Journal articles on the topic 'Luminescence quenching'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Luminescence quenching.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Beltyukova, S. V., and O. V. Malinka. "Determination of platyphylline hydrotartrate by luminescence quenching of the complex yttrium (iii) with rutin." Farmatsevtychnyi zhurnal, no. 3-4 (September 4, 2018): 30–37. http://dx.doi.org/10.32352/0367-3057.3-4.18.05.
Full textZhang, Ning, and Shiqing Man. "Luminescent Properties of a Novel Mn2+ doped 3CaO-CaF2-2SiO2 Glasses." Journal of Physics: Conference Series 2076, no. 1 (2021): 012048. http://dx.doi.org/10.1088/1742-6596/2076/1/012048.
Full textSami, Hussain, Osama Younis, Yui Maruoka, et al. "Negative Thermal Quenching of Photoluminescence from Liquid-Crystalline Molecules in Condensed Phases." Crystals 11, no. 12 (2021): 1555. http://dx.doi.org/10.3390/cryst11121555.
Full textWang, Li Hua. "Research on the Effect of Mg (II) Ion Concentration on the Luminescent Intensity of Tb Complex." Advanced Materials Research 321 (August 2011): 100–103. http://dx.doi.org/10.4028/www.scientific.net/amr.321.100.
Full textHamaguchi, H., T. Tahara, and M. Tasumi. "Suppression of Luminescence Background in Raman Spectroscopy by Means of Transient Optical Depletion of Causal Impurity Molecules." Applied Spectroscopy 41, no. 8 (1987): 1265–68. http://dx.doi.org/10.1366/0003702874447202.
Full textZhao, Xiao-Lin, Dan Tian, Qiang Gao, Hong-Wei Sun, Jian Xu, and Xian-He Bu. "A chiral lanthanide metal–organic framework for selective sensing of Fe(iii) ions." Dalton Transactions 45, no. 3 (2016): 1040–46. http://dx.doi.org/10.1039/c5dt03283k.
Full textBilger, W., and U. Schreiber. "Modulation of Millisecond Chlorophyll Luminescence by Non-Photochemical Fluorescence Quenching." Zeitschrift für Naturforschung C 44, no. 11-12 (1989): 966–70. http://dx.doi.org/10.1515/znc-1989-11-1215.
Full textMeng, Xiang-min, Xia Zhang, Peng-fei Qi, Zi-ao Zong, Fan Jin, and Yu-hua Fan. "Syntheses, structures, luminescent and photocatalytic properties of various polymers based on a “V”-shaped dicarboxylic acid." RSC Advances 7, no. 9 (2017): 4855–71. http://dx.doi.org/10.1039/c6ra27509e.
Full textChi, Fengfeng, Wenjuan Dai, Bin Jiang, et al. "Investigation of the thermal quenching of two emission centers in Sr9MnLi(PO4)7:Eu2+ using time-resolved technique." Physical Chemistry Chemical Physics 22, no. 27 (2020): 15632–39. http://dx.doi.org/10.1039/d0cp02544e.
Full textWu, Mihye, Hyemin Park, Eun Gyu Lee, Sanghun Lee, Yu Jin Hong, and Sungho Choi. "Luminescence Quenching Behavior of Hydrothermally Grown YVO4:Eu3+ Nanophosphor Excited under Low Temperature and Vacuum Ultra Violet Discharge." Materials 13, no. 15 (2020): 3270. http://dx.doi.org/10.3390/ma13153270.
Full textHasegawa, Takuya, Kenji Toda, Tadashi Ishigaki, et al. "Luminescence of Phosphor Balls Prepared Using Melt Quenching Synthesis Method." Materials Science Forum 883 (January 2017): 17–21. http://dx.doi.org/10.4028/www.scientific.net/msf.883.17.
Full textTrice, Brian E., and Brian M. Tissue. "Nonlinear Luminescence Quenching in Eu2O3." Spectroscopy Letters 40, no. 2 (2007): 333–48. http://dx.doi.org/10.1080/00387010701247597.
Full textMays, Holger. "Luminescence Quenching in Microemulsion Studies." Journal of Chemical Education 77, no. 1 (2000): 72. http://dx.doi.org/10.1021/ed077p72.
Full textJu, Guifang, Yihua Hu, Li Chen, Xiaojuan Wang, and Zhongfei Mu. "Concentration quenching of persistent luminescence." Physica B: Condensed Matter 415 (April 2013): 1–4. http://dx.doi.org/10.1016/j.physb.2013.01.027.
Full textAsami, Kumiko, Tsutomu Naka, and Masakazu Ishiguro. "Luminescence quenching inFcenters under pressure." Physical Review B 34, no. 8 (1986): 5658–64. http://dx.doi.org/10.1103/physrevb.34.5658.
Full textBuckner, Steven W., Robert L. Konold, and Paul A. Jelliss. "Luminescence quenching in PbS nanoparticles." Chemical Physics Letters 394, no. 4-6 (2004): 400–404. http://dx.doi.org/10.1016/j.cplett.2004.06.138.
Full textRigo, M. Veronica, and Peter Geissinger. "Crossed Optical Fiber Sensor Arrays for High-Spatial-Resolution Sensing: Application to Dissolved Oxygen Concentration Measurements." Journal of Sensors 2012 (2012): 1–10. http://dx.doi.org/10.1155/2012/464092.
Full textMironenko, Alexander Y., Alexander A. Sergeev, Alexander E. Nazirov, Andrei A. Leonov, Svetlana Y. Bratskaya, and Sergey S. Voznesenskiy. "Sensitive Coatings for Luminescence Detection of Cu(II) in Solutions." Solid State Phenomena 245 (October 2015): 243–46. http://dx.doi.org/10.4028/www.scientific.net/ssp.245.243.
Full textRood, Marcus T. M., Maria Oikonomou, Tessa Buckle, et al. "An activatable, polarity dependent, dual-luminescent imaging agent with a long luminescence lifetime." Chem. Commun. 50, no. 68 (2014): 9733–36. http://dx.doi.org/10.1039/c4cc04015e.
Full textKnyazev, Andrey A., Aleksandr S. Krupin, and Yuriy G. Galyametdinov. "Composites Based on Polylactide Doped with Amorphous Europium(III) Complex as Perspective Thermosensitive Luminescent Materials." Inorganics 10, no. 12 (2022): 232. http://dx.doi.org/10.3390/inorganics10120232.
Full textBuzanov, Oleg A., Nina S. Kozlova, Nikita A. Siminel, and Evgeniya V. Zabelina. "Luminescence in lanthanum-gallium tantalate." Modern Electronic Materials 4, no. 3 (2018): 97–101. http://dx.doi.org/10.3897/j.moem.4.3.39454.
Full textBeltramini, M., G. M. Giacometti, B. Salvato, G. Giacometti, K. Münger, and K. Lerch. "Luminescence emission from Neurospora copper metallothionein. Time-resolved studies." Biochemical Journal 260, no. 1 (1989): 189–93. http://dx.doi.org/10.1042/bj2600189.
Full textTiyabhorn, Acharee, and K. Omar Zahir. "Quantum yield of singlet dioxygen and elucidation of the quenching mechanism for the reaction between the doublet excited states of tris(bipyridine)chromium(III) and triplet dioxygen." Canadian Journal of Chemistry 74, no. 3 (1996): 336–40. http://dx.doi.org/10.1139/v96-037.
Full textGuo, Junjie, Tuerxun Aidilibike, Weihua Di, Yangyang Li, Xiaohui Liu, and Weiping Qin. "Quenching cooperative transitions by destroying Yb3+-clusters." Physical Chemistry Chemical Physics 19, no. 20 (2017): 12637–41. http://dx.doi.org/10.1039/c7cp01678f.
Full textRachuri, Yadagiri, Bhavesh Parmar, Kamal Kumar Bisht, and Eringathodi Suresh. "Solvothermal self-assembly of Cd2+ coordination polymers with supramolecular networks involving N-donor ligands and aromatic dicarboxylates: synthesis, crystal structure and photoluminescence studies." Dalton Transactions 46, no. 11 (2017): 3623–30. http://dx.doi.org/10.1039/c7dt00042a.
Full textZinchenko, V., G. Nechyporenko, and L. Koshkina. "Interaction Between PbF2 and EuS in Saline Melt NaCl-KCl." Фізика і хімія твердого тіла 17, no. 3 (2016): 396–400. http://dx.doi.org/10.15330/pcss.17.3.396-400.
Full textKurshanov, D. A., I. A. Arefina, M. S. Stepanova, A. Dubavik, and A. V. Baranov. "Effect of Fe-=SUB=-3-=/SUB=-O-=SUB=-4-=/SUB=- nanoparticle concentration on the luminescence of AgInS-=SUB=-2-=/SUB=-/ZnS in hybrid complex CaCO-=SUB=-3-=/SUB=--Fe-=SUB=-3-=/SUB=-O-=SUB=-4-=/SUB=-@AgInS-=SUB=-2-=/SUB=-/ZnS-=SUP=-*-=/SUP=-." Оптика и спектроскопия 129, no. 11 (2021): 1424. http://dx.doi.org/10.21883/os.2021.11.51649.1418-21.
Full textHe, Ming, Z. H. Zhang, Y. Z. Zhu, Y. G. Tang, and Z. Song. "Luminescent properties of Eu3+-doped SmBa3B9O18." Powder Diffraction 28, S1 (2013): S41—S44. http://dx.doi.org/10.1017/s0885715613000468.
Full textKurshanov D.A., Arefina I. A., Stepanova M. S., Dubavik A., and Baranov A. V. "Effect of Fe-=SUB=-3-=/SUB=-O-=SUB=-4-=/SUB=- nanoparticle concentration on the luminescence of AgInS-=SUB=-2-=/SUB=-/ZnS in hybrid complex CaCO-=SUB=-3-=/SUB=--Fe-=SUB=-3-=/SUB=-O-=SUB=-4-=/SUB=-@AgInS-=SUB=-2-=/SUB=-/ZnS." Optics and Spectroscopy 130, no. 14 (2022): 2134. http://dx.doi.org/10.21883/eos.2022.14.53999.1418-21.
Full textShishov A. S. and Mirochnik A. G. "Luminescent chemosensor for detecting dimethylamine and ammonia vapors." Optics and Spectroscopy 132, no. 2 (2022): 279. http://dx.doi.org/10.21883/eos.2022.02.53222.2644-21.
Full textPrzhevuski, A. K., and N. V. Nikonorov. "Nonlinear luminescence quenching in erbium glasses." Journal of Optical Technology 67, no. 4 (2000): 327. http://dx.doi.org/10.1364/jot.67.000327.
Full textTargowski, P., B. Ziętek, and A. Bączyński. "Luminescence Quenching of Rhodamines by Cyclooctatetraene." Zeitschrift für Naturforschung A 42, no. 9 (1987): 1009–13. http://dx.doi.org/10.1515/zna-1987-0914.
Full textStoessel, M., G. Wittmann, J. Staudigel, et al. "Cathode-induced luminescence quenching in polyfluorenes." Journal of Applied Physics 87, no. 9 (2000): 4467–75. http://dx.doi.org/10.1063/1.373093.
Full textMikhelashvili, M. S., and A. M. Mikhaeli. "Nonlinear luminescence quenching in restricted geometries." Journal of Physical Chemistry 96, no. 12 (1992): 4766–68. http://dx.doi.org/10.1021/j100191a010.
Full textCarraway, E. R., J. N. Demas, and B. A. DeGraff. "Luminescence quenching mechanism for microheterogeneous systems." Analytical Chemistry 63, no. 4 (1991): 332–36. http://dx.doi.org/10.1021/ac00004a006.
Full textAyling, S. G., and J. W. Allen. "Auger quenching of luminescence in ZnSe:Mn." Journal of Physics C: Solid State Physics 20, no. 26 (1987): 4251–57. http://dx.doi.org/10.1088/0022-3719/20/26/025.
Full textBasieva, I. T., and T. T. Basiev. "Static cooperative luminescence quenching in nanoparticles." Journal of Luminescence 151 (July 2014): 88–92. http://dx.doi.org/10.1016/j.jlumin.2014.02.005.
Full textHaft, Dirk, Richard J. Warburton, Khaled Karrai, et al. "Luminescence quenching in InAs quantum dots." Applied Physics Letters 78, no. 19 (2001): 2946–48. http://dx.doi.org/10.1063/1.1356445.
Full textYan, M., L. J. Rothberg, F. Papadimitrakopoulos, M. E. Galvin, and T. M. Miller. "Defect Quenching of Conjugated Polymer Luminescence." Physical Review Letters 73, no. 5 (1994): 744–47. http://dx.doi.org/10.1103/physrevlett.73.744.
Full textKoepke, Cz, A. Lempicki, and A. J. Wojtowicz. "Luminescence Quenching of Strongly Coupled Systems." physica status solidi (b) 179, no. 1 (1993): 233–40. http://dx.doi.org/10.1002/pssb.2221790125.
Full textBirowosuto, M. D., P. Dorenbos, J. T. M. de Haas, C. W. E. van Eijk, K. W. Krämer, and H. U. Güdel. "Optical spectroscopy and luminescence quenching of." Journal of Luminescence 118, no. 2 (2006): 308–16. http://dx.doi.org/10.1016/j.jlumin.2005.09.001.
Full textTang, Wanjuan, Qingfeng Guo, Ke Su, et al. "Structure and Photoluminescence Properties of Dy3+ Doped Phosphor with Whitlockite Structure." Materials 15, no. 6 (2022): 2177. http://dx.doi.org/10.3390/ma15062177.
Full textSergeev, Alexander A., Ksenia A. Sergeeva, Andrei A. Leonov, Irina V. Postnova, Sergey S. Voznesenskiy, and Yuriy Nikolaevich Kulchin. "Manganese-Doped Zinc Sulfide Quantum Dots for Methane Detection in Aqueous Media." Defect and Diffusion Forum 386 (September 2018): 229–35. http://dx.doi.org/10.4028/www.scientific.net/ddf.386.229.
Full textKruopyte, Aiste, Raimondas Giraitis, Remigijus Juskenas, David Enseling, Thomas Jüstel, and Arturas Katelnikovas. "Luminescence and luminescence quenching of efficient GdB5O9:Eu3+ red phosphors." Journal of Luminescence 192 (December 2017): 520–26. http://dx.doi.org/10.1016/j.jlumin.2017.07.038.
Full textYu, Yu'e, Yuhao Wang, Haijun Xu, et al. "Dual-responsive luminescent sensors based on two Cd-MOFs: rare enhancement toward acac and quenching toward Cr2O72−." CrystEngComm 22, no. 22 (2020): 3759–67. http://dx.doi.org/10.1039/d0ce00405g.
Full textZhao, Yue, Chang-An Wang, Ji-Kun Li, et al. "A Eu(iii) metal–organic framework based on anthracenyl and alkynyl conjugation as a fluorescence probe for the selective monitoring of Fe3+ and TNP." RSC Advances 12, no. 41 (2022): 26945–52. http://dx.doi.org/10.1039/d2ra02892a.
Full textПолисадова, Е. Ф., В. А. Ваганов, Д. Т. Валиев та ін. "Влияние температуры на люминесцентные свойства керамики MgAl-=SUB=-2-=/SUB=-O-=SUB=-4-=/SUB=- : Dy, синтезированной методом искрового плазменного спекания". Физика твердого тела 61, № 10 (2019): 1873. http://dx.doi.org/10.21883/ftt.2019.10.48263.472.
Full textШишов, А. С., та А. Г. Мирочник. "Люминесцентный хемосенсор для детектирования паров диметиламина и аммиака". Оптика и спектроскопия 130, № 2 (2022): 300. http://dx.doi.org/10.21883/os.2022.02.51999.2644-21.
Full textKühl, Michael, Lars F. Rickelt, and Roland Thar. "Combined Imaging of Bacteria and Oxygen in Biofilms." Applied and Environmental Microbiology 73, no. 19 (2007): 6289–95. http://dx.doi.org/10.1128/aem.01574-07.
Full textLi, Chang Fa, and Ji Guang Li. "Uniform Phosphor Spheres of Diverse Emission Colours via Homogeneous Precipitation." Advanced Materials Research 403-408 (November 2011): 1424–27. http://dx.doi.org/10.4028/www.scientific.net/amr.403-408.1424.
Full text