Contents
Academic literature on the topic 'Lucene.net'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lucene.net.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lucene.net"
Imam Farisi, Mukhaimy Gazali, and Rudy Anshari. "SQLite Sebagai Pengganti Lucene.Net pada Pencarian Produk Toko Online." Jurnal CoSciTech (Computer Science and Information Technology) 1, no. 2 (October 31, 2020): 36–43. http://dx.doi.org/10.37859/coscitech.v1i2.2204.
Full textPurwanto, Devi Dwi. "SINONIM DAN WORD SENSE DISAMBIGUATION UNTUK MELENGKAPI DETEKTOR PLAGIAT DOKUMEN TUGAS AKHIR." Jurnal Sistem Informasi 11, no. 1 (April 27, 2015). http://dx.doi.org/10.21609/jsi.v11i1.412.
Full textDissertations / Theses on the topic "Lucene.net"
Pettersson, Fredrik, and Niklas Pettersson. "Implementing an enterprise search platform using Lucene.NET." Thesis, Linköpings universitet, Interaktiva och kognitiva system, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-88717.
Full textReimers, Axel, and Isak Gustafsson. "Indexing and Search Algorithmsfor Web shops :." Thesis, KTH, Data- och elektroteknik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-193373.
Full textWebbutiker idag behöver vara mer och mer responsiva, en del av denna responsivitet ärsnabb produkt sökningar. Ett sätt att skaffa snabbare sökningar är genom att söka mot ettindex istället för att söka direkt mot en databas. Network Expertise Sweden AB vill utforska olika metoder för att implementera ett index ideras framtida webbutik, byggt ovanpå SmartStore.NET som är öppen käll-kod. Då Smart-Store.NET gör alla av sina sökningar direkt mot sin databas, kommer den inte att skala braoch kommer slita mer på databasen. Målsättningen var därför att hitta olika lösningar somavlastar databasen genom att använda ett index istället. En prototyp som hämtade produkter från en databas och gjorde dom sökbara genom ettindex var utvecklad, utvärderad och implementerad. Prototypen indexerade datan med eninverterad indexerings algoritm, och gjordes sökbara med en sök algoritm som blandar booleskafrågor med normala frågor.
Dong, Zheng. "Automated Extraction and Retrieval of Metadata by Data Mining : a Case Study of Mining Engine for National Land Survey Sweden." Thesis, University of Gävle, Department of Technology and Built Environment, 2010. http://urn.kb.se/resolve?urn=urn:nbn:se:hig:diva-6811.
Full textMetadata is the important information describing geographical data resources and their key elements. It is used to guarantee the availability and accessibility of the data. ISO 19115 is a metadata standard for geographical information, making the geographical metadata shareable, retrievable, and understandable at the global level. In order to cope with the massive, high-dimensional and high-diversity nature of geographical data, data mining is an applicable method to discover the metadata.
This thesis develops and evaluates an automated mining method for extracting metadata from the data environment on the Local Area Network at the National Land Survey of Sweden (NLS). These metadata are prepared and provided across Europe according to the metadata implementing rules for the Infrastructure for Spatial Information in Europe (INSPIRE). The metadata elements are defined according to the numerical formats of four different data entities: document data, time-series data, webpage data, and spatial data. For evaluating the method for further improvement, a few attributes and corresponding metadata of geographical data files are extracted automatically as metadata record in testing, and arranged in database. Based on the extracted metadata schema, a retrieving functionality is used to find the file containing the keyword of metadata user input. In general, the average success rate of metadata extraction and retrieval is 90.0%.
The mining engine is developed in C# programming language on top of the database using SQL Server 2005. Lucene.net is also integrated with Visual Studio 2005 to build an indexing framework for extracting and accessing metadata in database.