Academic literature on the topic 'Lumped Raman amplifier'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lumped Raman amplifier.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Lumped Raman amplifier"
Miyamoto, T., M. Tanaka, J. Kobayashi, T. Tsuzaki, M. Hirano, T. Okuno, M. Kakui, and M. Shigematsu. "Highly nonlinear fiber-based lumped fiber Raman amplifier for CWDM transmission systems." Journal of Lightwave Technology 23, no. 11 (November 2005): 3475–83. http://dx.doi.org/10.1109/jlt.2005.857777.
Full textKarasek, M., J. Kanka, P. Honzatko, and J. Radil. "Channel Addition–Removal Response in All-Optical Gain-Clamped Lumped Raman Fiber Amplifier." IEEE Photonics Technology Letters 16, no. 3 (March 2004): 771–73. http://dx.doi.org/10.1109/lpt.2004.823727.
Full textKarasek, M., J. Kaka, G. R. Khan, and J. Radil. "Design of all-optical gain-clamped lumped Raman fibre amplifier for optimal dynamic performance." IEE Proceedings - Optoelectronics 152, no. 4 (2005): 223. http://dx.doi.org/10.1049/ip-opt:20045019.
Full textSeo, H. S., K. Oh, W. Shin, U. C. Ryu, and U. C. Paek. "Compensation of Raman-induced crosstalk using a lumped germanosilicate fiber Raman amplifier in the 1.571-1.591-μm region." IEEE Photonics Technology Letters 13, no. 1 (January 2001): 28–30. http://dx.doi.org/10.1109/68.903210.
Full textKarasek, Miroslav, Ji Kanka, Leo Bohac, David Krcmarik, Jan Radil, and Josef Vojtech. "Surviving-Channel-Power Transients in Second-Order Pumped Lumped Raman Fiber Amplifier: Experimentation and Modeling." Journal of Lightwave Technology 25, no. 3 (March 2007): 664–72. http://dx.doi.org/10.1109/jlt.2006.889659.
Full textKarásek, M., J. Kaňka, P. Honzátko, and Jan Radil. "Protection of surviving channels in all-optical gain-clamped lumped Raman fibre amplifier: modelling and experimentation." Optics Communications 231, no. 1-6 (February 2004): 309–17. http://dx.doi.org/10.1016/j.optcom.2003.11.042.
Full textHammani, K., and C. Finot. "Extreme optical fluctuations in lumped Raman fibre amplifiers." Journal of Optics 15, no. 6 (June 1, 2013): 064009. http://dx.doi.org/10.1088/2040-8978/15/6/064009.
Full textParolari, P., L. Marazzi, L. Bernardini, and M. Martinelli. "Double rayleigh scattering noise in lumped and distributed raman amplifiers." Journal of Lightwave Technology 21, no. 10 (October 2003): 2224–28. http://dx.doi.org/10.1109/jlt.2003.817705.
Full textChen, C. J., J. Ye, W. S. Wong, Y. W. Lu, M. C. Ho, Y. Cao, M. J. Gassner, et al. "Control of transient effects in distributed and lumped Raman amplifiers." Electronics Letters 37, no. 21 (2001): 1304. http://dx.doi.org/10.1049/el:20010880.
Full textHammani, Kamal, and Christophe Finot. "Experimental signatures of extreme optical fluctuations in lumped Raman fiber amplifiers." Optical Fiber Technology 18, no. 2 (March 2012): 93–100. http://dx.doi.org/10.1016/j.yofte.2012.01.003.
Full textDissertations / Theses on the topic "Lumped Raman amplifier"
Saito, Lúcia Akemi Miyazato. "Amplificador Raman discreto para utilização em transmissão CWDM na banda O." Universidade Presbiteriana Mackenzie, 2006. http://tede.mackenzie.br/jspui/handle/tede/1439.
Full textConselho Nacional de Desenvolvimento Científico e Tecnológico
Most of researches about Raman amplifier had been made in C and L bands (1530-1625 nm), which is possible to found more data of Raman efficiency gain and the requirements for design is consolidated. The first issue that should be considered when the amplifier is to use in another band, like our project (O-band) is to consider the decrease of effective area and wavelength in the calculation of Raman efficiency, not only the pump wavelength. We have two configuration types: for the first one, the gain is obtained in the transmission fiber and for the second that is demonstrated in this work, we need special fibers as DSF, DCF and Raman fiber to amplifier the signals. Note that the amplification can be obtained in any band of optical spectrum, which depends on the pump wavelength that is used for made it. Our studies demonstrated that the discrete Raman amplifier that was made of Raman fiber of OFS Fitel Denmark was more efficient in short wavelengths and has more improvement when it was working in O-band. In spite of the higher attenuation, we can have higher Raman gain efficiency (CR) because the effective area (Aeff) decreased in short wavelengths. The characteristics of Raman fiber were studied when we found the Raman gain efficiency peak of 3.9 (W.km)-1 for a pump laser of 1240 nm wavelength. For this case, the gain of O-band amplifier was about 50 % higher when we compared with the C-band. For a CWDM system, we need to design a multi-pump amplifier. It is necessary four pump lasers to amplifier a bandwidth of 70 nm and six pump lasers to cover all O-band. The gain value depends on the pump power and if we want a good result, we should verify the total power of channels in the input of amplifier to avoid the device saturation. In addition, the noise figure of Raman amplifier was studied and then we found results that demonstrated higher noise values in short wavelengths specially, when we need to locate some pump lasers between signal wavelengths.
A maior parte das pesquisas realizadas sobre amplificadores Raman tem seus estudos centrados nas bandas C (1530 a 1565 nm) e L (1565 a 1625 nm), regiões onde os dados de eficiência de ganho Raman e a parametrização dos amplificadores têm seus estudos consolidados. Um ponto importante para ser considerado quando se deseja trabalhar numa banda diferente, como no caso a banda O (1260 a 1360 nm), é que a alteração não é apenas no comprimento de onda do laser de bombeio. Deve-se considerar o decréscimo da área efetiva e do comprimento de onda que influenciará diretamente no valor da eficiência e conseqüentemente no próprio ganho do amplificador Raman. Alguns amplificadores Raman utilizam a própria fibra de transmissão e outros têm como meio de amplificação fibras especiais como DSF, DCF ou a própria fibra Raman como é demonstrado neste trabalho. Sabe-se, no entanto, que a amplificação Raman pode ocorrer em qualquer banda do espectro óptico sendo necessário para a sua montagem, apenas alterar o comprimento de onda do laser de geração do efeito. Este trabalho demonstrou que o Amplificador Raman Discreto utilizando a fibra Raman da OFS Fitel Denmark é mais eficiente em comprimentos de onda menores e com melhor aproveitamento na região compreendida pela banda O . Nossos estudos demonstraram que apesar do aumento da atenuação nesta região, pode-se obter maior Eficiência de Ganho Raman (CR) devido ao decréscimo da Área Efetiva (Aeff) em comprimentos de onda curtos. A variação das características da fibra Raman para a banda O foram analisadas sendo encontrado um pico de Eficiência de Ganho Raman de 3,9 (W.km)-1 para um laser de bombeio de 1240 nm resultando em torno de 50 % a mais de Ganho no amplificador quando comparado com a banda C . Analisando o amplificador utilizando múltiplos lasers de bombeio, verificou-se que para uma aplicação em sistema CWDM seriam necessários 4 lasers para amplificação numa faixa de 70 nm e 6 lasers para cobrir toda a banda O sendo que a magnitude de amplificação depende diretamente da potência destes lasers devendo-se observar a potência total dos canais na entrada para evitar a saturação do dispositivo. Foi analisada a figura de ruído do amplificador Raman sendo encontrados valores mais altos em comprimentos de onda curtos e de maior magnitude quando há lasers de bombeio entre os comprimentos de onda de sinal.
Zhang, Hui. "Lumped fiber Raman amplifiers with highly nonlinear fiber." Thesis, 2005. http://spectrum.library.concordia.ca/8713/1/MR14289.pdf.
Full textConference papers on the topic "Lumped Raman amplifier"
Karasek, M., J. Radil, J. Vojtech, and D. Krcmarik. "Power Transients in Second Order Pumped Lumped Raman Fiber Amplifier." In OFC/NFOEC 2007 - 2007 Conference on Optical Fiber Communication and the National Fiber Optic Engineers Conference. IEEE, 2007. http://dx.doi.org/10.1109/ofc.2007.4348305.
Full textKarasek, M., J. Vojtech, and J. Radil. "Surviving Channel Power Transients in TDM-Pumped Lumped Raman Fiber Amplifier." In National Fiber Optic Engineers Conference. Washington, D.C.: OSA, 2009. http://dx.doi.org/10.1364/nfoec.2009.jtha14.
Full textLiang, S., S. Jain, L. Xu, K. R. H. Bottrill, N. Taengnoi, M. Guasoni, P. Zhang, et al. "Record Gain, Low Noise Figure, C+L Band Lumped Raman Amplifier." In 2020 European Conference on Optical Communications (ECOC). IEEE, 2020. http://dx.doi.org/10.1109/ecoc48923.2020.9333376.
Full textMongardien, D., C. Martinelli, S. Borne, L. Lorcy, and D. Bayart. "Operation of lumped Raman fiber amplifier for fixed channel output power with channels up-grade and span loss variation." In Optical Amplifiers and Their Applications. Washington, D.C.: OSA, 2004. http://dx.doi.org/10.1364/oaa.2004.owb3.
Full textMenashe, David, Uri Ghera, Aviram Golan, Florence Leplingard, Christian Simonneau, Gilles Melin, Laurence Galkovsky, and David Boivin. "High power L-Band Lumped Raman Fibre Amplifier with fast transient suppression using Photonic Crystal Fibre." In 2010 36th European Conference and Exhibition on Optical Communication - (ECOC 2010). IEEE, 2010. http://dx.doi.org/10.1109/ecoc.2010.5621478.
Full textMenashe, David, Dominique Bayart, and Sophie Borne. "Lumped Raman fiber amplifiers based on highly non-linear photonic crystal fiber." In Photonics Europe, edited by Kyriacos Kalli and Waclaw Urbanczyk. SPIE, 2008. http://dx.doi.org/10.1117/12.781353.
Full textZhang, Hui, and Xiupu Zhang. "Performance of lumped fiber Raman amplifiers using highly nonlinear fibers or nonlinear photonic crystal fibers." In Photonics North 2006, edited by Pierre Mathieu. SPIE, 2006. http://dx.doi.org/10.1117/12.707717.
Full textPuc, Andrej B., Michel W. Chbat, Jason D. Henrie, Ned A. Weaver, Hyunchin Kim, Andrzej Kaminski, Ashiqur Rahman, and HervEA FEvrer. "Long-haul WDM NRZ transmission at 10.7Gb/s in S-band using cascade of lumped Raman amplifiers." In Optical Fiber Communication Conference. Washington, D.C.: OSA, 2001. http://dx.doi.org/10.1364/ofc.2001.pd39.
Full text