuping Zhao, and Keqing Li. "A Method Based on GA-CNN-LSTM for Daily Tourist Flow Prediction at Scenic Spots." Entropy 22, no. 3 (February 25, 2020): 261. http://dx.doi.org/10.3390/e22030261.
Full textHermanto, Dedi Tri, Arief Setyanto, and Emha Taufiq Luthfi. "Algoritma LSTM-CNN untuk Binary Klasifikasi dengan Word2vec pada Media Online." Creative Information Technology Journal 8, no. 1 (March 31, 2021): 64. http://dx.doi.org/10.24076/citec.2021v8i1.264.
Full textXiong, Ying, Xue Shi, Shuai Chen, Dehuan Jiang, Buzhou Tang, Xiaolong Wang, Qingcai Chen, and Jun Yan. "Cohort selection for clinical trials using hierarchical neural network." Journal of the American Medical Informatics Association 26, no. 11 (July 15, 2019): 1203–8. http://dx.doi.org/10.1093/jamia/ocz099.
Full textKurniawan, Antonius Angga, and Metty Mustikasari. "Implementasi Deep Learning Menggunakan Metode CNN dan LSTM untuk Menentukan Berita Palsu dalam Bahasa Indonesia." Jurnal Informatika Universitas Pamulang 5, no. 4 (December 31, 2021): 544. http://dx.doi.org/10.32493/informatika.v5i4.6760.
Full textShao, Bilin, Xiaoli Hu, Genqing Bian, and Yu Zhao. "A Multichannel LSTM-CNN Method for Fault Diagnosis of Chemical Process." Mathematical Problems in Engineering 2019 (December 5, 2019): 1–14. http://dx.doi.org/10.1155/2019/1032480.
Full textFu, Lei, Qizhi Tang, Peng Gao, Jingzhou Xin, and Jianting Zhou. "Damage Identification of Long-Span Bridges Using the Hybrid of Convolutional Neural Network and Long Short-Term Memory Network." Algorithms 14, no. 6 (June 8, 2021): 180. http://dx.doi.org/10.3390/a14060180.
Full textNan, Yashi, Nigel H. Lovell, Stephen J. Redmond, Kejia Wang, Kim Delbaere, and Kimberley S. van Schooten. "Deep Learning for Activity Recognition in Older People Using a Pocket-Worn Smartphone." Sensors 20, no. 24 (December 15, 2020): 7195. http://dx.doi.org/10.3390/s20247195.
Full textGeng, Yue, Lingling Su, Yunhong Jia, and Ce Han. "Seismic Events Prediction Using Deep Temporal Convolution Networks." Journal of Electrical and Computer Engineering 2019 (April 2, 2019): 1–14. http://dx.doi.org/10.1155/2019/7343784.
Full textBilgera, Christian, Akifumi Yamamoto, Maki Sawano, Haruka Matsukura, and Hiroshi Ishida. "Application of Convolutional Long Short-Term Memory Neural Networks to Signals Collected from a Sensor Network for Autonomous Gas Source Localization in Outdoor Environments." Sensors 18, no. 12 (December 18, 2018): 4484. http://dx.doi.org/10.3390/s18124484.
Full textHe, Wei, Jufeng Li, Zhihe Tang, Beng Wu, Hui Luan, Chong Chen, and Huaqing Liang. "A Novel Hybrid CNN-LSTM Scheme for Nitrogen Oxide Emission Prediction in FCC Unit." Mathematical Problems in Engineering 2020 (August 17, 2020): 1–12. http://dx.doi.org/10.1155/2020/8071810.
Full textWidiputra, Harya, Adele Mailangkay, and Elliana Gautama. "Prediksi Indeks BEI dengan Ensemble Convolutional Neural Network dan Long Short-Term Memory." Jurnal RESTI (Rekayasa Sistem dan Teknologi Informasi) 5, no. 3 (June 19, 2021): 456–65. http://dx.doi.org/10.29207/resti.v5i3.3111.
Full textBanda, Anish. "Image Captioning using CNN and LSTM." International Journal for Research in Applied Science and Engineering Technology 9, no. 8 (August 31, 2021): 2666–69. http://dx.doi.org/10.22214/ijraset.2021.37846.
Full textDu, Wenjun, Bo Sun, Jiating Kuai, Jiemin Xie, Jie Yu, and Tuo Sun. "Highway Travel Time Prediction of Segments Based on ANPR Data considering Traffic Diversion." Journal of Advanced Transportation 2021 (July 9, 2021): 1–16. http://dx.doi.org/10.1155/2021/9512501.
Full textGarcia, Carlos Iturrino, Francesco Grasso, Antonio Luchetta, Maria Cristina Piccirilli, Libero Paolucci, and Giacomo Talluri. "A Comparison of Power Quality Disturbance Detection and Classification Methods Using CNN, LSTM and CNN-LSTM." Applied Sciences 10, no. 19 (September 27, 2020): 6755. http://dx.doi.org/10.3390/app10196755.
Full textQi, Xianjun, Xiwei Zheng, and Qinghui Chen. "A short term load forecasting of integrated energy system based on CNN-LSTM." E3S Web of Conferences 185 (2020): 01032. http://dx.doi.org/10.1051/e3sconf/202018501032.
Full textZhen, Hao, Dongxiao Niu, Min Yu, Keke Wang, Yi Liang, and Xiaomin Xu. "A Hybrid Deep Learning Model and Comparison for Wind Power Forecasting Considering Temporal-Spatial Feature Extraction." Sustainability 12, no. 22 (November 15, 2020): 9490. http://dx.doi.org/10.3390/su12229490.
Full textLiu, Tianyuan, Jinsong Bao, Junliang Wang, and Yiming Zhang. "A Hybrid CNN–LSTM Algorithm for Online Defect Recognition of CO2 Welding." Sensors 18, no. 12 (December 10, 2018): 4369. http://dx.doi.org/10.3390/s18124369.
Full textIbrahim, Bibi, and Luis Rabelo. "A Deep Learning Approach for Peak Load Forecasting: A Case Study on Panama." Energies 14, no. 11 (May 24, 2021): 3039. http://dx.doi.org/10.3390/en14113039.
Full textMou, Hanlin, and Junsheng Yu. "CNN-LSTM Prediction Method for Blood Pressure Based on Pulse Wave." Electronics 10, no. 14 (July 13, 2021): 1664. http://dx.doi.org/10.3390/electronics10141664.
Full textZhang, Chen, Qingxu Li, and Xue Cheng. "Text Sentiment Classification Based on Feature Fusion." Revue d'Intelligence Artificielle 34, no. 4 (September 30, 2020): 515–20. http://dx.doi.org/10.18280/ria.340418.
Full textLu, Wenjie, Jiazheng Li, Yifan Li, Aijun Sun, and Jingyang Wang. "A CNN-LSTM-Based Model to Forecast Stock Prices." Complexity 2020 (November 23, 2020): 1–10. http://dx.doi.org/10.1155/2020/6622927.
Full textReddy, Dinesh, and Abhinav Karthik. "Forecasting Stock Price using LSTM-CNN Method." International Journal of Engineering and Advanced Technology 11, no. 1 (October 30, 2021): 1–8. http://dx.doi.org/10.35940/ijeat.a3117.1011121.
Full textChen, Zhixin, Xu Zhang, Zhiyuan Li, and Anchu Li. "Construction of the Open Oral Evaluation Model Based on the Neural Network." Scientific Programming 2021 (September 22, 2021): 1–11. http://dx.doi.org/10.1155/2021/3928246.
Full textPrasad, G. Shyam Chandra, and K. Adi Narayana Reddy. "Sentiment Analysis Using Multi-Channel CNN-LSTM Model." Journal of Advanced Research in Dynamical and Control Systems 11, no. 12-SPECIAL ISSUE (December 31, 2019): 489–94. http://dx.doi.org/10.5373/jardcs/v11sp12/20193243.
Full textXu, Lingfeng, Xiang Chen, Shuai Cao, Xu Zhang, and Xun Chen. "Feasibility Study of Advanced Neural Networks Applied to sEMG-Based Force Estimation." Sensors 18, no. 10 (September 25, 2018): 3226. http://dx.doi.org/10.3390/s18103226.
Full textWang, Changyuan, Ting Yan, and Hongbo Jia. "Spatial-Temporal Feature Representation Learning for Facial Fatigue Detection." International Journal of Pattern Recognition and Artificial Intelligence 32, no. 12 (August 27, 2018): 1856018. http://dx.doi.org/10.1142/s0218001418560189.
Full textHe, Yanfeng, Yali Liu, Shuai Shao, Xuhang Zhao, Guojun Liu, Xiangji Kong, and Lu Liu. "Application of CNN-LSTM in Gradual Changing Fault Diagnosis of Rod Pumping System." Mathematical Problems in Engineering 2019 (November 3, 2019): 1–9. http://dx.doi.org/10.1155/2019/4203821.
Full textJang, Beakcheol, Myeonghwi Kim, Gaspard Harerimana, Sang-ug Kang, and Jong Wook Kim. "Bi-LSTM Model to Increase Accuracy in Text Classification: Combining Word2vec CNN and Attention Mechanism." Applied Sciences 10, no. 17 (August 24, 2020): 5841. http://dx.doi.org/10.3390/app10175841.
Full textXia, Kun, Jianguang Huang, and Hanyu Wang. "LSTM-CNN Architecture for Human Activity Recognition." IEEE Access 8 (2020): 56855–66. http://dx.doi.org/10.1109/access.2020.2982225.
Full textNurdin, A., and N. U. Maulidevi. "5W1H Information Extraction with CNN-Bidirectional LSTM." Journal of Physics: Conference Series 978 (March 2018): 012078. http://dx.doi.org/10.1088/1742-6596/978/1/012078.
Full textGuo, Yanan, Xiaoqun Cao, Bainian Liu, and Kecheng Peng. "El Niño Index Prediction Using Deep Learning with Ensemble Empirical Mode Decomposition." Symmetry 12, no. 6 (June 1, 2020): 893. http://dx.doi.org/10.3390/sym12060893.
Full textHsu, Fu-Shun, Shang-Ran Huang, Chien-Wen Huang, Chao-Jung Huang, Yuan-Ren Cheng, Chun-Chieh Chen, Jack Hsiao, et al. "Benchmarking of eight recurrent neural network variants for breath phase and adventitious sound detection on a self-developed open-access lung sound database—HF_Lung_V1." PLOS ONE 16, no. 7 (July 1, 2021): e0254134. http://dx.doi.org/10.1371/journal.pone.0254134.
Full textGunasekaran, Hemalatha, K. Ramalakshmi, A. Rex Macedo Arokiaraj, S. Deepa Kanmani, Chandran Venkatesan, and C. Suresh Gnana Dhas. "Analysis of DNA Sequence Classification Using CNN and Hybrid Models." Computational and Mathematical Methods in Medicine 2021 (July 15, 2021): 1–12. http://dx.doi.org/10.1155/2021/1835056.
Full textBen Ismail, Mohamed Maher. "Insult detection using a partitional CNN-LSTM model." Computer Science and Information Technologies 1, no. 2 (July 1, 2020): 84–92. http://dx.doi.org/10.11591/csit.v1i2.p84-92.
Full textSun, Tuo, Chenwei Yang, Ke Han, Wanjing Ma, and Fan Zhang. "Bidirectional Spatial–Temporal Network for Traffic Prediction with Multisource Data." Transportation Research Record: Journal of the Transportation Research Board 2674, no. 8 (July 5, 2020): 78–89. http://dx.doi.org/10.1177/0361198120927393.
Full textImamverdiyev, Yadigar N., and Fargana J. Abdullayeva. "Condition Monitoring of Equipment in Oil Wells using Deep Learning." Advances in Data Science and Adaptive Analysis 12, no. 01 (January 2020): 2050001. http://dx.doi.org/10.1142/s2424922x20500011.
Full textSharma, Richa, Sudha Morwal, and Basant Agarwal. "Entity-Extraction Using Hybrid Deep-Learning Approach for Hindi text." International Journal of Cognitive Informatics and Natural Intelligence 15, no. 3 (July 2021): 1–11. http://dx.doi.org/10.4018/ijcini.20210701.oa1.
Full textLiu, Tingliang, Jing Yan, Yanxin Wang, Yifan Xu, and Yiming Zhao. "GIS Partial Discharge Pattern Recognition Based on a Novel Convolutional Neural Networks and Long Short-Term Memory." Entropy 23, no. 6 (June 18, 2021): 774. http://dx.doi.org/10.3390/e23060774.
Full textPunitha, K. "A Novel Mixed Wide and PSO-Bi-LSTM-CNN Model for the Effective Web Services Classification." Webology 17, no. 2 (December 21, 2020): 218–37. http://dx.doi.org/10.14704/web/v17i2/web17026.
Full textPark, Boogi, Sang hoon Bae, and Bokyung Jung. "Speed Prediction of Urban Freeway Using LSTM and CNN-LSTM Neural Network." Journal of The Korea Institute of Intelligent Transport Systems 20, no. 1 (February 28, 2021): 86–99. http://dx.doi.org/10.12815/kits.2021.20.1.86.
Full textWei, Jun, Fan Yang, Xiao-Chen Ren, and Silin Zou. "A Short-Term Prediction Model of PM2.5 Concentration Based on Deep Learning and Mode Decomposition Methods." Applied Sciences 11, no. 15 (July 27, 2021): 6915. http://dx.doi.org/10.3390/app11156915.
Full textYu, Dian, and Shouqian Sun. "A Systematic Exploration of Deep Neural Networks for EDA-Based Emotion Recognition." Information 11, no. 4 (April 15, 2020): 212. http://dx.doi.org/10.3390/info11040212.
Full textKumar, Naresh, Jatin Bindra, Rajat Sharma, and Deepali Gupta. "Air Pollution Prediction Using Recurrent Neural Network, Long Short-Term Memory and Hybrid of Convolutional Neural Network and Long Short-Term Memory Models." Journal of Computational and Theoretical Nanoscience 17, no. 9 (July 1, 2020): 4580–84. http://dx.doi.org/10.1166/jctn.2020.9283.
Full textShao, Xiaorui, Chang-Soo Kim, and Palash Sontakke. "Accurate Deep Model for Electricity Consumption Forecasting Using Multi-channel and Multi-Scale Feature Fusion CNN–LSTM." Energies 13, no. 8 (April 12, 2020): 1881. http://dx.doi.org/10.3390/en13081881.
Full textSun, Jie, Liping Di, Ziheng Sun, Yonglin Shen, and Zulong Lai. "County-Level Soybean Yield Prediction Using Deep CNN-LSTM Model." Sensors 19, no. 20 (October 9, 2019): 4363. http://dx.doi.org/10.3390/s19204363.
Full textFei, Rong, Quanzhu Yao, Yuanbo Zhu, Qingzheng Xu, Aimin Li, Haozheng Wu, and Bo Hu. "Deep Learning Structure for Cross-Domain Sentiment Classification Based on Improved Cross Entropy and Weight." Scientific Programming 2020 (June 29, 2020): 1–20. http://dx.doi.org/10.1155/2020/3810261.
Full textRanjan, Navin, Sovit Bhandari, Hong Ping Zhao, Hoon Kim, and Pervez Khan. "City-Wide Traffic Congestion Prediction Based on CNN, LSTM and Transpose CNN." IEEE Access 8 (2020): 81606–20. http://dx.doi.org/10.1109/access.2020.2991462.
Full textYan, Rui, Jiaqiang Liao, Jie Yang, Wei Sun, Mingyue Nong, and Feipeng Li. "Multi-hour and multi-site air quality index forecasting in Beijing using CNN, LSTM, CNN-LSTM, and spatiotemporal clustering." Expert Systems with Applications 169 (May 2021): 114513. http://dx.doi.org/10.1016/j.eswa.2020.114513.
Full textWang, Na, Yunxia Liu, Liang Ma, Yang Yang, and Hongjun Wang. "Multidimensional CNN-LSTM Network for Automatic Modulation Classification." Electronics 10, no. 14 (July 11, 2021): 1649. http://dx.doi.org/10.3390/electronics10141649.
Full text