Academic literature on the topic 'Luminescent Solar Concentrators'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Luminescent Solar Concentrators.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Luminescent Solar Concentrators"
Flores Daorta, Sthy, Antonio Proto, Roberto Fusco, Lucio Claudio Andreani, and Marco Liscidini. "Cascade luminescent solar concentrators." Applied Physics Letters 104, no. 15 (April 14, 2014): 153901. http://dx.doi.org/10.1063/1.4871481.
Full textRousseau, I., and V. Wood. "Nanophotonic luminescent solar concentrators." Applied Physics Letters 103, no. 13 (September 23, 2013): 131113. http://dx.doi.org/10.1063/1.4823538.
Full textGajic, Maja, Fabio Lisi, Nicholas Kirkwood, Trevor A. Smith, Paul Mulvaney, and Gary Rosengarten. "Circular luminescent solar concentrators." Solar Energy 150 (July 2017): 30–37. http://dx.doi.org/10.1016/j.solener.2017.04.034.
Full textMohan, Brindha V. G., V. Vasu, V. Vasu, A. Robson Benjamin, and M. Kottaisamy. "Luminescent Solar Concentrators – The Solar Waveguides." Current Science 114, no. 08 (April 25, 2018): 1656. http://dx.doi.org/10.18520/cs/v114/i08/1656-1664.
Full textKnowles, Kathryn E., Troy B. Kilburn, Dane G. Alzate, Stephen McDowall, and Daniel R. Gamelin. "Bright CuInS2/CdS nanocrystal phosphors for high-gain full-spectrum luminescent solar concentrators." Chemical Communications 51, no. 44 (2015): 9129–32. http://dx.doi.org/10.1039/c5cc02007g.
Full textBradshaw, Liam R., Kathryn E. Knowles, Stephen McDowall, and Daniel R. Gamelin. "Nanocrystals for Luminescent Solar Concentrators." Nano Letters 15, no. 2 (January 20, 2015): 1315–23. http://dx.doi.org/10.1021/nl504510t.
Full textSutherland, Brandon R. "Cost Competitive Luminescent Solar Concentrators." Joule 2, no. 2 (February 2018): 203–4. http://dx.doi.org/10.1016/j.joule.2018.02.004.
Full textNeuroth, N., and R. Haspel. "Glasses for luminescent solar concentrators." Solar Energy Materials 16, no. 1-3 (August 1987): 235–42. http://dx.doi.org/10.1016/0165-1633(87)90023-2.
Full textFrias, Ana R., Sandra F. H. Correia, Margarida Martins, Sónia P. M. Ventura, Edison Pecoraro, Sidney J. L. Ribeiro, Paulo S. André, Rute A. S. Ferreira, João A. P. Coutinho, and Luís D. Carlos. "Sustainable Liquid Luminescent Solar Concentrators." Advanced Sustainable Systems 3, no. 3 (January 9, 2019): 1800134. http://dx.doi.org/10.1002/adsu.201800134.
Full textMulder, Carlijn L., Luke Theogarajan, Michael Currie, Jonathan K. Mapel, Marc A. Baldo, Michael Vaughn, Paul Willard, et al. "Luminescent Solar Concentrators Employing Phycobilisomes." Advanced Materials 21, no. 31 (August 21, 2009): 3181–85. http://dx.doi.org/10.1002/adma.200900148.
Full textDissertations / Theses on the topic "Luminescent Solar Concentrators"
Green, Adam. "Optical properties of luminescent solar concentrators." Thesis, University of Sheffield, 2014. http://etheses.whiterose.ac.uk/8361/.
Full textFarrell, Daniel James. "Characterising the performance of luminescent solar concentrators." Thesis, Imperial College London, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.506109.
Full textFisher, Martyn. "Optimization and novel applications of luminescent solar concentrators." Thesis, Imperial College London, 2013. http://hdl.handle.net/10044/1/24691.
Full textRaeisossadati, Mohammadjavad. "Luminescent solar concentrators to increase microalgal biomass productivity." Thesis, Raeisossadati, Mohammadjavad (2020) Luminescent solar concentrators to increase microalgal biomass productivity. PhD thesis, Murdoch University, 2020. https://researchrepository.murdoch.edu.au/id/eprint/55549/.
Full textEl, Mouedden Yamna. "Lifetime and efficiency improvement of organic luminescent solar concentrators for photovoltaic applications." Thesis, Edith Cowan University, Research Online, Perth, Western Australia, 2016. https://ro.ecu.edu.au/theses/1779.
Full textBose, Rahul. "Raytrace simulations and experimental studies of luminescent solar concentrators." Thesis, Imperial College London, 2012. http://hdl.handle.net/10044/1/23272.
Full textSholin, Veronica. "Luminescent solar concentrators and all-inorganic nanoparticle solar cells for solar energy harvesting /." Diss., Digital Dissertations Database. Restricted to UC campuses, 2008. http://uclibs.org/PID/11984.
Full textRosenberg, Ron S. B. Massachusetts Institute of Technology. "Dye-doped polymer nanoparticles for flexible, bulk luminescent solar concentrators." Thesis, Massachusetts Institute of Technology, 2013. http://hdl.handle.net/1721.1/81143.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 52-56).
Bulk luminescent solar concentrators (LSC) cannot make use of Forster resonance energy transfer (FRET) due to necessarily low dye concentrations. In this thesis, we attempt to present a poly-vinylalcohol (PVA) waveguide containing dye-aggregate polystyrene nanospheres that enable FRET at concentrations below that required for the bulk LSC due to dye confinement. In the aqueous state, the maximum achieved energy transfer efficiency of the dye-doped nanoparticles was found to be 8 7% for lwt%/lwt% doping of Coumarin 1 (C1) and Coumarin 6 (C6). In the solid state, however, energy transfer is lost, reducing to 32.8% and 20.1% respectively for the C1(lwt%)/C6(lwt%) and C1(0.5wt%)/C6(lwt/ ) iterations, respectively. Presumably, the dyes leach out of the polystyrene nanospheres and into the PVA waveguide upon water evaporation during drop casting.
by Ron Rosenberg.
S.B.
Correia, Sandra Filipa Henriques. "Organic-inorganic hybrid materials for green photonics: luminescent solar concentrators." Doctoral thesis, Universidade de Aveiro, 2017. http://hdl.handle.net/10773/17407.
Full textLuminescent solar concentrators are inexpensive devices that aim to increase the efficiency of photovoltaic cells and promote the urban integration of photovoltaic devices, with unprecedented possibilities of energy harvesting through the façade of buildings, urban furniture or wearable fabrics. Generally, they consist of a transparent matrix coated or doped with active optical centres that absorb the incident solar radiation, which is re-emitted at a specific wavelength and transferred by total internal reflection to the edges where the photovoltaic cells are located. The main objective of this work is the production of luminescent solar concentrators whose optically active layer is based on organic-inorganic hybrid materials doped with europium ions or organic dyes, in particular, Rhodamine 6G and Rhodamine 800. Rhodamine 800, as opposed to europium ions and Rhodamine 6G which emit in the visible range, emits in the near infrared (NIR) range, which is an advantage for crystalline Si-based photovoltaic cells, whose efficiency is greater in the NIR. In this work, although the luminescent solar concentrators with planar geometry are addressed, the main focus is the use cylindrical geometry. The use of this type of geometry allows the effect of concentration to be higher relative to the planar geometry, since the ratio between the exposed area and the area of the edges is increased. The cylindrical geometry is exploited by producing luminescent solar concentrators based on polymer optical fibre (plastic) where the optically active layer is on the outside (as a coating) or inside (as a filling in the hollow core) of the optical fibre. Furthermore, the possibility of increasing the exposed area was also dealt with the production of bundles of luminescent solar concentrators in which the plastic optical fibres are placed side by side and, also, by fabricating luminescent solar concentrators with length in the metre scale.
Os concentradores solares luminescentes são dispositivos de baixo custo que têm como objetivo aumentar a eficiência de células fotovoltaicas e promover a integração de dispositivos fotovoltaicos em elementos do dia-a-dia, tornando possível a captura de energia solar, através da fachada de edifícios, mobiliário urbano ou em têxteis. Geralmente, consistem numa matriz transparente coberta ou dopada com centros óticos ativos, capazes de absorver a radiação solar incidente e reemiti-la com um comprimento de onda específico que será transportada, através de reflexão interna total, para as extremidades da matriz onde se encontra(m) a(s) célula(s) fotovoltaica(s). O principal objetivo deste trabalho consiste na produção de concentradores solares luminescentes cuja camada ótica ativa é baseada em materiais híbridos orgânicos-inorgânicos dopados com iões lantanídeos (európio, Eu3+) ou corantes orgânicos, nomeadamente, Rodamina 6G e Rodamina 800. A Rodamina 800, ao contrário dos iões de európio e da Rodamina 6G que emitem na gama do visível, emite na região espetral do infravermelho próximo (NIR), que se revela uma vantagem quando a célula fotovoltaica em uso é composta de silício cristalino, cuja gama de maior eficiência é no NIR. Neste trabalho, apesar de serem abordados concentradores solares luminescentes com geometria planar, o principal foco é a utilização da geometria cilíndrica. Este tipo de geometria permite que o efeito de concentração seja superior, relativamente à geometria planar, uma vez que a razão entre a área exposta e a área das extremidades é aumentada. A geometria cilíndrica é explorada, através da produção de concentradores solares luminescentes com base em fibra ótica polimérica (plástica) em que a camada ótica ativa se encontra no exterior (como um revestimento) ou no interior (como um preenchimento do núcleo oco). Além disso, a possibilidade de aumentar a área exposta foi, também, abordada com o fabrico de uma matriz de concentradores solares luminescentes colocados lado a lado e, também, com o fabrico de concentradores solares luminescentes na escala do metro.
Mulder, Carlijn Lucinde. "Engineering the optical properties of luminescent solar concentrators at the molecular scale." Thesis, Massachusetts Institute of Technology, 2012. http://hdl.handle.net/1721.1/71482.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (p. 121-128).
Luminescent Solar Concentrators (LSCs) concentrate solar radiation onto photovoltaic (PV) cells using an inexpensive collector plate to absorb incoming photons and waveguide fluorescently re-emitted photons to PVs at the edge. This thesis addresses the two main energy loss mechanisms in LSCs, namely transport losses and trapping losses. We used phycobilisomes, a biological light-harvesting complex, as dyes in the LSC collector to circumvent transport losses caused by photon re-absorption. The selfassembled structure of phycobilisomes couples numerous donor chromophores to a handful of acceptor chromophores through an internal F6rster energy pathway that isolates the absorption and emission spectra. We established that energy transfer within intact phycobilisomes reduces LSC self-absorption losses by approximately (48±5)% by comparing intact and partly decoupled phycobilisome complexes. To reduce trapping losses in LSCs, we leveraged the anisotropic emission pattern of dichroic dye molecules. We aligned their dipole moments normal to the face of the waveguide by embedding them in a liquid crystal host. Vertical dye alignment increased the fraction of the power emitted below the critical angle of the waveguide, thereby raising the trapping efficiency to 81% from 66% for LSCs with unaligned dyes. The enhanced trapping efficiency was preserved for geometric gains up to 30, and an external diffuser can enhance absorption in LSCs with vertically-aligned dyes. This thesis also explores an energy harvesting strategy for portable electronics based on LSCs with dye molecules that are aligned in-plane. The purely absorptive polarizers used to enhance contrast ratios in displays can be replaced with two linearly polarized luminescent concentrators (LSCs) that channel the energy of absorbed photons to PVs at the edge of the display. We coupled up to 40% of incoming photons to the edge of a prototype LSC that also achieved a polarization selection ratio of 3. Finaly, we investigated the contribution of self-absorption and optical waveguiding to triplet exciton transport in crystalline tetracene (Tc) and rubrene (Rb). A timeresolved imaging technique that maps the triplet distribution showed that optical waveguiding dominates over diffusion and can transport energy several micrometers at the high excitation rates commonly used to probe the exciton diffusion constants in organic materials.
by Carlijn Lucinde Mulder.
Ph.D.
Book chapters on the topic "Luminescent Solar Concentrators"
Beverina, Luca, and Alessandro Sanguineti. "Organic Fluorophores for Luminescent Solar Concentrators." In Solar Cell Nanotechnology, 317–55. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118845721.ch13.
Full textLim, Yun Seng, Shin Yiing Kee, and Chin Kim Lo. "Recent Research and Development of Luminescent Solar Concentrators." In Solar Cell Nanotechnology, 271–91. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118845721.ch11.
Full textZhao, Haiguang. "Perovskite Quantum Dots Based Luminescent Solar Concentrators." In Perovskite Quantum Dots, 219–42. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6637-0_8.
Full textTonezzer, M., D. Gutierrez, and D. Vincenzi. "Luminescent Solar Concentrators - State of the Art and Future Perspectives." In Solar Cell Nanotechnology, 293–315. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2013. http://dx.doi.org/10.1002/9781118845721.ch12.
Full textLiu, Guiju, Xiaohan Wang, Guangting Han, and Haiguang Zhao. "Core/Shell Quantum-Dot-Based Luminescent Solar Concentrators." In Core/Shell Quantum Dots, 287–314. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-46596-4_9.
Full textReisfeld, Renata. "Luminescent Solar Concentrators and the Ways to Increase Their Efficiencies." In The Sol-Gel Handbook, 1281–308. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2015. http://dx.doi.org/10.1002/9783527670819.ch41.
Full textElikkottil, Ameen, Kiran Vaddi, K. S. Reddy, and Bala Pesala. "Reduction of Escape Cone Losses in Luminescent Solar Concentrators Using High-Contrast Gratings." In Advances in Energy Research, Vol. 1, 37–43. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-2666-4_5.
Full textDebije, Michael. "The Luminescent Solar Concentrator (LSC)." In Photovoltaic Solar Energy, 420–30. Chichester, UK: John Wiley & Sons, Ltd, 2017. http://dx.doi.org/10.1002/9781118927496.ch38.
Full textBuffa, Marta, and Michael G. Debije. "Dye-Doped Polysiloxane Rubbers for Luminescent Solar Concentrator Systems." In High-Efficiency Solar Cells, 247–66. Cham: Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-01988-8_9.
Full textChandra, S., and S. J. McCormack. "Plasmonic Coupling Enhanced Absorption and Fluorescence Emission in Thin Film Luminescent Solar Concentrator." In Renewable Energy and Sustainable Buildings, 149–59. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-18488-9_11.
Full textConference papers on the topic "Luminescent Solar Concentrators"
Baldo, Marc. "Luminescent Solar Concentrators." In Optics and Photonics for Advanced Energy Technology. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/energy.2009.thd4.
Full textFerry, Vivian E. "Nanophotonic Luminescent Solar Concentrators." In Optical Nanostructures and Advanced Materials for Photovoltaics. Washington, D.C.: OSA, 2015. http://dx.doi.org/10.1364/pv.2015.pw3b.1.
Full textGutmann, Johannes, Marius Peters, Benedikt Bläsi, Martin Hermle, Hans Zappe, and Jan Christoph Goldschmidt. "Towards photonic luminescent solar concentrators." In SPIE Solar Energy + Technology, edited by Loucas Tsakalakos. SPIE, 2011. http://dx.doi.org/10.1117/12.893104.
Full textde Boer, Dick K. G. "Luminescent and Non-Luminescent Solar Concentrators: Challenges and Progress." In Optics for Solar Energy. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/ose.2011.srthb6.
Full textde Boer, Dick K. G., Cees R. Ronda, Wilco Keur, and Andries Meijerink. "New luminescent materials and filters for luminescent solar concentrators." In SPIE Solar Energy + Technology, edited by Kaitlyn VanSant and Raed A. Sherif. SPIE, 2011. http://dx.doi.org/10.1117/12.893902.
Full textChatten, Amanda. "Luminescent Solar Concentrators: Applications and Advances." In Optics for Solar Energy. Washington, D.C.: OSA, 2011. http://dx.doi.org/10.1364/ose.2011.srwb2.
Full textvan Sark, W. G. J. H. M. "Recent developments in luminescent solar concentrators." In SPIE Solar Energy + Technology, edited by Oleg V. Sulima and Gavin Conibeer. SPIE, 2014. http://dx.doi.org/10.1117/12.2061295.
Full textPartanen, Anni, Aapo Harju, Jarkko Mutanen, Hanna Lajunen, Tuula Pakkanen, and Markku Kuittinen. "Luminescent optical epoxies for solar concentrators." In SPIE Solar Energy + Technology, edited by Adam P. Plesniak and Candace Pfefferkorn. SPIE, 2014. http://dx.doi.org/10.1117/12.2061721.
Full textNeuroth, N., and R. Haspel. "Glasses For Luminescent Solar Concentrators." In 1986 International Symposium/Innsbruck, edited by Claes-Goeran Granqvist, Carl M. Lampert, John J. Mason, and Volker Wittwer. SPIE, 1986. http://dx.doi.org/10.1117/12.938313.
Full textde Boer, Dick K. G., Arno J. M. Ras, Bhuvana Viswanathan, and F. Helmut Zahn. "Performance of Flat and Bent Luminescent Concentrators." In Optics for Solar Energy. Washington, D.C.: OSA, 2012. http://dx.doi.org/10.1364/ose.2012.st2a.2.
Full textReports on the topic "Luminescent Solar Concentrators"
Friedman, P. S., and C. R. Parent. Luminescent solar concentrator development: Final subcontract report, 1 June 1982-31 December 1984. Office of Scientific and Technical Information (OSTI), April 1987. http://dx.doi.org/10.2172/6196790.
Full text