To see the other types of publications on this topic, follow the link: Luminescent Solar Concentrators.

Journal articles on the topic 'Luminescent Solar Concentrators'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Luminescent Solar Concentrators.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Flores Daorta, Sthy, Antonio Proto, Roberto Fusco, Lucio Claudio Andreani, and Marco Liscidini. "Cascade luminescent solar concentrators." Applied Physics Letters 104, no. 15 (April 14, 2014): 153901. http://dx.doi.org/10.1063/1.4871481.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Rousseau, I., and V. Wood. "Nanophotonic luminescent solar concentrators." Applied Physics Letters 103, no. 13 (September 23, 2013): 131113. http://dx.doi.org/10.1063/1.4823538.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gajic, Maja, Fabio Lisi, Nicholas Kirkwood, Trevor A. Smith, Paul Mulvaney, and Gary Rosengarten. "Circular luminescent solar concentrators." Solar Energy 150 (July 2017): 30–37. http://dx.doi.org/10.1016/j.solener.2017.04.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mohan, Brindha V. G., V. Vasu, V. Vasu, A. Robson Benjamin, and M. Kottaisamy. "Luminescent Solar Concentrators – The Solar Waveguides." Current Science 114, no. 08 (April 25, 2018): 1656. http://dx.doi.org/10.18520/cs/v114/i08/1656-1664.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Knowles, Kathryn E., Troy B. Kilburn, Dane G. Alzate, Stephen McDowall, and Daniel R. Gamelin. "Bright CuInS2/CdS nanocrystal phosphors for high-gain full-spectrum luminescent solar concentrators." Chemical Communications 51, no. 44 (2015): 9129–32. http://dx.doi.org/10.1039/c5cc02007g.

Full text
Abstract:
Experimental and computational analyses demonstrate that CuInS2/CdS nanocrystals with large solar absorption, high quantum yields, and only moderate luminescence reabsorption excel as phosphors for full-spectrum luminescent solar concentrators.
APA, Harvard, Vancouver, ISO, and other styles
6

Bradshaw, Liam R., Kathryn E. Knowles, Stephen McDowall, and Daniel R. Gamelin. "Nanocrystals for Luminescent Solar Concentrators." Nano Letters 15, no. 2 (January 20, 2015): 1315–23. http://dx.doi.org/10.1021/nl504510t.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Sutherland, Brandon R. "Cost Competitive Luminescent Solar Concentrators." Joule 2, no. 2 (February 2018): 203–4. http://dx.doi.org/10.1016/j.joule.2018.02.004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Neuroth, N., and R. Haspel. "Glasses for luminescent solar concentrators." Solar Energy Materials 16, no. 1-3 (August 1987): 235–42. http://dx.doi.org/10.1016/0165-1633(87)90023-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Frias, Ana R., Sandra F. H. Correia, Margarida Martins, Sónia P. M. Ventura, Edison Pecoraro, Sidney J. L. Ribeiro, Paulo S. André, Rute A. S. Ferreira, João A. P. Coutinho, and Luís D. Carlos. "Sustainable Liquid Luminescent Solar Concentrators." Advanced Sustainable Systems 3, no. 3 (January 9, 2019): 1800134. http://dx.doi.org/10.1002/adsu.201800134.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mulder, Carlijn L., Luke Theogarajan, Michael Currie, Jonathan K. Mapel, Marc A. Baldo, Michael Vaughn, Paul Willard, et al. "Luminescent Solar Concentrators Employing Phycobilisomes." Advanced Materials 21, no. 31 (August 21, 2009): 3181–85. http://dx.doi.org/10.1002/adma.200900148.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Benetti, Daniele, and Federico Rosei. "Alternative Uses of Luminescent Solar Concentrators." Nanoenergy Advances 2, no. 3 (June 28, 2022): 222–40. http://dx.doi.org/10.3390/nanoenergyadv2030010.

Full text
Abstract:
Over the last decade, the field of luminescent solar concentrators (LSC) has experienced significant growth, as noted by the increasing number of studies. However, so far, most of the devices developed have only been employed in a simple planar configuration coupled with silicon photovoltaic solar cells. This type of device is essentially a solar window whose main objective is to produce electrical power. However, due to the intrinsic nature of LSC, that is, the ability to absorb, downshift and concentrate the solar radiation that impinges on it, this photonic device can be used in alternative ways. In particular, in this review, we will explore several non-conventional applications in which LSCs are used successfully, including as solar bioreactors for algae development, photo reactors for organic synthesis, and as greenhouses.
APA, Harvard, Vancouver, ISO, and other styles
12

van Sark, W. G. J. H. M., Celso De Mello Donegá, and Ruud E. I. Schropp. "Optimizing Quantum Dot Solar Concentrators with Thin Film Solar Cells." Advances in Science and Technology 74 (October 2010): 176–81. http://dx.doi.org/10.4028/www.scientific.net/ast.74.176.

Full text
Abstract:
Quantum dots are proposed as luminescent species in luminescent solar concentrators in combination with thin film silicon solar cells. As both tuning absorption and emission properties of quantum dots is possible by adapting process conditions, as well as tuning the band gap of thin film silicon solar cells, an optimum combination is expected to exist for which the conversion efficiency of the whole device is maximum. As a first step we have employed ray-tracing modeling to determine the efficiency of a luminescent concentrator using several quantum dots and heteronanocrystals with varying Stokes’ shift and absorption cross sections. A maximum efficiency of 5.9% is found for so-called Type II heteronanocrystals.
APA, Harvard, Vancouver, ISO, and other styles
13

Xia, Pengfei, Shuhong Xu, Chunlei Wang, and Dayan Ban. "Perovskite luminescent solar concentrators for photovoltaics." APL Photonics 6, no. 12 (December 1, 2021): 120901. http://dx.doi.org/10.1063/5.0067920.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Purcell-Milton, Finn, and Yurii K. Gun'ko. "Quantum dots for Luminescent Solar Concentrators." Journal of Materials Chemistry 22, no. 33 (2012): 16687. http://dx.doi.org/10.1039/c2jm32366d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kaysir, MD Rejvi, Simon Fleming, Rowan W. MacQueen, Timothy W. Schmidt, and Alexander Argyros. "Luminescent solar concentrators utilizing stimulated emission." Optics Express 24, no. 6 (February 16, 2016): A497. http://dx.doi.org/10.1364/oe.24.00a497.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Albers, Peter T. M., Cees W. M. Bastiaansen, and Michael G. Debije. "Dual waveguide patterned luminescent solar concentrators." Solar Energy 95 (September 2013): 216–23. http://dx.doi.org/10.1016/j.solener.2013.06.014.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Edelenbosch, Oreane Y., Martyn Fisher, Luca Patrignani, Wilfried G. J. H. M. van Sark, and Amanda J. Chatten. "Luminescent solar concentrators with fiber geometry." Optics Express 21, S3 (April 22, 2013): A503. http://dx.doi.org/10.1364/oe.21.00a503.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Tummeltshammer, C., A. Taylor, A. J. Kenyon, and I. Papakonstantinou. "Losses in luminescent solar concentrators unveiled." Solar Energy Materials and Solar Cells 144 (January 2016): 40–47. http://dx.doi.org/10.1016/j.solmat.2015.08.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Scudo, Petra F., Luigi Abbondanza, Roberto Fusco, and Luciano Caccianotti. "Spectral converters and luminescent solar concentrators." Solar Energy Materials and Solar Cells 94, no. 7 (July 2010): 1241–46. http://dx.doi.org/10.1016/j.solmat.2010.03.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Sóti, R., É. Farkas, M. Hilbert, Zs Farkas, and I. Ketskeméty. "Photon transport in luminescent solar concentrators." Journal of Luminescence 68, no. 2-4 (May 1996): 105–14. http://dx.doi.org/10.1016/0022-2313(96)00004-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Sidrach de Cardona, M., M. Carrascosa, F. Meseguer, F. Cusso, and F. Jaque. "Edge effect on luminescent solar concentrators." Solar Cells 15, no. 3 (November 1985): 225–30. http://dx.doi.org/10.1016/0379-6787(85)90079-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Dybova, T. N., N. V. Komarov, Yu N. Koryukin, N. G. Moskovchenko, and V. V. Popov. "Organosilicon luminophors for luminescent solar concentrators." Journal of Applied Spectroscopy 55, no. 5 (November 1991): 1177–80. http://dx.doi.org/10.1007/bf00658422.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Eisfeld, Alexander, and John S. Briggs. "Dye Aggregates in Luminescent Solar Concentrators." physica status solidi (a) 215, no. 2 (December 4, 2017): 1700634. http://dx.doi.org/10.1002/pssa.201700634.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Levin, M. B., G. P. Starostina, and A. S. Cherkasov. "Efficiency of luminescent solar concentrators based on luminescent glasses." Journal of Applied Spectroscopy 46, no. 3 (March 1987): 277–81. http://dx.doi.org/10.1007/bf00660214.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Smith, Duncan E., Michael D. Hughes, Bhakti Patel, and Diana-Andra Borca-Tasciuc. "An Open-Source Monte Carlo Ray-Tracing Simulation Tool for Luminescent Solar Concentrators with Validation Studies Employing Scattering Phosphor Films." Energies 14, no. 2 (January 15, 2021): 455. http://dx.doi.org/10.3390/en14020455.

Full text
Abstract:
Luminescent solar concentrators enhance the power output of solar cells through wave-guided luminescent emission and have great potential as building-integrated photovoltaics. Luminescent solar concentrators with a variety of geometries and absorbing–emitting materials have been reported in the literature. As the breadth of available experimental configurations continues to grow, there is an increasing need for versatile Monte Carlo ray-tracing simulation tools to analyze the performance of these devices for specific applications. This paper presents the framework for a Monte Carlo ray-tracing simulation tool that can be used to analyze a host of three-dimensional geometries. It incorporates custom radiative transport models to consider the effects of scattering from luminescent media, while simultaneously modeling absorption and luminescent emission. The model is validated using experimental results for three-dimensional planar and wedge-shaped luminescent solar concentrators employing scattering phosphor films. Performance was studied as a function of length, wavelength, and the angle of incidence of incoming light. The data for the validation studies and the code (written using the Python programming language) associated with the described model are publically available.
APA, Harvard, Vancouver, ISO, and other styles
26

De Nisi, F., R. Francischello, A. Battisti, A. Panniello, E. Fanizza, M. Striccoli, X. Gu, N. L. C. Leung, B. Z. Tang, and A. Pucci. "Red-emitting AIEgen for luminescent solar concentrators." Materials Chemistry Frontiers 1, no. 7 (2017): 1406–12. http://dx.doi.org/10.1039/c7qm00008a.

Full text
Abstract:
This study reports for the first time the use of a red-emitting AIEgen, i.e. TPE-AC, for the realization of efficient luminescent solar concentrators (LSCs) based on poly(methyl methacrylate) (PMMA) and polycarbonate (PC) thin films (25 ± 5 μm).
APA, Harvard, Vancouver, ISO, and other styles
27

Rajan, Renju, P. Ramesh Babu, and K. Senthilnathan. "Light Harvesting using Solar Cells and Luminescent Solar Concentrators." Current Science 118, no. 11 (June 10, 2020): 1652. http://dx.doi.org/10.18520/cs/v118/i11/1652-1655.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Brennan, Lorcan J., Finn Purcell-Milton, Barry McKenna, Trystan M. Watson, Yurii K. Gun'ko, and Rachel C. Evans. "Large area quantum dot luminescent solar concentrators for use with dye-sensitised solar cells." Journal of Materials Chemistry A 6, no. 6 (2018): 2671–80. http://dx.doi.org/10.1039/c7ta04731b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Hernández-Rodríguez, M. A., S. F. H. Correia, R. A. S. Ferreira, and L. D. Carlos. "A perspective on sustainable luminescent solar concentrators." Journal of Applied Physics 131, no. 14 (April 14, 2022): 140901. http://dx.doi.org/10.1063/5.0084182.

Full text
Abstract:
The luminescent solar concentrator (LSC) concept appeared almost forty years ago, as a solution to overcome the limitations related to photovoltaic cell efficiency. Nowadays, they are seen as a promising approach to integrate photovoltaic elements into the built environment, in an invisible way and without detrimental effects to the aesthetics of the building or the quality of life of the inhabitants. LSCs are devices comprising a transparent matrix embedding optically active centers that absorb the incident radiation, which is re-emitted at a specific wavelength and transferred by total internal reflection to photovoltaic cells located at the edges of the matrix. During the last few decades, several optically active materials have been tested for LSCs in an endless quest for the most efficient device. Nowadays, one of the world's major concerns is the environmental impact of our choices. Thus, the present and future path for LSCs must include the search for nature-friendly materials, with little environmental impact, and, in this sense, this Perspective offers a general overview of the potential of environmentally-friendly materials for LSCs.
APA, Harvard, Vancouver, ISO, and other styles
30

Minei, Pierpaolo, Giuseppe Iasilli, Giacomo Ruggeri, and Andrea Pucci. "Luminescent Solar Concentrators from Waterborne Polymer Coatings." Coatings 10, no. 7 (July 8, 2020): 655. http://dx.doi.org/10.3390/coatings10070655.

Full text
Abstract:
This study reports for the first time the use of waterborne polymers as host matrices for luminescent solar concentrators (LSCs). Notably, three types of waterborne polymer dispersions based either on acrylic acid esters and styrene (Polidisp® 7602), acrylic and methacrylic acid esters (Polidisp® 7788) or aliphatic polyester-based polyurethane (Tecfin P40) were selected as amorphous coatings over glass substrates. Water soluble Basic Yellow 40 (BY40) and Disperse Red 277 (DR277) were utilized as fluorophores and the derived thin polymer films (100 μm) were found homogeneous within the dye range of concentration investigated (0.3–2 wt.%). The optical efficiency determination (ηopt) evidenced LSCs performances close to those collected from benchmark polymethylmethacrylate (PMMA) thin films and Lumogen Red F350 (LR) with the same experimental setup. Noteworthy, maximum ηopt of 9.5 ± 0.2 were recorded for the Polidisp® 7602 matrix containing BY40, thus definitely supporting the waterborne polymer matrices for the development of high performance and cost-effective LSCs.
APA, Harvard, Vancouver, ISO, and other styles
31

de Boer, Dick K. G., Chi-Wen Lin, Merijn P. Giesbers, Hugo J. Cornelissen, Michael G. Debije, Paul P. C. Verbunt, and Dirk J. Broer. "Polarization-independent filters for luminescent solar concentrators." Applied Physics Letters 98, no. 2 (January 10, 2011): 021111. http://dx.doi.org/10.1063/1.3541543.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Rowan, B. C., L. R. Wilson, and B. S. Richards. "Advanced Material Concepts for Luminescent Solar Concentrators." IEEE Journal of Selected Topics in Quantum Electronics 14, no. 5 (2008): 1312–22. http://dx.doi.org/10.1109/jstqe.2008.920282.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Moraitis, P., R. E. I. Schropp, and W. G. J. H. M. van Sark. "Nanoparticles for Luminescent Solar Concentrators - A review." Optical Materials 84 (October 2018): 636–45. http://dx.doi.org/10.1016/j.optmat.2018.07.034.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Rondão, Raquel, Ana R. Frias, Sandra F. H. Correia, Lianshe Fu, Verónica de Zea Bermudez, Paulo S. André, Rute A. S. Ferreira, and Luís D. Carlos. "High-Performance Near-Infrared Luminescent Solar Concentrators." ACS Applied Materials & Interfaces 9, no. 14 (March 30, 2017): 12540–46. http://dx.doi.org/10.1021/acsami.7b02700.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Panzeri, Gabriele, Elisavet Tatsi, Gianmarco Griffini, and Luca Magagnin. "Luminescent Solar Concentrators for Photoelectrochemical Water Splitting." ACS Applied Energy Materials 3, no. 2 (January 28, 2020): 1665–71. http://dx.doi.org/10.1021/acsaem.9b02163.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Mooney, Alex M., Kathryn E. Warner, Paul J. Fontecchio, Yu-Zhong Zhang, and Bruce P. Wittmershaus. "Photodegradation in multiple-dye luminescent solar concentrators." Journal of Luminescence 143 (November 2013): 469–72. http://dx.doi.org/10.1016/j.jlumin.2013.05.029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Erickson, Christian S., Liam R. Bradshaw, Stephen McDowall, John D. Gilbertson, Daniel R. Gamelin, and David L. Patrick. "Zero-Reabsorption Doped-Nanocrystal Luminescent Solar Concentrators." ACS Nano 8, no. 4 (March 21, 2014): 3461–67. http://dx.doi.org/10.1021/nn406360w.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Waldron, Dennis L., Amanda Preske, Joseph M. Zawodny, Todd D. Krauss, and Mool C. Gupta. "PbSe quantum dot based luminescent solar concentrators." Nanotechnology 28, no. 9 (January 30, 2017): 095205. http://dx.doi.org/10.1088/1361-6528/aa577f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Schiphorst, Jeroen ter, Marx L. M. K. H. Y. K. Cheng, Maxime van der Heijden, Renee L. Hageman, Emily L. Bugg, Teun J. L. Wagenaar, and Michael G. Debije. "Printed luminescent solar concentrators: Artistic renewable energy." Energy and Buildings 207 (January 2020): 109625. http://dx.doi.org/10.1016/j.enbuild.2019.109625.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Zhao, Yimu, Garrett A. Meek, Benjamin G. Levine, and Richard R. Lunt. "Near-Infrared Harvesting Transparent Luminescent Solar Concentrators." Advanced Optical Materials 2, no. 7 (May 7, 2014): 606–11. http://dx.doi.org/10.1002/adom.201400103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Yang, Chenchen, and Richard R. Lunt. "Limits of Visibly Transparent Luminescent Solar Concentrators." Advanced Optical Materials 5, no. 8 (February 7, 2017): 1600851. http://dx.doi.org/10.1002/adom.201600851.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Zhou, Yufeng, Daniele Benetti, Zhiyuan Fan, Haiguang Zhao, Dongling Ma, Alexander O. Govorov, Alberto Vomiero, and Federico Rosei. "Near Infrared, Highly Efficient Luminescent Solar Concentrators." Advanced Energy Materials 6, no. 11 (March 31, 2016): 1501913. http://dx.doi.org/10.1002/aenm.201501913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Hughes, Michael D., Diana-Andra Borca-Tasciuc, and Deborah A. Kaminski. "Highly efficient luminescent solar concentrators employing commercially available luminescent phosphors." Solar Energy Materials and Solar Cells 171 (November 2017): 293–301. http://dx.doi.org/10.1016/j.solmat.2017.06.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Liu, Xin, Bing Luo, Jiabin Liu, Dengwei Jing, Daniele Benetti, and Federico Rosei. "Eco-friendly quantum dots for liquid luminescent solar concentrators." Journal of Materials Chemistry A 8, no. 4 (2020): 1787–98. http://dx.doi.org/10.1039/c9ta09586a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Sun, Yujian, Yongcao Zhang, and Yilin Li. "Mapping the Surface Heat of Luminescent Solar Concentrators." Optics 2, no. 4 (November 16, 2021): 259–65. http://dx.doi.org/10.3390/opt2040024.

Full text
Abstract:
Luminescent solar concentrators (LSCs) have been widely studied for their potential application as building-integrated photovoltaics (BIPV). While numerous efforts have been made to improve the performance, the photothermal (PT) properties of LSCs are rarely investigated. In this report, we studied the PT properties of an LSC with a power conversion efficiency (PCE) of 3.27% and a concentration ratio of 1.42. The results showed that the total PT power of the LSC was 13.2 W, and the heat was concentrated on the edge of the luminescent waveguide with a high heat power density of over 200 W m−2.
APA, Harvard, Vancouver, ISO, and other styles
46

Huang, Chieh-Szu, Xinyue Kang, René M. Rossi, Maksym V. Kovalenko, Xuemei Sun, Huisheng Peng, and Luciano F. Boesel. "Energy harvesting textiles: using wearable luminescent solar concentrators to improve the efficiency of fiber solar cells." Journal of Materials Chemistry A 9, no. 46 (2021): 25974–81. http://dx.doi.org/10.1039/d1ta04984d.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Pintossi, Diego, Alessia Colombo, Marinella Levi, Claudia Dragonetti, Stefano Turri, and Gianmarco Griffini. "UV-curable fluoropolymers crosslinked with functional fluorescent dyes: the way to multifunctional thin-film luminescent solar concentrators." Journal of Materials Chemistry A 5, no. 19 (2017): 9067–75. http://dx.doi.org/10.1039/c7ta01692a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Cai, Kun-Bin, Hsiu-Ying Huang, Po-Wen Chen, Xiao-Ming Wen, Kai Li, King Chester Capinig Co, Ji-Lin Shen, Kuo-Pin Chiu, and Chi-Tsu Yuan. "Highly transparent and luminescent gel glass based on reabsorption-free gold nanoclusters." Nanoscale 12, no. 19 (2020): 10781–89. http://dx.doi.org/10.1039/d0nr01668c.

Full text
Abstract:
Luminescent and transparent composites formed by embedding luminophores in a solid matrix are essential components for several photonic applications, such as luminescent solar concentrators (LSCs) and luminescent down-shifting/conversion layers.
APA, Harvard, Vancouver, ISO, and other styles
49

Johnson-Groh, Mara. "Future buildings might sustainably generate their own power with luminescent solar concentrators." Scilight 2022, no. 15 (April 15, 2022): 151102. http://dx.doi.org/10.1063/10.0010246.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Zhang, Yi, Song Sun, Rui Kang, Jun Zhang, Ningning Zhang, Wenhao Yan, Wei Xie, Jianjun Ding, Jun Bao, and Chen Gao. "Polymethylmethacrylate-based luminescent solar concentrators with bottom-mounted solar cells." Energy Conversion and Management 95 (May 2015): 187–92. http://dx.doi.org/10.1016/j.enconman.2015.02.043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography