To see the other types of publications on this topic, follow the link: Lunar wake.

Journal articles on the topic 'Lunar wake'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Lunar wake.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Fatemi, S., M. Holmström, Y. Futaana, S. Barabash, and C. Lue. "The lunar wake current systems." Geophysical Research Letters 40, no. 1 (2013): 17–21. http://dx.doi.org/10.1029/2012gl054635.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yan, Bo, Punam K. Prasad, Sayan Mukherjee, Asit Saha, and Santo Banerjee. "Dynamical Complexity and Multistability in a Novel Lunar Wake Plasma System." Complexity 2020 (March 16, 2020): 1–11. http://dx.doi.org/10.1155/2020/5428548.

Full text
Abstract:
Dynamical complexity and multistability of electrostatic waves are investigated in a four-component homogeneous and magnetized lunar wake plasma constituting of beam electrons, heavier ions (alpha particles, He++), protons, and suprathermal electrons. The unperturbed dynamical system of the considered lunar wake plasma supports nonlinear and supernonlinear trajectories which correspond to nonlinear and supernonlinear electrostatic waves. On the contrary, the perturbed dynamical system of lunar wake plasma shows different types of coexisting attractors including periodic, quasiperiodic, and cha
APA, Harvard, Vancouver, ISO, and other styles
3

CUI, Wei, and Lei LI. "2D MHD Simulation of the Lunar Wake." Chinese Journal of Space Science 28, no. 3 (2008): 189. http://dx.doi.org/10.11728/cjss2008.03.189.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Tao, J. B., R. E. Ergun, D. L. Newman, et al. "Kinetic instabilities in the lunar wake: ARTEMIS observations." Journal of Geophysical Research: Space Physics 117, A3 (2012): n/a. http://dx.doi.org/10.1029/2011ja017364.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Xie, LiangHai, Lei Li, YiTeng Zhang, and Darren Lee De Zeeuw. "Three-dimensional MHD simulation of the lunar wake." Science China Earth Sciences 56, no. 2 (2012): 330–38. http://dx.doi.org/10.1007/s11430-012-4383-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Zhang, H., K. K. Khurana, M. G. Kivelson, et al. "Three-dimensional lunar wake reconstructed from ARTEMIS data." Journal of Geophysical Research: Space Physics 119, no. 7 (2014): 5220–43. http://dx.doi.org/10.1002/2014ja020111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Rasca, Anthony P., Shahab Fatemi, and William M. Farrell. "Modeling the Lunar Wake Response to a CME Using a Hybrid PIC Model." Planetary Science Journal 3, no. 1 (2022): 4. http://dx.doi.org/10.3847/psj/ac3fba.

Full text
Abstract:
Abstract In the solar wind, a low-density wake region forms downstream of the nightside lunar surface. In this study, we use a series of 3D hybrid particle-in-cell simulations to model the response of the lunar wake to a passing coronal mass ejection (CME). Average plasma parameters are derived from the Wind spacecraft located at 1 au during three distinct phases of a passing halo (Earth-directed) CME on 2015 June 22. Each set of plasma parameters, representing the shock/plasma sheath, a magnetic cloud, and plasma conditions we call the mid-CME phase, are used as the time-static upstream bound
APA, Harvard, Vancouver, ISO, and other styles
8

Xu, Shaosui, Andrew R. Poppe, Jasper S. Halekas, David L. Mitchell, James P. McFadden, and Yuki Harada. "Mapping the Lunar Wake Potential Structure With ARTEMIS Data." Journal of Geophysical Research: Space Physics 124, no. 5 (2019): 3360–77. http://dx.doi.org/10.1029/2019ja026536.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rubia, R., S. V. Singh, and G. S. Lakhina. "Occurrence of electrostatic solitary waves in the lunar wake." Journal of Geophysical Research: Space Physics 122, no. 9 (2017): 9134–47. http://dx.doi.org/10.1002/2017ja023972.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Sreeraj, T., S. V. Singh, and G. S. Lakhina. "Electrostatic waves driven by electron beam in lunar wake plasma." Physics of Plasmas 25, no. 5 (2018): 052902. http://dx.doi.org/10.1063/1.5032141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Sreeraj, T., S. V. Singh, and G. S. Lakhina. "Linear analysis of electrostatic waves in the lunar wake plasma." Physica Scripta 95, no. 4 (2020): 045610. http://dx.doi.org/10.1088/1402-4896/ab7142.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Nakagawa, Tomoko, Yoshinori Takahashi, and Masahide Iizima. "GEOTAIL observation of upstream ULF waves associated with lunar wake." Earth, Planets and Space 55, no. 9 (2003): 569–80. http://dx.doi.org/10.1186/bf03351789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Birch, Paul C., and Sandra C. Chapman. "Two dimensional particle-in-cell simulations of the lunar wake." Physics of Plasmas 9, no. 5 (2002): 1785–89. http://dx.doi.org/10.1063/1.1467655.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Rubia, R., S. V. Singh, and G. S. Lakhina. "Existence domain of electrostatic solitary waves in the lunar wake." Physics of Plasmas 25, no. 3 (2018): 032302. http://dx.doi.org/10.1063/1.5017638.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Owen, C. J., R. P. Lepping, K. W. Ogilvie, J. A. Slavin, W. M. Farrell, and J. B. Byrnes. "The lunar wake at 6.8 RL: WIND magnetic field observations." Geophysical Research Letters 23, no. 10 (1996): 1263–66. http://dx.doi.org/10.1029/96gl01354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Poppe, A. R., S. Fatemi, J. S. Halekas, M. Holmström, and G. T. Delory. "ARTEMIS observations of extreme diamagnetic fields in the lunar wake." Geophysical Research Letters 41, no. 11 (2014): 3766–73. http://dx.doi.org/10.1002/2014gl060280.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Farrell, W. M., P. E. Clark, M. R. Collier, et al. "Terminator Double Layer Explorer (TerDLE): Examining the Near-Moon Lunar Wake." Planetary Science Journal 2, no. 2 (2021): 61. http://dx.doi.org/10.3847/psj/abe0ca.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Xu, Xiaojun, Qi Xu, Qing Chang, et al. "ARTEMIS Observations of Well-structured Lunar Wake in Subsonic Plasma Flow." Astrophysical Journal 881, no. 1 (2019): 76. http://dx.doi.org/10.3847/1538-4357/ab2e0a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Guo, Dawei, Xiaoping Zhang, Lianghai Xie, et al. "Diamagnetic Plasma Clouds in the Near Lunar Wake Observed by ARTEMIS." Astrophysical Journal 883, no. 1 (2019): 12. http://dx.doi.org/10.3847/1538-4357/ab3652.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Halekas, J. S., S. D. Bale, D. L. Mitchell, and R. P. Lin. "Correction to “Electrons and magnetic fields in the lunar plasma wake”." Journal of Geophysical Research: Space Physics 116, A7 (2011): n/a. http://dx.doi.org/10.1029/2011ja016929.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Clack, D., J. C. Kasper, A. J. Lazarus, J. T. Steinberg, and W. M. Farrell. "Wind observations of extreme ion temperature anisotropies in the lunar wake." Geophysical Research Letters 31, no. 6 (2004): n/a. http://dx.doi.org/10.1029/2003gl018298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Chandran, S. B. Rakesh, S. R. Rajesh, A. Abraham, G. Renuka, and Chandu Venugopal. "SEP events and wake region lunar dust charging with grain radii." Advances in Space Research 59, no. 1 (2017): 483–89. http://dx.doi.org/10.1016/j.asr.2016.09.027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Zhang, H., K. K. Khurana, M. G. Kivelson, et al. "Alfvén wings in the lunar wake: The role of pressure gradients." Journal of Geophysical Research: Space Physics 121, no. 11 (2016): 10,698–10,711. http://dx.doi.org/10.1002/2016ja022360.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Halekas, J. S., V. Angelopoulos, D. G. Sibeck, et al. "First Results from ARTEMIS, a New Two-Spacecraft Lunar Mission: Counter-Streaming Plasma Populations in the Lunar Wake." Space Science Reviews 165, no. 1-4 (2011): 93–107. http://dx.doi.org/10.1007/s11214-010-9738-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Wiehle, S., F. Plaschke, U. Motschmann, et al. "First lunar wake passage of ARTEMIS: Discrimination of wake effects and solar wind fluctuations by 3D hybrid simulations." Planetary and Space Science 59, no. 8 (2011): 661–71. http://dx.doi.org/10.1016/j.pss.2011.01.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Xu, Xiaojun, Jiaying Xu, Qi Xu, Qing Chang, and Jing Wang. "Rapid Refilling of the Lunar Wake under Transonic Plasma Flow: ARTEMIS Observations." Astrophysical Journal 908, no. 2 (2021): 227. http://dx.doi.org/10.3847/1538-4357/abd6f1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Nakagawa, Tomoko, and Masahide Iizima. "Pitch angle diffusion of electrons at the boundary of the lunar wake." Earth, Planets and Space 57, no. 9 (2005): 885–94. http://dx.doi.org/10.1186/bf03351866.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Nishino, M. N., M. Fujimoto, Y. Saito, et al. "Effect of the solar wind proton entry into the deepest lunar wake." Geophysical Research Letters 37, no. 12 (2010): n/a. http://dx.doi.org/10.1029/2010gl043948.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Birch, Paul C., and Sandra C. Chapman. "Detailed structure and dynamics in particle-in-cell simulations of the lunar wake." Physics of Plasmas 8, no. 10 (2001): 4551–59. http://dx.doi.org/10.1063/1.1398570.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Birch, Paul C., and Sandra C. Chapman. "Particle-in-cell simulations of the lunar wake with high phase space resolution." Geophysical Research Letters 28, no. 2 (2001): 219–22. http://dx.doi.org/10.1029/2000gl011958.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Yu, William, Joseph Wang, and Kevin Chou. "Laboratory Measurement of Lunar Regolith Simulant Surface Charging in a Localized Plasma Wake." IEEE Transactions on Plasma Science 43, no. 12 (2015): 4175–81. http://dx.doi.org/10.1109/tps.2015.2492551.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Gharaee, Hossna, Robert Rankin, Richard Marchand, and Jan Paral. "Properties of the lunar wake predicted by analytic models and hybrid-kinetic simulations." Journal of Geophysical Research: Space Physics 120, no. 5 (2015): 3795–803. http://dx.doi.org/10.1002/2014ja020907.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Dhanya, M. B., A. Bhardwaj, Y. Futaana, et al. "Proton entry into the near-lunar plasma wake for magnetic field aligned flow." Geophysical Research Letters 40, no. 12 (2013): 2913–17. http://dx.doi.org/10.1002/grl.50617.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Yen, Gili, Cheng F. Lee, Cheng-Lung Chen, and Wei-Chi Lin. "On the Chinese Lunar New Year Effect in Six Asian Stock Markets: An Empirical Analysis (1991–2000)." Review of Pacific Basin Financial Markets and Policies 04, no. 04 (2001): 463–78. http://dx.doi.org/10.1142/s0219091501000619.

Full text
Abstract:
This paper examines the existence/nonexistence of the Chinese Lunar New Year effect in Hong Kong, Japan, South Korea, Malaysia, Singapore, and Taiwan in recent years. Using longitudinal stock price index data from 1991 to 2000, the authors find that cumulative returns based on stock indices in the above mentioned Asian markets exhibit a consistently up-moving trend before or after the Chinese Lunar New Year, providing evidence for continued existence of the Chinese Lunar New Year effect in these six Asian stock markets in recent years. However, when the sample period is divided into before- vs
APA, Harvard, Vancouver, ISO, and other styles
35

Haakonsen, Christian Bernt, Ian H. Hutchinson, and Chuteng Zhou. "Kinetic electron and ion instability of the lunar wake simulated at physical mass ratio." Physics of Plasmas 22, no. 3 (2015): 032311. http://dx.doi.org/10.1063/1.4915525.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Ogilvie, K. W., J. T. Steinberg, R. J. Fitzenreiter, et al. "Observations of the lunar plasma wake from the WIND spacecraft on December 27, 1994." Geophysical Research Letters 23, no. 10 (1996): 1255–58. http://dx.doi.org/10.1029/96gl01069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Farrell, W. M., M. L. Kaiser, and J. T. Steinberg. "Electrostatic instability in the central lunar wake: A process for replenishing the plasma void?" Geophysical Research Letters 24, no. 9 (1997): 1135–38. http://dx.doi.org/10.1029/97gl00878.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Nishino, Masaki N., Yoshifumi Saito, Hideo Tsunakawa, et al. "Electrons on closed field lines of lunar crustal fields in the solar wind wake." Icarus 250 (April 2015): 238–48. http://dx.doi.org/10.1016/j.icarus.2014.12.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Wang, Y. C., J. Müller, W. H. Ip, and U. Motschmann. "A 3D hybrid simulation study of the electromagnetic field distributions in the lunar wake." Icarus 216, no. 2 (2011): 415–25. http://dx.doi.org/10.1016/j.icarus.2011.09.021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Nakagawa, Tomoko, and Masahide Iizima. "A reexamination of pitch angle diffusion of electrons at the boundary of the lunar wake." Earth, Planets and Space 58, no. 5 (2006): e17-e20. http://dx.doi.org/10.1186/bf03351945.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Farrell, W. M., M. L. Kaiser, J. T. Steinberg, and S. D. Bale. "A simple simulation of a plasma void: Applications to Wind observations of the lunar wake." Journal of Geophysical Research: Space Physics 103, A10 (1998): 23653–60. http://dx.doi.org/10.1029/97ja03717.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Birch, Paul C., and Sandra C. Chapman. "Correction to “Particle-in-cell simulations of the lunar wake with high phase space resolution”." Geophysical Research Letters 28, no. 13 (2001): 2669. http://dx.doi.org/10.1029/2001gl012961.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Avery, David H., and Thomas A. Wehr. "Synchrony of sleep-wake cycles with lunar tidal cycles in a rapid-cycling bipolar patient." Bipolar Disorders 20, no. 4 (2018): 399–402. http://dx.doi.org/10.1111/bdi.12644.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Farrell, W. M., R. J. Fitzenreiter, C. J. Owen, et al. "Upstream ULF waves and energetic electrons associated with the lunar wake: Detection of precursor activity." Geophysical Research Letters 23, no. 10 (1996): 1271–74. http://dx.doi.org/10.1029/96gl01355.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Xu, Xiaojun, Hon-Cheng Wong, Yonghui Ma, et al. "Anomalously high rate refilling in the near lunar wake caused by the Earth's bow shock." Journal of Geophysical Research: Space Physics 122, no. 9 (2017): 9102–14. http://dx.doi.org/10.1002/2016ja023505.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Kimura, Shinya, and Tomoko Nakagawa. "Electromagnetic full particle simulation of the electric field structure around the moon and the lunar wake." Earth, Planets and Space 60, no. 6 (2008): 591–99. http://dx.doi.org/10.1186/bf03353122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Hutchinson, Ian H., and David M. Malaspina. "Prediction and Observation of Electron Instabilities and Phase Space Holes Concentrated in the Lunar Plasma Wake." Geophysical Research Letters 45, no. 9 (2018): 3838–45. http://dx.doi.org/10.1029/2017gl076880.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Bale, S. D., C. J. Owen, J. L. Bougeret, et al. "Evidence of currents and unstable particle distributions in an extended region around the lunar plasma wake." Geophysical Research Letters 24, no. 11 (1997): 1427–30. http://dx.doi.org/10.1029/97gl01193.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Dhanya, M. B., Anil Bhardwaj, Yoshifumi Futaana, et al. "Characteristics of proton velocity distribution functions in the near-lunar wake from Chandrayaan-1/SWIM observations." Icarus 271 (June 2016): 120–30. http://dx.doi.org/10.1016/j.icarus.2016.01.032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Xu, Xiaojun, Hon‐Cheng Wong, Yonghui Ma, et al. "Observations of current sheets associated with solar wind reconnection exhausts passing through the near lunar wake." Journal of Geophysical Research: Space Physics 120, no. 11 (2015): 9246–55. http://dx.doi.org/10.1002/2015ja021614.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!