Academic literature on the topic 'Lumbar lordosis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lumbar lordosis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lumbar lordosis"
Uribe, Juan S., Donald A. Smith, Elias Dakwar, Ali A. Baaj, Gregory M. Mundis, Alexander W. L. Turner, G. Bryan Cornwall, and Behrooz A. Akbarnia. "Lordosis restoration after anterior longitudinal ligament release and placement of lateral hyperlordotic interbody cages during the minimally invasive lateral transpsoas approach: a radiographic study in cadavers." Journal of Neurosurgery: Spine 17, no. 5 (November 2012): 476–85. http://dx.doi.org/10.3171/2012.8.spine111121.
Full textLee, Ji-Ho, Dong-Oh Lee, Jae Hyup Lee, and Hee Jong Shim. "Effects of Lordotic Angle of a Cage on Sagittal Alignment and Clinical Outcome in One Level Posterior Lumbar Interbody Fusion with Pedicle Screw Fixation." BioMed Research International 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/523728.
Full textBeen, Ella, and Leonid Kalichman. "Lumbar lordosis." Spine Journal 14, no. 1 (January 2014): 87–97. http://dx.doi.org/10.1016/j.spinee.2013.07.464.
Full textLord, Michael J., John M. Small, Jocylane M. Dinsay, and Robert G. Watkins. "Lumbar Lordosis." Spine 22, no. 21 (November 1997): 2571–74. http://dx.doi.org/10.1097/00007632-199711010-00020.
Full textDimitrijević, Vanja, Tijana Šćepanović, Vukadin Milankov, Miroslav Milankov, and Patrik Drid. "Effects of Corrective Exercises on Lumbar Lordotic Angle Correction: A Systematic Review and Meta-Analysis." International Journal of Environmental Research and Public Health 19, no. 8 (April 18, 2022): 4906. http://dx.doi.org/10.3390/ijerph19084906.
Full textSparrey, Carolyn J., Jeannie F. Bailey, Michael Safaee, Aaron J. Clark, Virginie Lafage, Frank Schwab, Justin S. Smith, and Christopher P. Ames. "Etiology of lumbar lordosis and its pathophysiology: a review of the evolution of lumbar lordosis, and the mechanics and biology of lumbar degeneration." Neurosurgical Focus 36, no. 5 (May 2014): E1. http://dx.doi.org/10.3171/2014.1.focus13551.
Full textOikonomidis, Stavros, Vincent Heck, Sonja Bantle, Max Joseph Scheyerer, Christoph Hofstetter, Stefan Budde, Peer Eysel, and Jan Bredow. "Impact of lordotic cages in the restoration of spinopelvic parameters after dorsal lumbar interbody fusion: a retrospective case control study." International Orthopaedics 44, no. 12 (July 13, 2020): 2665–72. http://dx.doi.org/10.1007/s00264-020-04719-2.
Full textIssa, Tariq Ziad, Yunsoo Lee, Mark J. Lambrechts, Khoa S. Tran, Delano Trenchfield, Sydney Baker, Sebastian Fras, et al. "The impact of cage positioning on lumbar lordosis and disc space restoration following minimally invasive lateral lumbar interbody fusion." Neurosurgical Focus 54, no. 1 (January 2023): E7. http://dx.doi.org/10.3171/2022.10.focus22607.
Full textAmbegaonkar, Jatin P., Amanda M. Caswell, Kristen L. Kenworthy, Nelson Cortes, and Shane V. Caswell. "Lumbar Lordosis in Female Collegiate Dancers and Gymnasts." Medical Problems of Performing Artists 29, no. 4 (December 1, 2014): 189–92. http://dx.doi.org/10.21091/mppa.2014.4039.
Full textChernukha, Konstantin V., Richard H. Daffner, and Donald H. Reigel. "Lumbar Lordosis Measurement." Spine 23, no. 1 (January 1998): 74–79. http://dx.doi.org/10.1097/00007632-199801010-00016.
Full textDissertations / Theses on the topic "Lumbar lordosis"
Fox, Maria. "Neandertal Lumbopelvic Anatomy and the Biomechanical Effects of a Reduced Lumbar Lordosis." University of Cincinnati / OhioLINK, 2013. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1378109007.
Full textDamasceno, Luiz Henrique Fonseca. "Avaliação da participação dos corpos vertebrais e discos intervertebrais na composição da lordose lombar." Universidade de São Paulo, 2006. http://www.teses.usp.br/teses/disponiveis/17/17142/tde-16032007-190229/.
Full textThe vertebral bodies and intervertebral discs participation in lumbar lordosis and their contribution between lumbar curves of different size were studied. 350 lumbar spine radiographs of asymptomatic adults (143 men and 207 women, average age 29 years) were evaluated. Lumbosacral (L1S1) and lumbolumbar (L1L5) curves and the angular inclination of each vertebral boby and intervertebral disc were measured using a Cobb method variant. The percentile participation of each vertebral body and intervertebral disc in the lumbossacal curve was calculated. Sex and age were compared. The subjects were separated in tree subgroups, in acording to lumbosacral curve size. The compounds of lumbar curve (discs and vertebrae) were compared in these tree subgroups. The mean lumbosacral curve was ?60,9º (-33º to ?89º). L1 vertebral body was kyphotic (2,15º), L2 was neutral (-0,36º), and the other ones were progressively lordotic from L3 (-1,56º) to L5 (-9,23º). The intervertebral discs were progressively lordotic from L1-L2 (?4,99º) to L5-S1 (?15,58º). Both vertebrae and discs showed a progressive participation in cephalic-caudal direction. The participation of discs was about 80% of lumbosacral curve, and the caudal elements (L4, L5 vertebrae and L4-L5, L5-S1 discs) contributed far 65% of the curve. The older subjects presented lumbar curves larger than younger 4º average, with significant statistical difference to L2, L5 and L3-L4 measures, with older subjects presenting bigger angular values. There were statistical differences of lumbar curves, L2 and L4 measures between sexes, with females presenting bigger values. The lumbosacral curve presented average -46,9º in minor lordosis subgroup, -64,59º in intermediate lordosis sugbroup, and ?74,13º in major lordosis subgroup. The lumbolumbar curve presented average ?33,28º in minor lordosis subgroup, -45,34º in intermediate lordosis subgroup, and ?56,96º in major lordosis subgroup. The absolut values of vertebrae and discs angles were smaller in minor lordosis subgroup than in major lordosis subgroup, but the intervertebral discs participation of was bigger in minor lordosis subgroup (88%) than intermediate lordosis (81%) and major lordosis (75%) subgroups. Complementarely, the vertebrae had a bigger participation in intermediate and major lordosis subgroups. Individually, the vertebrae presented a larger participation in major lordosis subgroup, excepting L5 that presented bigger participation in minor lordosis subgroup. The discs presented larger participation in minor lordosis subgroup. That is consequence of a more kyphotic inclination of the cephalic vertebrae in minor lordosis subgroup than the other ones, causing a compensating effect, with a larger disc participation in the small curves. The intermediate and major lordosis subgroups had the cephalic vertebrae more lordotic than that of the minor lordosis subgroup. We concluded that the intervertebral discs are the main responsible for the lumbar curve angulation and that the contribution of vertebrae and discs in lumbar curves of different sizes is not equal. In spite of a gradual increase of lordotic wedging while lumbar curve increase, the cephalic vertebrae make the disc and vertebrae participation different between different magnitude lumbar curves.
Smith, April K. "Aging of the Lumbar Vertebrae Using Known Age and Sex Samples." Digital Archive @ GSU, 2010. http://digitalarchive.gsu.edu/anthro_theses/45.
Full textSilva, Fabiana Cristina da. "Avaliação de um programa computacional para a medida da lordose lombar." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2005. http://hdl.handle.net/10183/5494.
Full textAim: Antropometric approaches to estimate postural alignment are important to permit epidemiologic investigations of the role of posture in the development of lumbar back pain.The aim of this study was evaluate the accuracy and reliability of the Digitalizing Posture Evaluation System (DPES) in the measurement of lumbar lordosis compared with radiographic measurement (gold standard). Design: cross-sectional study. Participants: Accuracy study Groups markers of (T12,L3,L5) and markers of (L1,L3,L5) were composed of 16 and 17 patients repectively. The intra and interobserver reliability group was composed of 80 patients. Principal measures: Skin markers were placed on spinous processes of T12 or L1,L3 and L5. Lateral radiographs and photographs were taken in the upright position. Radiographic measurement using Cobb, Centroid (CLL) and Spinous Process methods was compared with DPES. Results: Group 1: Correlation coefficient between DPES and Cobb was 0,803 (p<0,001); between DPES and CLL 0,642 (p<0,001); between DPES and SP 0,917 (p < 0,001) with r² = 0,842. Group 2: correlation coefficient was 0,559 (p=0,020) between SP and Cobb; 0,325 (p=0,302) between SP and CLL; and 0,763 between SP and DPES.The reliability coefficients were 0,981 (p<0,001) for interobserver and 0,978 (p<0,001) for intraobserver measurement of the same photographs. Comparing diferent photographs, the reliability was 0,956 (p<0,001) for interobserver and 0,872 (p< 0,001) for intraobserver evaluations. Conclusion: The DPES method correlated well with radiographic measurement of lumbar lordosis.
Nallar, Marín Lucía Nicole. "Aporte del Método Pilates suelo clásico en la estabilización del centro del cuerpo en estudiantes con hiperlordosis lumbar de la carrera de danza de la Universidad de Chile." Tesis, Universidad de Chile, 2013. http://repositorio.uchile.cl/handle/2250/136754.
Full textLa formulación de este trabajo está orientada hacia los estudiantes de la Etapa Básica y el Primer año Superior de la carrera de Licenciatura en Artes con mención en Danza de la Facultad de Artes de la Universidad de Chile y se contextualiza primeramente en una breve descripción de los aspectos necesarios para entender el tema en cuestión, referente a la anatomía de la postura humana y sus desequilibrios. Éstos se fundamentan en los estudios de anatomía y fisiología del cuerpo humano y enfatizan en las estructuras óseas y musculares en donde se localiza el problema postural de la hiperlordosis lumbar, como son la columna vertebral y la pelvis. De igual manera, define los componentes del centro de energía y la forma de trabajarlo en Pilates, paralelo a un enfoque específico de la danza Contemporánea referente al sistema de trabajo Laban-Bartenieff, el cual no es aplicado directamente en todas las asignaturas de la Licenciatura, sin embargo muchas utilizan conceptos y conexiones aplicadas a la postura y el movimiento. En conjunto con las entrevistas y observaciones y de acuerdo a las competencias requeridas en los primeros años de estudio de la carrera de Danza versus las condiciones y habilidades de cada estudiante con respecto a su condición de hiperlordosis lumbar, se realizó una propuesta de ejercicios a modo de programa. Éste se origina en la aplicación del trabajo de Suelo del Método Pilates Clásico o Auténtico, el cual incluye rutinas específicas que les permitirán a los estudiantes localizar el centro de energía para entregar soporte desde él a todo el resto del cuerpo, mejorando su conciencia corporal y optimizando su alineación postural, por tanto, la eficiencia energética y la mecánica corporal.
Munoz, Fabien. "Evaluation biomécanique des orthèses lombaires : application à l'orthèse Lordactiv®." Phd thesis, Université Jean Monnet - Saint-Etienne, 2013. http://tel.archives-ouvertes.fr/tel-00994583.
Full textChávez, Téllez Girón Guadalupe Patricia, and Ayala Adriana Plata. "Factores relacionados con la frecuencia de hiper-cifosis dorsal e hiper-lordosis lumbar en el personal de oficina de la empresa RH Maq SA de CV 2013." Tesis de Licenciatura, Medicina-Quimica, 2014. http://ri.uaemex.mx/handle/123456789/14833.
Full textCHEN, CHI-HSIEN, and 陳祺賢. "Measurement of lumbar spinal motion, lumber lordosis and surface contour of back with photometric stereo method." Thesis, 1992. http://ndltd.ncl.edu.tw/handle/26308043272102226660.
Full textChun, Chen Chung, and 陳仲鈞. "Influence of Pilot's Lumbar Lordosis on the Sustainability for Ejection Impact." Thesis, 2002. http://ndltd.ncl.edu.tw/handle/89782799832134683071.
Full text義守大學
工業管理學系
90
In order to understand the influences of pilot’s lumbar lordosis on the sustainability for ejection impact, this study measured the characteristic angles of lumbar lordosis from 112(?) helicopter crews of the ROC Army. Two lumbar lordotic angles were measured: the first measure was between L1 and L5 (LLAΙ); the second one was between L2 and L5 (LLAⅡ). The mean values of LLAΙand LLAⅡ were 31.42 ± 10.11 o and 34.16 ± 9.39 o , respectively. Besides, the lumbosacral angle and sacral inclination angle were 14.05 ± 5.84 o and 42.58 ± 9.15 o, respectively. No significant difference was noted in lumbar lordotic angle (LLAΙ) between helicopter crews and normal adults, but there was a statistically significant difference between helicopter crews and western normal males (LLAⅡ). This study also designed a lumbar model with variable lordosis for a 50 %ile dummy, and used it to be the subject in ejection experiments. The results of the ejection experiment showed that the acceleration for the lumbar with normal lordosis was smaller than the more lordotic or straight lumbar. The results also revealed that increasing of the abdominal pressure had a potential to decrease the loads on the lumbar spine. In addition to ejection experiments, this study also established a finite element spine model to simulate a thoraco-lumbar spine under ejection impacts. The results of FE simulation showed that both of a larger lorditic angle and a higher ejecting onset rate increased the stress distributed on lumbar spine. To summarize the results of experiments and simulation may conclude that the lumbar lordosis will moderately vary the lumbar loading during sustaining ejection impact, and further studies are needed to benefit the pilot’s safety.
Dallas, Lauren Kyle. "The importance of correcting the lumbar lordosis in the treatment of cervicogenic headaches resulting from anterior head carriage." Thesis, 2009. http://hdl.handle.net/10210/2659.
Full textBooks on the topic "Lumbar lordosis"
Harrison, Deed E. CBP structural rehabilitation of the lumbar spine. [Evanston, Wyo.]: Harrison CBP Seminars, 2008.
Find full textBerven, Sigurd H., and Praveen V. Mummaneni. Degenerative Spinal Deformity: Creating Lordosis in the Lumbar Spine, an Issue of Neurosurgery Clinics of North America. Elsevier - Health Sciences Division, 2018.
Find full textNewsome, Scott D. Other Proven and Putative Autoimmune Disorders of the CNS. Oxford University Press, 2017. http://dx.doi.org/10.1093/med/9780199937837.003.0092.
Full textBook chapters on the topic "Lumbar lordosis"
Steib, Jean-Paul, and Yann Philippe Charles. "How to Obtain the Best Lumbar Lordosis." In Advanced Concepts in Lumbar Degenerative Disk Disease, 321–29. Berlin, Heidelberg: Springer Berlin Heidelberg, 2016. http://dx.doi.org/10.1007/978-3-662-47756-4_24.
Full textHwang, S. H., S. W. Park, and Y. H. Kim. "Measurement Comparison about Lumbar Lordosis : Radiography and 3D Motion Capture." In IFMBE Proceedings, 1669–71. Berlin, Heidelberg: Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-03882-2_442.
Full textvan Empelen, R. "Een driejarig meisje met een versterkte lumbale lordose." In Fysiotherapeutische casuïstiek, 663–65. Houten: Bohn Stafleu van Loghum, 2006. http://dx.doi.org/10.1007/978-90-313-8645-1_110.
Full text"Lumbar Lordosis." In Encyclopedia of Pain, 1751. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-28753-4_201196.
Full textMosley, Yusef I., and James S. Harrop. "Flat Back Deformity." In Spinal Neurosurgery, 215–24. Oxford University Press, 2018. http://dx.doi.org/10.1093/med/9780190887773.003.0023.
Full text"6 Spinal Curves Segmentation and Lumbar Lordosis Classification." In Sagittal Balance of the Spine, edited by Pierre Roussouly, João Luiz Pinheiro-Franco, Hubert Labelle, and Martin Gehrchen. Stuttgart: Georg Thieme Verlag, 2019. http://dx.doi.org/10.1055/b-0039-171402.
Full text"41 Hook Patterns for the Preservation of Lumbar Lordosis." In Surgical Techniques for the Spine, edited by Thomas R. Haher and Andrew A. Merola. Stuttgart: Georg Thieme Verlag, 2003. http://dx.doi.org/10.1055/b-0034-48861.
Full textA. Oakley, Paul, Ibrahim M. Moustafa, and Deed E. Harrison. "Restoration of Cervical and Lumbar Lordosis: CBP® Methods Overview." In Spinal Deformities in Adolescents, Adults and Older Adults [Working Title]. IntechOpen, 2019. http://dx.doi.org/10.5772/intechopen.90713.
Full textGuy, A., H. Labelle, S. Barchi, and CÉ Aubin. "The impact of immediate in-brace 3D corrections on curve evolution after two years of treatment: preliminary results." In Studies in Health Technology and Informatics. IOS Press, 2021. http://dx.doi.org/10.3233/shti210459.
Full textSweeney, Kieron, Catherine Moran, and Ciaran Bolger. "Thoracic spinal disease." In Oxford Textbook of Neurological Surgery, edited by Ramez W. Kirollos, Adel Helmy, Simon Thomson, and Peter J. A. Hutchinson, 711–18. Oxford University Press, 2019. http://dx.doi.org/10.1093/med/9780198746706.003.0061.
Full textConference papers on the topic "Lumbar lordosis"
Martin, Audrey, Connor Telles, Jeremi Leasure, Jessica Tang, Christopher Ames, and Dimitriy Kondrashov. "Demands on Posterior Fusion Hardware During Lordosis Restoration Procedures." In ASME 2013 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/sbc2013-14195.
Full textAlland, J. A., A. A. Espinoza Orías, H. S. An, G. B. J. Andersson, and N. Inoue. "Three-Dimensional Characterization of Lumbar Lordosis in Torsion." In ASME 2011 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2011. http://dx.doi.org/10.1115/sbc2011-53742.
Full textShirazi-Adl, A., and M. Parnianpour. "Analysis of the Lumbar Spine in Heavy Liftings: Slight Flattening in Lordosis Decreases Risk of Tissue Injury." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0090.
Full textShirazi-Adl, A., and M. Parnianpour. "How Is the Lumbar Spine Stabilized in Compression? Model Studies on Effect of Various Loading Configurations." In ASME 1998 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/imece1998-0089.
Full textDivya K., Veena, Devanshu Mukherjee, Vidhya Shree, Somali Roy, Venkat Raghavan, P. M. Rajasree, Deepashree Devaraj, C. H. Renumadhavi, Vasanth Raj. Lakshman, and K. N. Subramanya. "A Novel Approach towards Early Detection of Obliteration in Lumbar Lordosis." In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) in conjunction with the 43rd Annual Conference of the Canadian Medical and Biological Engineering Society. IEEE, 2020. http://dx.doi.org/10.1109/embc44109.2020.9176048.
Full textEvcik, D., and A. Yücel. "FRI0241 Lumbar lordosis in acute and chronic low back pain patients." In Annual European Congress of Rheumatology, Annals of the rheumatic diseases ARD July 2001. BMJ Publishing Group Ltd and European League Against Rheumatism, 2001. http://dx.doi.org/10.1136/annrheumdis-2001.545.
Full textNaserkhaki, Sadegh, Jacob L. Jaremko, Greg Kawchuk, Samer Adeeb, and Marwan El-Rich. "Investigation of Lumbosacral Spine Anatomical Variation Effect on Load-Partitioning Under Follower Load Using Geometrically Personalized Finite Element Model." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-40231.
Full textShirazi-Adl, A., S. Sadouk, and M. Parnianpour. "Effect of Pelvic Tilt and Lordosis on Passive-Active Synergy in Lumbar Spine Under Axial Compression." In ASME 1999 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 1999. http://dx.doi.org/10.1115/imece1999-0477.
Full textRundell, S. A., J. Isaza, J. S. Day, S. Guillory, W. N. Newberry, and S. M. Kurtz. "The Importance of Posterior Muscle Strength and Facet Contact in Preventing Lumbar Disc Herniation During Forward Bending." In ASME 2010 Summer Bioengineering Conference. American Society of Mechanical Engineers, 2010. http://dx.doi.org/10.1115/sbc2010-19468.
Full textShirazi-Adl, A., M. El-Rich, D. Pop, and M. Parnianpour. "Evaluation of Muscle Forces in a Synergistic Lumbar Spine Using Kinematics-Based Approach and Optimization." In ASME 2001 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2001. http://dx.doi.org/10.1115/imece2001/bed-23034.
Full text