To see the other types of publications on this topic, follow the link: LSTM (Long Short-Term Memory).

Dissertations / Theses on the topic 'LSTM (Long Short-Term Memory)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 dissertations / theses for your research on the topic 'LSTM (Long Short-Term Memory).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Singh, Akash. "Anomaly Detection for Temporal Data using Long Short-Term Memory (LSTM)." Thesis, KTH, Skolan för informations- och kommunikationsteknik (ICT), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-215723.

Full text
Abstract:
We explore the use of Long short-term memory (LSTM) for anomaly detection in temporal data. Due to the challenges in obtaining labeled anomaly datasets, an unsupervised approach is employed. We train recurrent neural networks (RNNs) with LSTM units to learn the normal time series patterns and predict future values. The resulting prediction errors are modeled to give anomaly scores. We investigate different ways of maintaining LSTM state, and the effect of using a fixed number of time steps on LSTM prediction and detection performance. LSTMs are also compared to feed-forward neural networks wit
APA, Harvard, Vancouver, ISO, and other styles
2

Shojaee, Ali B. S. "Bacteria Growth Modeling using Long-Short-Term-Memory Networks." University of Cincinnati / OhioLINK, 2021. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1617105038908441.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Valluru, Aravind-Deshikh. "Realization of LSTM Based Cognitive Radio Network." Thesis, University of North Texas, 2019. https://digital.library.unt.edu/ark:/67531/metadc1538697/.

Full text
Abstract:
This thesis presents the realization of an intelligent cognitive radio network that uses long short term memory (LSTM) neural network for sensing and predicting the spectrum activity at each instant of time. The simulation is done using Python and GNU Radio. The implementation is done using GNU Radio and Universal Software Radio Peripherals (USRP). Simulation results show that the confidence factor of opportunistic users not causing interference to licensed users of the spectrum is 98.75%. The implementation results demonstrate high reliability of the LSTM based cognitive radio network.
APA, Harvard, Vancouver, ISO, and other styles
4

Paschou, Michail. "ASIC implementation of LSTM neural network algorithm." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254290.

Full text
Abstract:
LSTM neural networks have been used for speech recognition, image recognition and other artificial intelligence applications for many years. Most applications perform the LSTM algorithm and the required calculations on cloud computers. Off-line solutions include the use of FPGAs and GPUs but the most promising solutions include ASIC accelerators designed for this purpose only. This report presents an ASIC design capable of performing the multiple iterations of the LSTM algorithm on a unidirectional and without peepholes neural network architecture. The proposed design provides arithmetic level
APA, Harvard, Vancouver, ISO, and other styles
5

Gustafsson, Anton, and Julian Sjödal. "Energy Predictions of Multiple Buildings using Bi-directional Long short-term Memory." Thesis, Högskolan i Halmstad, Akademin för informationsteknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-43552.

Full text
Abstract:
The process of energy consumption and monitoring of a buildingis time-consuming. Therefore, an feasible approach for using trans-fer learning is presented to decrease the necessary time to extract re-quired large dataset. The technique applies a bidirectional long shortterm memory recurrent neural network using sequence to sequenceprediction. The idea involves a training phase that extracts informa-tion and patterns of a building that is presented with a reasonablysized dataset. The validation phase uses a dataset that is not sufficientin size. This dataset was acquired through a related paper
APA, Harvard, Vancouver, ISO, and other styles
6

Corni, Gabriele. "A study on the applicability of Long Short-Term Memory networks to industrial OCR." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2018.

Find full text
Abstract:
This thesis summarises the research-oriented study of applicability of Long Short-Term Memory Recurrent Neural Networks (LSTMs) to industrial Optical Character Recognition (OCR) problems. Traditionally solved through Convolutional Neural Network-based approaches (CNNs), the reported work aims to detect the OCR aspects that could be improved by exploiting recurrent patterns among pixel intensities, and speed up the overall character detection process. Accuracy, speed and complexity act as the main key performance indicators. After studying the core Deep Learning foundations, the best train
APA, Harvard, Vancouver, ISO, and other styles
7

van, der Westhuizen Jos. "Biological applications, visualizations, and extensions of the long short-term memory network." Thesis, University of Cambridge, 2018. https://www.repository.cam.ac.uk/handle/1810/287476.

Full text
Abstract:
Sequences are ubiquitous in the domain of biology. One of the current best machine learning techniques for analysing sequences is the long short-term memory (LSTM) network. Owing to significant barriers to adoption in biology, focussed efforts are required to realize the use of LSTMs in practice. Thus, the aim of this work is to improve the state of LSTMs for biology, and we focus on biological tasks pertaining to physiological signals, peripheral neural signals, and molecules. This goal drives the three subplots in this thesis: biological applications, visualizations, and extensions. We start
APA, Harvard, Vancouver, ISO, and other styles
8

Nawaz, Sabeen. "Analysis of Transactional Data with Long Short-Term Memory Recurrent Neural Networks." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-281282.

Full text
Abstract:
An issue authorities and banks face is fraud related to payments and transactions where huge monetary losses occur to a party or where money laundering schemes are carried out. Previous work in the field of machine learning for fraud detection has addressed the issue as a supervised learning problem. In this thesis, we propose a model which can be used in a fraud detection system with transactions and payments that are unlabeled. The proposed modelis a Long Short-term Memory in an auto-encoder decoder network (LSTMAED)which is trained and tested on transformed data. The data is transformed by
APA, Harvard, Vancouver, ISO, and other styles
9

Verner, Alexander. "LSTM Networks for Detection and Classification of Anomalies in Raw Sensor Data." Diss., NSUWorks, 2019. https://nsuworks.nova.edu/gscis_etd/1074.

Full text
Abstract:
In order to ensure the validity of sensor data, it must be thoroughly analyzed for various types of anomalies. Traditional machine learning methods of anomaly detections in sensor data are based on domain-specific feature engineering. A typical approach is to use domain knowledge to analyze sensor data and manually create statistics-based features, which are then used to train the machine learning models to detect and classify the anomalies. Although this methodology is used in practice, it has a significant drawback due to the fact that feature extraction is usually labor intensive and requir
APA, Harvard, Vancouver, ISO, and other styles
10

Svanberg, John. "Anomaly detection for non-recurring traffic congestions using Long short-term memory networks (LSTMs)." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-234465.

Full text
Abstract:
In this master thesis, we implement a two-step anomaly detection mechanism for non-recurrent traffic congestions with data collected from public transport buses in Stockholm. We investigate the use of machine learning to model time series data with LSTMs and evaluate the results with a baseline prediction model. The anomaly detection algorithm embodies both collective and contextual expressivity, meaning it is capable of findingcollections of delayed buses and also takes the temporality of the data into account. Results show that the anomaly detection performance benefits from the lower predic
APA, Harvard, Vancouver, ISO, and other styles
11

Кит, М. О. "Математичні методи прогнозування забруднення повітря на основі нейронних мереж". Thesis, ХНУРЕ, 2021. https://openarchive.nure.ua/handle/document/16434.

Full text
Abstract:
The work contains a solution of the problem of predicting air pollution by neural networks. Also, with assistance of Python programming language and Ju-pyter Notebook development environment, a software product was created and comparative analysis of corresponding methods and the received test result was carried out.
APA, Harvard, Vancouver, ISO, and other styles
12

Hernandez, Villapol Jorge Luis. "Spectrum Analysis and Prediction Using Long Short Term Memory Neural Networks and Cognitive Radios." Thesis, University of North Texas, 2017. https://digital.library.unt.edu/ark:/67531/metadc1062877/.

Full text
Abstract:
One statement that we can make with absolute certainty in our current time is that wireless communication is now the standard and the de-facto type of communication. Cognitive radios are able to interpret the frequency spectrum and adapt. The aim of this work is to be able to predict whether a frequency channel is going to be busy or free in a specific time located in the future. To do this, the problem is modeled as a time series problem where each usage of a channel is treated as a sequence of busy and free slots in a fixed time frame. For this time series problem, the method being implement
APA, Harvard, Vancouver, ISO, and other styles
13

Racette, Olsén Michael. "Electrocardiographic deviation detection : Using long short-term memory recurrent neural networks to detect deviations within electrocardiographic records." Thesis, Linnéuniversitetet, Institutionen för datavetenskap (DV), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:lnu:diva-76411.

Full text
Abstract:
Artificial neural networks have been gaining attention in recent years due to theirimpressive ability to map out complex nonlinear relations within data. In this report,an attempt is made to use a Long short-term memory neural network for detectinganomalies within electrocardiographic records. The hypothesis is that if a neuralnetwork is trained on records of normal ECGs to predict future ECG sequences, it isexpected to have trouble predicting abnormalities not previously seen in the trainingdata. Three different LSTM model configurations were trained using records fromthe MIT-BIH Arrhythmia d
APA, Harvard, Vancouver, ISO, and other styles
14

Mealey, Thomas C. "Binary Recurrent Unit: Using FPGA Hardware to Accelerate Inference in Long Short-Term Memory Neural Networks." University of Dayton / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=dayton1524402925375566.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Pavai, Arumugam Thendramil. "SENSOR-BASED HUMAN ACTIVITY RECOGNITION USING BIDIRECTIONAL LSTM FOR CLOSELY RELATED ACTIVITIES." CSUSB ScholarWorks, 2018. https://scholarworks.lib.csusb.edu/etd/776.

Full text
Abstract:
Recognizing human activities using deep learning methods has significance in many fields such as sports, motion tracking, surveillance, healthcare and robotics. Inertial sensors comprising of accelerometers and gyroscopes are commonly used for sensor based HAR. In this study, a Bidirectional Long Short-Term Memory (BLSTM) approach is explored for human activity recognition and classification for closely related activities on a body worn inertial sensor data that is provided by the UTD-MHAD dataset. The BLSTM model of this study could achieve an overall accuracy of 98.05% for 15 different activ
APA, Harvard, Vancouver, ISO, and other styles
16

Ankaräng, Fredrik, and Fabian Waldner. "Evaluating Random Forest and a Long Short-Term Memory in Classifying a Given Sentence as a Question or Non-Question." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-262209.

Full text
Abstract:
Natural language processing and text classification are topics of much discussion among researchers of machine learning. Contributions in the form of new methods and models are presented on a yearly basis. However, less focus is aimed at comparing models, especially comparing models that are less complex to state-of-the-art models. This paper compares a Random Forest with a Long-Short Term Memory neural network for the task of classifying sentences as questions or non-questions, without considering punctuation. The models were trained and optimized on chat data from a Swedish insurance company
APA, Harvard, Vancouver, ISO, and other styles
17

Cerna, Ñahuis Selene Leya. "Comparative analysis of XGBoost, MLP and LSTM techniques for the problem of predicting fire brigade Iiterventions /." Ilha Solteira, 2019. http://hdl.handle.net/11449/190740.

Full text
Abstract:
Orientador: Anna Diva Plasencia Lotufo<br>Abstract: Many environmental, economic and societal factors are leading fire brigades to be increasingly solicited, and, as a result, they face an ever-increasing number of interventions, most of the time on constant resource. On the other hand, these interventions are directly related to human activity, which itself is predictable: swimming pool drownings occur in summer while road accidents due to ice storms occur in winter. One solution to improve the response of firefighters on constant resource is therefore to predict their workload, i.e., their n
APA, Harvard, Vancouver, ISO, and other styles
18

Stark, Love. "Outlier detection with ensembled LSTM auto-encoders on PCA transformed financial data." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-296161.

Full text
Abstract:
Financial institutions today generate a large amount of data, data that can contain interesting information to investigate to further the economic growth of said institution. There exists an interest in analyzing these points of information, especially if they are anomalous from the normal day-to-day work. However, to find these outliers is not an easy task and not possible to do manually due to the massive amounts of data being generated daily. Previous work to solve this has explored the usage of machine learning to find outliers in these financial datasets. Previous studies have shown that
APA, Harvard, Vancouver, ISO, and other styles
19

Larsson, Joel. "Optimizing text-independent speaker recognition using an LSTM neural network." Thesis, Mälardalens högskola, Akademin för innovation, design och teknik, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-26312.

Full text
Abstract:
In this paper a novel speaker recognition system is introduced. Automated speaker recognition has become increasingly popular to aid in crime investigations and authorization processes with the advances in computer science. Here, a recurrent neural network approach is used to learn to identify ten speakers within a set of 21 audio books. Audio signals are processed via spectral analysis into Mel Frequency Cepstral Coefficients that serve as speaker specific features, which are input to the neural network. The Long Short-Term Memory algorithm is examined for the first time within this area, wit
APA, Harvard, Vancouver, ISO, and other styles
20

Holm, Noah, and Emil Plynning. "Spatio-temporal prediction of residential burglaries using convolutional LSTM neural networks." Thesis, KTH, Geoinformatik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-229952.

Full text
Abstract:
The low amount solved residential burglary crimes calls for new and innovative methods in the prevention and investigation of the cases. There were 22 600 reported residential burglaries in Sweden 2017 but only four to five percent of these will ever be solved. There are many initiatives in both Sweden and abroad for decreasing the amount of occurring residential burglaries and one of the areas that are being tested is the use of prediction methods for more efficient preventive actions. This thesis is an investigation of a potential method of prediction by using neural networks to identify are
APA, Harvard, Vancouver, ISO, and other styles
21

Díaz, González Fernando. "Federated Learning for Time Series Forecasting Using LSTM Networks: Exploiting Similarities Through Clustering." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254665.

Full text
Abstract:
Federated learning poses a statistical challenge when training on highly heterogeneous sequence data. For example, time-series telecom data collected over long intervals regularly shows mixed fluctuations and patterns. These distinct distributions are an inconvenience when a node not only plans to contribute to the creation of the global model but also plans to apply it on its local dataset. In this scenario, adopting a one-fits-all approach might be inadequate, even when using state-of-the-art machine learning techniques for time series forecasting, such as Long Short-Term Memory (LSTM) netwo
APA, Harvard, Vancouver, ISO, and other styles
22

Fors, Johansson Christoffer. "Arrival Time Predictions for Buses using Recurrent Neural Networks." Thesis, Linköpings universitet, Artificiell intelligens och integrerade datorsystem, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-165133.

Full text
Abstract:
In this thesis, two different types of bus passengers are identified. These two types, namely current passengers and passengers-to-be have different needs in terms of arrival time predictions. A set of machine learning models based on recurrent neural networks and long short-term memory units were developed to meet these needs. Furthermore, bus data from the public transport in Östergötland county, Sweden, were collected and used for training new machine learning models. These new models are compared with the current prediction system that is used today to provide passengers with arrival time
APA, Harvard, Vancouver, ISO, and other styles
23

Forslund, John, and Jesper Fahlén. "Predicting customer purchase behavior within Telecom : How Artificial Intelligence can be collaborated into marketing efforts." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-279575.

Full text
Abstract:
This study aims to investigate the implementation of an AI model that predicts customer purchases, in the telecom industry. The thesis also outlines how such an AI model can assist decision-making in marketing strategies. It is concluded that designing the AI model by following a Recurrent Neural Network (RNN) architecture with a Long Short-Term Memory (LSTM) layer, allow for a successful implementation with satisfactory model performances. Stepwise instructions to construct such model is presented in the methodology section of the study. The RNN-LSTM model further serves as an assisting tool
APA, Harvard, Vancouver, ISO, and other styles
24

Capshaw, Riley. "Relation Classification using Semantically-Enhanced Syntactic Dependency Paths : Combining Semantic and Syntactic Dependencies for Relation Classification using Long Short-Term Memory Networks." Thesis, Linköpings universitet, Interaktiva och kognitiva system, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-153877.

Full text
Abstract:
Many approaches to solving tasks in the field of Natural Language Processing (NLP) use syntactic dependency trees (SDTs) as a feature to represent the latent nonlinear structure within sentences. Recently, work in parsing sentences to graph-based structures which encode semantic relationships between words—called semantic dependency graphs (SDGs)—has gained interest. This thesis seeks to explore the use of SDGs in place of and alongside SDTs within a relation classification system based on long short-term memory (LSTM) neural networks. Two methods for handling the information in these graphs a
APA, Harvard, Vancouver, ISO, and other styles
25

Andersson, Aron, and Shabnam Mirkhani. "Portfolio Performance Optimization Using Multivariate Time Series Volatilities Processed With Deep Layering LSTM Neurons and Markowitz." Thesis, KTH, Matematisk statistik, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-273617.

Full text
Abstract:
The stock market is a non-linear field, but many of the best-known portfolio optimization algorithms are based on linear models. In recent years, the rapid development of machine learning has produced flexible models capable of complex pattern recognition. In this paper, we propose two different methods of portfolio optimization; one based on the development of a multivariate time-dependent neural network,thelongshort-termmemory(LSTM),capable of finding lon gshort-term price trends. The other is the linear Markowitz model, where we add an exponential moving average to the input price data to c
APA, Harvard, Vancouver, ISO, and other styles
26

Chowdhury, Muhammad Iqbal Hasan. "Question-answering on image/video content." Thesis, Queensland University of Technology, 2020. https://eprints.qut.edu.au/205096/1/Muhammad%20Iqbal%20Hasan_Chowdhury_Thesis.pdf.

Full text
Abstract:
This thesis explores a computer's ability to understand multimodal data where the correspondence between image/video content and natural language text are utilised to answer open-ended natural language questions through question-answering tasks. Static image data consisting of both indoor and outdoor scenes, where complex textual questions are arbitrarily posed to a machine to generate correct answers, was examined. Dynamic videos consisting of both single-camera and multi-camera settings for the exploration of more challenging and unconstrained question-answering tasks were also considered. I
APA, Harvard, Vancouver, ISO, and other styles
27

Sibelius, Parmbäck Sebastian. "HMMs and LSTMs for On-line Gesture Recognition on the Stylaero Board : Evaluating and Comparing Two Methods." Thesis, Linköpings universitet, Artificiell intelligens och integrerade datorsystem, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-162237.

Full text
Abstract:
In this thesis, methods of implementing an online gesture recognition system for the novel Stylaero Board device are investigated. Two methods are evaluated - one based on LSTMs and one based on HMMs - on three kinds of gestures: Tap, circle, and flick motions. A method’s performance was measured in its accuracy in determining both whether any of the above listed gestures were performed and, if so, which gesture, in an online single-pass scenario. Insight was acquired regarding the technical challenges and possible solutions to the online aspect of the problem. Poor performance was, however, o
APA, Harvard, Vancouver, ISO, and other styles
28

Talár, Ondřej. "Redukce šumu audionahrávek pomocí hlubokých neuronových sítí." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2017. http://www.nusl.cz/ntk/nusl-317118.

Full text
Abstract:
The thesis focuses on the use of deep recurrent neural network, architecture Long Short-Term Memory for robust denoising of audio signal. LSTM is currently very attractive due to its characteristics to remember previous weights, or edit them not only according to the used algorithms, but also by examining changes in neighboring cells. The work describes the selection of the initial dataset and used noise along with the creation of optimal test data. For creation of the training network is selected KERAS framework for Python and are explored and discussed possible candidates for viable solution
APA, Harvard, Vancouver, ISO, and other styles
29

Jansson, Anton. "Predicting trajectories of golf balls using recurrent neural networks." Thesis, KTH, Skolan för datavetenskap och kommunikation (CSC), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-210552.

Full text
Abstract:
This thesis is concerned with the problem of predicting the remaining part of the trajectory of a golf ball as it travels through the air where only the three-dimensional position of the ball is captured. The approach taken to solve this problem relied on recurrent neural networks in the form of the long short-term memory networks (LSTM). The motivation behind this choice was that this type of networks had led to state-of-the-art performance for similar problems such as predicting the trajectory of pedestrians. The results show that using LSTMs led to an average reduction of 36.6 % of the erro
APA, Harvard, Vancouver, ISO, and other styles
30

Bonato, Tommaso. "Time Series Predictions With Recurrent Neural Networks." Bachelor's thesis, Alma Mater Studiorum - Università di Bologna, 2018.

Find full text
Abstract:
L'obiettivo principale di questa tesi è studiare come gli algoritmi di apprendimento automatico (machine learning in inglese) e in particolare le reti neurali LSTM (Long Short Term Memory) possano essere utilizzati per prevedere i valori futuri di una serie storica regolare come, per esempio, le funzioni seno e coseno. Una serie storica è definita come una sequenza di osservazioni s_t ordinate nel tempo. Inoltre cercheremo di applicare gli stessi principi per prevedere i valori di una serie storica prodotta utilizzando i dati di vendita di un prodotto cosmetico durante un periodo di tre anni.
APA, Harvard, Vancouver, ISO, and other styles
31

Norgren, Eric. "Pulse Repetition Interval Modulation Classification using Machine Learning." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-241152.

Full text
Abstract:
Radar signals are used for estimating location, speed and direction of an object. Some radars emit pulses, while others emit a continuous wave. Both types of radars emit signals according to some pattern; a pulse radar, for example, emits pulses with a specific time interval between pulses. This time interval may either be stable, change linearly, or follow some other pattern. The interval between two emitted pulses is often referred to as the pulse repetition interval (PRI), and the pattern that defines the PRI is often referred to as the modulation. Classifying which PRI modulation is used i
APA, Harvard, Vancouver, ISO, and other styles
32

Javid, Gelareh. "Contribution à l’estimation de charge et à la gestion optimisée d’une batterie Lithium-ion : application au véhicule électrique." Thesis, Mulhouse, 2021. https://www.learning-center.uha.fr/.

Full text
Abstract:
L'estimation de l'état de charge (SOC) est un point crucial pour la sécurité des performances et la durée de vie des batteries lithium-ion (Li-ion) utilisées pour alimenter les VE.Dans cette thèse, la précision de l'estimation de l'état de charge est étudiée à l'aide d'algorithmes de réseaux neuronaux récurrents profonds (DRNN). Pour ce faire, pour une cellule d’une batterie Li-ion, trois nouvelles méthodes sont proposées : une mémoire bidirectionnelle à long et court terme (BiLSTM), une mémoire robuste à long et court terme (RoLSTM) et une technique d'unités récurrentes à grille (GRU).En util
APA, Harvard, Vancouver, ISO, and other styles
33

Keisala, Simon. "Using a Character-Based Language Model for Caption Generation." Thesis, Linköpings universitet, Interaktiva och kognitiva system, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-163001.

Full text
Abstract:
Using AI to automatically describe images is a challenging task. The aim of this study has been to compare the use of character-based language models with one of the current state-of-the-art token-based language models, im2txt, to generate image captions, with focus on morphological correctness. Previous work has shown that character-based language models are able to outperform token-based language models in morphologically rich languages. Other studies show that simple multi-layered LSTM-blocks are able to learn to replicate the syntax of its training data. To study the usability of character
APA, Harvard, Vancouver, ISO, and other styles
34

Cifonelli, Antonio. "Probabilistic exponential smoothing for explainable AI in the supply chain domain." Electronic Thesis or Diss., Normandie, 2023. http://www.theses.fr/2023NORMIR41.

Full text
Abstract:
Le rôle clé que l’IA pourrait jouer dans l’amélioration des activités commerciales est connu depuis longtemps, mais le processus de pénétration de cette nouvelle technologie a rencontré certains freins au sein des entreprises, en particulier, les coûts de mise œuvre. En moyenne, 2.8 ans sont nécessaires depuis la sélection du fournisseur jusqu’au déploiement complet d’une nouvelle solution. Trois points fondamentaux doivent être pris en compte lors du développement d’un nouveau modèle. Le désalignement des attentes, le besoin de compréhension et d’explications et les problèmes de performance e
APA, Harvard, Vancouver, ISO, and other styles
35

Zhang, Jiahui. "Bi-Objective Dispatch of Multi-Energy Virtual Power Plant: Deep-Learning based Prediction and Particle Swarm Optimization." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2019.

Find full text
Abstract:
This paper addresses the coordinative operation problem of multi-energy virtual power plant (ME-VPP) in the context of energy internet. A bi-objective dispatch model is established to optimize the performance of ME-VPP on both economic cost(EC) and power quality (PQ).Various realistic factors are considered, which include environmental governance, transmission ratings, output limits, etc. Long short-term memory (LSTM), a deep learning method, is applied to the promotion of the accuracy of wind prediction. An improved multi-objective particle swarm optimization (MOPSO) is utilized as the solvin
APA, Harvard, Vancouver, ISO, and other styles
36

Ridhagen, Markus, and Petter Lind. "A comparative study of Neural Network Forecasting models on the M4 competition data." Thesis, Uppsala universitet, Statistiska institutionen, 2021. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-445568.

Full text
Abstract:
The development of machine learning research has provided statistical innovations and further developments within the field of time series analysis. This study seeks to investigate two different approaches on artificial neural network models based on different learning techniques, and answering how well the neural network approach compares with a basic autoregressive approach, as well as how the artificial neural network models compare to each other. The models were compared and analyzed in regards to the univariate forecast accuracy on 20 randomly drawn time series from two different time fre
APA, Harvard, Vancouver, ISO, and other styles
37

Mohammadisohrabi, Ali. "Design and implementation of a Recurrent Neural Network for Remaining Useful Life prediction." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020.

Find full text
Abstract:
A key idea underlying many Predictive Maintenance solutions is Remaining Useful Life (RUL) of machine parts, and it simply involves a prediction on the time remaining before a machine part is likely to require repair or replacement. Nowadays, with respect to fact that the systems are getting more complex, the innovative Machine Learning and Deep Learning algorithms can be deployed to study the more sophisticated correlations in complex systems. The exponential increase in both data accumulation and processing power make the Deep Learning algorithms more desirable that before. In this paper a L
APA, Harvard, Vancouver, ISO, and other styles
38

Sasse, Jonathan Patrick. "Distinguishing Behavior from Highly Variable Neural Recordings Using Machine Learning." Case Western Reserve University School of Graduate Studies / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=case1522755406249275.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Dobiš, Lukáš. "Detekce osob a hodnocení jejich pohlaví a věku v obrazových datech." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2020. http://www.nusl.cz/ntk/nusl-413019.

Full text
Abstract:
Táto diplomová práca sa venuje automatickému rozpoznávaniu ludí v obrazových dátach s využitím konvolučných neurónových sieti na určenie polohy tváre a následnej analýze získaných dát. Výsledkom analýzy tváre je určenie pohlavia, emócie a veku osoby. Práca obsahuje popis použitých architektúr konvolučných sietí pre každú podúlohu. Sieť na odhad veku má natrénované nové váhy, ktoré sú vzápätí zmrazené a majú do svojej architektúry vložené LSTM vrstvy. Tieto vrstvy sú samostatne dotrénované a testované na novom datasete vytvorenom pre tento účel. Výsledky testov ukazujú zlepšenie predikcie veku.
APA, Harvard, Vancouver, ISO, and other styles
40

Dametto, Ronaldo César. "Estudo da aplicação de redes neurais artificiais para predição de séries temporais financeiras." Universidade Estadual Paulista (UNESP), 2018. http://hdl.handle.net/11449/157058.

Full text
Abstract:
Submitted by Ronaldo Cesar Dametto (rdametto@uol.com.br) on 2018-09-18T19:17:34Z No. of bitstreams: 1 Dissertação_Completa_Final.pdf: 2885777 bytes, checksum: 05b2d5417efbec72f927cf8a62eef3fb (MD5)<br>Approved for entry into archive by Lucilene Cordeiro da Silva Messias null (lubiblio@bauru.unesp.br) on 2018-09-20T12:19:07Z (GMT) No. of bitstreams: 1 dametto_rc_me_bauru.pdf: 2877027 bytes, checksum: cee33d724090a01372e1292109af2ce9 (MD5)<br>Made available in DSpace on 2018-09-20T12:19:07Z (GMT). No. of bitstreams: 1 dametto_rc_me_bauru.pdf: 2877027 bytes, checksum: cee33d724090a01372e12921
APA, Harvard, Vancouver, ISO, and other styles
41

Gers, Félix. "Long short-term memory in recurrent neural networks /." [S.l.] : [s.n.], 2001. http://library.epfl.ch/theses/?nr=2366.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Li, Yuntao. "Federated Learning for Time Series Forecasting Using Hybrid Model." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-254677.

Full text
Abstract:
Time Series data has become ubiquitous thanks to affordable edge devices and sensors. Much of this data is valuable for decision making. In order to use these data for the forecasting task, the conventional centralized approach has shown deficiencies regarding large data communication and data privacy issues. Furthermore, Neural Network models cannot make use of the extra information from the time series, thus they usually fail to provide time series specific results. Both issues expose a challenge to large-scale Time Series Forecasting with Neural Network models. All these limitations lead to
APA, Harvard, Vancouver, ISO, and other styles
43

Cumming, N. "The Hebb effect : investigating long-term learning from short-term memory." Thesis, University of Cambridge, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.598214.

Full text
Abstract:
How do we learn a sequence of items so we can remember it not only over the short-term, as in hearing a phone-number and repeating it back, but over the long term? Ten experiments are presented that investigate this problem using the Hebb repetition effect (Hebb, 1961). In a canonical Hebb effect experiment, lists of familiar items are presented in an immediate serial recall task and one list is repeatedly presented at regular intervals. This leads to an improvement in recall for the repeating list over baseline performance. Existing models of serial order learning are tested; Chapter 2 provid
APA, Harvard, Vancouver, ISO, and other styles
44

Gattoni, Giacomo. "Improving the reliability of recurrent neural networks while dealing with bad data." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2021.

Find full text
Abstract:
In practical applications, machine learning and deep learning models can have difficulty in achieving generalization, especially when dealing with training samples that are either noisy or limited in quantity. Standard neural networks do not guarantee the monotonicity of the input features with respect to the output, therefore they lack interpretability and predictability when it is known a priori that the input-output relationship should be monotonic. This problem can be encountered in the CPG industry, where it is not possible to ensure that a deep learning model will learn the increasing
APA, Harvard, Vancouver, ISO, and other styles
45

Simner, Julia Claire. "Engaging long and short term memory during anaphor comprehension." Thesis, University of Sussex, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.368489.

Full text
Abstract:
This research investigates how memory representations are activated and associated when making inferences in language, and in particular during the comprehension of anaphors (Le. co-referring expressions). Experiments 1 to 6 investigate 'do it' comprehension (e.g. John bought a newspaper. He did it while the others were out). Experiments 1 and 2 (offline sentence-completion tasks) show that 'do it' processing is sensitive to both NPs (a newspaper) and VPs (bought a newspaper) in the preceding context, and to specific lexical properties of the preceding NPs. With similar tasks, Experiments 3 an
APA, Harvard, Vancouver, ISO, and other styles
46

Yang, Tianshu. "Electric Load Forecasting Using Long Short-term Memory Algorithm." VCU Scholars Compass, 2019. https://scholarscompass.vcu.edu/etd/6027.

Full text
Abstract:
Abstract Power system load forecasting refers to the study or uses a mathematical method to process past and future loads systematically, taking into account important system operating characteristics, capacity expansion decisions, natural conditions, and social impacts, to meet specific accuracy requirements. Dependence of this, determine the load value at a specific moment in the future. Improving the level of load forecasting technology is conducive to the planned power management, which is conducive to rationally arranging the grid operation mode and unit maintenance plan, and is conducive
APA, Harvard, Vancouver, ISO, and other styles
47

Wood, Noelle L. "Memory for recent words : a matter of short-term memory storage or long-term distinctiveness? /." free to MU campus, to others for purchase, 1996. http://wwwlib.umi.com/cr/mo/fullcit?p9737848.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Bailey, Tony J. "Neuromorphic Architecture with Heterogeneously Integrated Short-Term and Long-Term Learning Paradigms." University of Cincinnati / OhioLINK, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1554217105047975.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Yangyang, Wen. "Sensor numerical prediction based on long-term and short-term memory neural network." Thesis, Mittuniversitetet, Institutionen för informationssystem och –teknologi, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:miun:diva-39165.

Full text
Abstract:
Many sensor nodes are scattered in the sensor network,which are used in all aspects of life due to their small size, low power consumption, and multiple functions. With the advent of the Internet of Things, more small sensor devices will appear in our lives. The research of deep learning neural networks is generally based on large and medium-sized devices such as servers and computers, and it is rarely heard about the research of neural networks based on small Internet of Things devices. In this study, the Internet of Things devices are divided into three types: large, medium, and small in ter
APA, Harvard, Vancouver, ISO, and other styles
50

Butterfield, Michael. "The effects of ethanol on short-term and long-term memory in Caenorhabditis elegans." Thesis, University of British Columbia, 2007. http://hdl.handle.net/2429/31550.

Full text
Abstract:
In this thesis I have used the model organism Caenorhabditis elegans to investigate the effects of ethanol exposure on learning and memory. In the first part of this thesis I identified how ethanol affects the formation of long-term memory for habituation training. I administered ethanol during long-term memory training and found that high doses of ethanol significantly impair the formation of long-term memory. Next, I examined if ethanol was having an effect on the kinetics of short-term habituation and I found that ethanol exposure significantly altered the rate of habituation when stimuli w
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!