Academic literature on the topic 'Luneburg Lens'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Luneburg Lens.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Luneburg Lens"
Chen, Haibing, Qiang Cheng, Aihua Huang, Junyan Dai, Huiying Lu, Jie Zhao, Huifeng Ma, Weixiang Jiang, and Tiejun Cui. "Modified Luneburg Lens Based on Metamaterials." International Journal of Antennas and Propagation 2015 (2015): 1–6. http://dx.doi.org/10.1155/2015/902634.
Full textMattheakis, M. M., G. P. Tsironis, and V. I. Kovanis. "Luneburg lens waveguide networks." Journal of Optics 14, no. 11 (July 27, 2012): 114006. http://dx.doi.org/10.1088/2040-8978/14/11/114006.
Full textPeng, Huiyan, Huashuo Han, Pinchao He, Keqin Xia, Jiaxiang Zhang, Xiaochao Li, Qiaoliang Bao, Ying Chen, and Huanyang Chen. "The Luneburg-Lissajous lens." EPL (Europhysics Letters) 129, no. 6 (April 11, 2020): 64001. http://dx.doi.org/10.1209/0295-5075/129/64001.
Full textNikolic, Nasiha, and Andrew Hellicar. "Fractional Luneburg Lens Antenna." IEEE Antennas and Propagation Magazine 56, no. 5 (October 2014): 116–30. http://dx.doi.org/10.1109/map.2014.6971923.
Full textGarcia-Ortiz, C. E., R. Cortes, J. E. Gómez-Correa, E. Pisano, J. Fiutowski, D. A. Garcia-Ortiz, V. Ruiz-Cortes, H. G. Rubahn, and V. Coello. "Plasmonic metasurface Luneburg lens." Photonics Research 7, no. 10 (September 4, 2019): 1112. http://dx.doi.org/10.1364/prj.7.001112.
Full textBykov, Konstantin A., Yuri G. Pasternak, Vladimir A. Pendyurin, and Fyodor S. Safonov. "Flat Luneberg lens based on a printed circuit with curved conductors." Physics of Wave Processes and Radio Systems 24, no. 1 (May 6, 2021): 48–57. http://dx.doi.org/10.18469/1810-3189.2021.24.1.48-57.
Full textYu, Run, Hanlu Wang, Weicen Chen, Chunling Zhu, and Dawei Wu. "Latticed underwater acoustic Luneburg lens." Applied Physics Express 13, no. 8 (July 28, 2020): 084003. http://dx.doi.org/10.35848/1882-0786/aba7a7.
Full textDi Falco, Andrea, Susanne C. Kehr, and Ulf Leonhardt. "Luneburg lens in silicon photonics." Optics Express 19, no. 6 (March 3, 2011): 5156. http://dx.doi.org/10.1364/oe.19.005156.
Full textXue, L., and V. F. Fusco. "Printed holey plate Luneburg lens." Microwave and Optical Technology Letters 50, no. 2 (February 2008): 378–80. http://dx.doi.org/10.1002/mop.23087.
Full textRondineau, S., M. Himdi, and J. Sorieux. "A sliced spherical Luneburg lens." IEEE Antennas and Wireless Propagation Letters 2 (2003): 163–66. http://dx.doi.org/10.1109/lawp.2003.819045.
Full textDissertations / Theses on the topic "Luneburg Lens"
Xue, X. "Planar Luneburg lens design and characterisation." Thesis, Queen's University Belfast, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.492176.
Full textNormark, Frisk Curt-Herman, and Erik Algarp. "A Discrete Cylindrical Luneburg Lens With Liquid Layers." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-295595.
Full textI detta projekt designas en cylindrisk Luneburg-lins som fungerar vid optiska frekvenser. En Luneburg-lins är en gradientindexlins som omvandlar en punktkälla till en plan våg eller vice versa. Linsen är rotationssymmetrisk vilket möjliggör vidvinkelstrålescanning. I detta arbete diskretiseras gradienta indexet i lager, brytningsindex för varje lager realiseras med en transparent vätska. Raytracing används för att designa och utvärdera linsprestandan. Vi har simulerat Luneburg-linser med 4 - 10 lager. Genom att öka antalet lager förbättras prestandan. Svårigheter förekommer i linsens tillverkningsprocess med tanke på att vätskor med önskat brytningsindex inte kan blandas.
Kandidatexjobb i elektroteknik 2020, KTH, Stockholm
Yu, Xiaoju, Min Liang, and Rafael Sabory-Garcia. "Novel Broadband Direction of Arrival Estimation Using Luneburg Lens." International Foundation for Telemetering, 2012. http://hdl.handle.net/10150/581656.
Full textA broadband passive direction finding system utilizing Luneburg lens has been investigated. With the simulated power level distribution at the detectors mounted on a Luneburg lens, both Cramér-Rao bound (CRB) and the root mean square error (RMS) based on the Correlation Algorithm (CA) for the direction of arrival (DoA) estimation have been derived and calculated. Guidelines on how to design the Luneburg lens detecting system have been studied. Finally, as a proof-of-concept demonstration, the DoA performance of a Luneburg lens fabricated using the polymer jetting technology with five detectors 10° equally spaced to receive the azimuth signal from -20° to 20° is demonstrated.
Miao, Jingwei. "Ka-band 2D Luneburg Lens Design with Glide-symmetric Metasurface." Thesis, KTH, Elektroteknisk teori och konstruktion, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-214611.
Full textEn Luneburg-lins ar en lobformare som har tva fokalpunkter, en vid linsensyta och en i oandligheten. Den ar en billig passiv styrbar antenn vidhoga frekvenser. I detta examensarbete konstrueras en plan Luneburg-linsi metall for Ka-bandet. De kommersiella programvarorna CST MicrowaveStudio Suite och Ansys Electronic Desktop (HFSS) anvands for elektromagnetiskasimuleringar.Linsen bestar av tva glidsymmetriska metaytor med ett litet mellanrum.En hogre ordnings symmetri, glidsymmetri, kan ge linsen ultrabred bandbredd.Metaytorna bestar av ett stort antal enhetsceller. Olika typer avenhetsceller testas for att hitta den basta losningen med hansyn till badeelektromagnetiska egenskaper och tillverkningsbarhet. En tvadimensionellhornstruktur konstrueras for att uppna god matchning mellan linsens luftgapoch frirymd. En vagledarmatning designas ocksa, inklusive overgangfran koaxialledning till TE10-moden i en rektangular vagledare, som anslutertill linsens fokalpunkt.En prototyp kommer att byggas i ett senare skede och matningar gorasfor att jamfora med simuleringsresultaten i detta examensarbete.
Kim, Samuel S. M. Massachusetts Institute of Technology. "Design of a photonic crystal planar Luneburg lens for optical beam steering." Thesis, Massachusetts Institute of Technology, 2019. https://hdl.handle.net/1721.1/122547.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 55-60).
Optical beam steering has numerous applications including light detection and ranging (LIDAR) for three-dimensional (3D) sensing, free space communications, additive manufacturing, and remote sensing. In particular, there is an increasing demand for LIDAR in a variety of applications including autonomous vehicles, unammaned aerial vehicles (UAVs), robotics, and remote sensing. Ideal solutions are small in size, weight, and power consumption (SWaP) while maintaining long range, high resolution, and large field of view (FOV). Here I present a design for a planar Luneburg lens for use in a silicon photonics optical beam steering device fabricated using CMOS-compatible techniques. The gradient index of the lens is achieved using a photonic crystal consisting of amorphous silicon patterned with a triangular lattice of holes layered on top of silicon nitride. Multiple waveguides can be placed along the focal circle of the lens and the lens is designed to collimate the beam from the waveguides. Through full-wave simulations, the lens is shown to be diffraction-limited with a beamwidth of 0.55° for a lens with radius R = 100 um. The lens is also studied for robustness to fabrication variations. The lens would allow a solid-state on-chip optical beam steering device with a FOV of 1600 with no off-axis aberrations.
by Samuel Kim.
S.M.
S.M. Massachusetts Institute of Technology, Department of Electrical Engineering and Computer Science
Mattsson, Martin. "A Cost-Effective Luneburg Lens Based on Glide-Symmetric Metasurface for 5G Applications." Thesis, KTH, Skolan för elektroteknik och datavetenskap (EECS), 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-260088.
Full textI det här arbetet presenteras en kostnadseffektiv plan Luneburg linsantenn för Ka-bandet.Antennen har tillämpningar inom högfrekventa applikationer inom framtida kommunikationsnätverk såsom 5G-nätet på grund utav sin enkla matning, höga direktivitet, och låga förluster.±Linsen består av två parallella ytor med glidsymmetriska hål. Hålen är skräddarsydda så att det nödvändiga brytningsindexet för en Luneburg lins uppnås. För att realisera det högsta nödvändiga brytningsindexet placeras en rund dielektrisk skiva mellan linsens övre och undre yta. Glidsymmetri används för att tillhandahålla ultrabredbandsegenskaper och öka det ekvivalenta brytningsindexet hos den håliga strukturen. Olika typer av konfigurationer av håliga glidsymmetriska enhetsceller med olika dielektriska material har studerats för att hitta en enkel och kostnadseffektiv lösning. Linsen matas med elva vågledare för att kunna stråla inom ett vinkelområde på 50◦ i azimutplanet. Vågledarmatningen har en sektion där höjden ändras i ett antal steg för att matcha sin impedans till impedansen från mellanrummet av de två parallella ytorna. Linsen avslutas med en endimensionell hornstruktur för att minimera reflektioner mellan linsen och fri rymd.Den slutgiltiga designen är en lins med centerfrekvensen på 28 GHz med en 20% bandbredd. Reflektionskoefficienten är lägre än -11.5 dB och överhörningen är lägre än-16 dB för hela frekvensbandet. Linsen har en antennvinst på 16.7 dB vid 28 GHz. Strålningseffektiviteten är på 73% vid 28 GHz med en förlust på 19% i metallen och 1.8%i det dielektriska materialet.
Yu, Xiaoju, and Xiaoju Yu. "Investigation of Several Novel Radio-Frequency Techniques - Biologically Inspired Direction Finding, 3D Printed RF Components and Systems, and Fundamental Aspects of Antenna Matching." Diss., The University of Arizona, 2016. http://hdl.handle.net/10150/623148.
Full textBor, Jonathan. "Focusing antennas and associated technology in millimeter waves and sub-millimeter waves." Thesis, Rennes 1, 2014. http://www.theses.fr/2014REN1S169.
Full textWith the increase of wireless communications and the required bite rate of data, it needs to increase the working frequency up to the millimeter wave range. For that purpose, the 60 GHz bandwidth (57-66GHz) has been unlicensed all over the world. Because of the loss and possible non-line-of-sight communication, the antennas should have beam scanning properties. Therefore, the Canon Research Center France and the IETR have run a study (PhD) to fulfill this project. A new technological process has been developed in order to manufacture inhomogeneous materials. By pressing a composite foam material sample, it will expel the air from the sample and so, increase its density and its relative permittivity. Using this process, several antennas and components have been manufactured. A particular focus has been done on the Luneburg lens antenna. This one has a radial index law and has infinity of focal points around the lens. This lens has been manufactured with a smooth gradient index law and first fed by an open-ended waveguide to validate the technological process. Secondly, integrated sources have been studied in order to place them side by side and to allow scanning the main beam direction. Thus, the use of Radiating Substrate Integrated Waveguide (RSIW) appears to be the solution. Two passives sources have been realized. The first one is a RSIW fed by a coupling slot from a microstrip line and the second one is a RSIW fed by a coaxial probe from a first thin SIW. A thirdly RSIW has been studied fed by a coplanar line and a coaxial probe and to simplify the manufacturing. Finally, two active antennas prototypes have been realized to perform a complete communication at 60 GHz. Complete integrated chips from the Hittite company have been used to feed the RSIW which illuminate the Luneburg lens. The objective was to implement a beam scanning antennas with three distinct beam directions. Lastly, a preliminary contribution to the sub-millimeter antennas has been performed with the manufacturing of a horn, a circular polarization antenna and a near-field focusing antenna
Beck, Christian. "Construction of a Luneburg Les Using Bed-of-Nails." Thesis, KTH, Skolan för elektro- och systemteknik (EES), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-214745.
Full textLiang, Yi-Chun, and 梁逸群. "The Design of the Generalized Luneburg Lens." Thesis, 2016. http://ndltd.ncl.edu.tw/handle/5y7vje.
Full text國立交通大學
電信工程研究所
105
This thesis, concerns the analysis and applications of periodic structure in the generalized Luneburg lens. The periodic structure in the shape of square patch we use is a kind of metasurface. The metasurface is easy to manufacture and compact that is suitable for the synthesis of Luneburg lens. Thus, it makes the SPPs propagate on the surface and has the performance we expect. We propose using the dispersion diagram of the unit cell and then retrieve the corresponding refractive index in the specific frequency. This is the key point for the synthesis of the gradient lens. Finally, we propose several methods that can improve the performance of the gradient lens including increasing the samples when we discretize the diagram of the refractive index, changing the interface of the generalized Luneburg lens that can enhance the power in the specific location and using the complete 2D dispersion diagram to analyze the variation of the refractive index when the unit cell is in the different location. Theses method construct the basement for the improving the performance and the efficiency of the lens.
Book chapters on the topic "Luneburg Lens"
Ayrjan, Edik, Genin Dashitsyrenov, Konstantin Lovetskiy, Nikolai Nikolaev, Anton Sevastianov, Leonid Sevastianov, and Eugeny Laneev. "Mathematical Modeling of Smoothly-Irregular Integrated-Optical Waveguide and Mathematical Synthesis of Waveguide Luneburg Lens." In Communications in Computer and Information Science, 601–11. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-51917-3_51.
Full text"THE LUNEBURG LENS." In Nonimaging Optics, 461–65. Elsevier, 2005. http://dx.doi.org/10.1016/b978-012759751-5/50020-8.
Full text"The Luneburg Lens." In High Collection Nonimaging Optics, 237–42. Elsevier, 1989. http://dx.doi.org/10.1016/b978-0-12-742885-7.50017-6.
Full textAdam, John A. "Back Where We Started." In Rays, Waves, and Scattering. Princeton University Press, 2017. http://dx.doi.org/10.23943/princeton/9780691148373.003.0028.
Full textConference papers on the topic "Luneburg Lens"
Kim, S. H. "Cylindrical acoustic Luneburg lens." In 2014 8th International Congress on Advanced Electromagnetic Materials in Microwaves and Optics (METAMATERIALS). IEEE, 2014. http://dx.doi.org/10.1109/metamaterials.2014.6948561.
Full textYu, Run, Wei Liu, Dawei Wu, and Ting Yu. "Obstacle Detector with Metamaterial Luneburg Lens." In 2019 IEEE International Ultrasonics Symposium (IUS). IEEE, 2019. http://dx.doi.org/10.1109/ultsym.2019.8925813.
Full textMolina, H. Barba, and J. Hesselbarth. "Discrete modified planar luneburg lens antenna." In 2017 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC). IEEE, 2017. http://dx.doi.org/10.1109/apwc.2017.8062292.
Full textHilliard, D., and D. Mensa. "Luneburg lens antenna with photonic sensors." In IEEE Antennas and Propagation Society International Symposium 1992 Digest. IEEE, 1992. http://dx.doi.org/10.1109/aps.1992.221833.
Full textCheng, Qiao, Akram Alomainy, and Yang Hao. "Luneburg lens imaging with compressive sensing." In 2017 Sixth Asia-Pacific Conference on Antennas and Propagation (APCAP). IEEE, 2017. http://dx.doi.org/10.1109/apcap.2017.8420937.
Full textNikolic, Nasiha, Graeme L. James, Andrew Hellicar, and Kieran Greene. "Quarter-sphere Luneburg lens scanning antenna." In 2012 15th International Symposium on Antenna Technology and Applied Electromagnetics (ANTEM). IEEE, 2012. http://dx.doi.org/10.1109/antem.2012.6262330.
Full textJames, Graeme L., John S. Kot, Andrew J. Parfitt, and Nasiha N. Nikolic. "Luneburg lens element for the SKA." In Astronomical Telescopes and Instrumentation, edited by Harvey R. Butcher. SPIE, 2000. http://dx.doi.org/10.1117/12.390434.
Full textWang, Chia-Fu, Chia-Nien Tsai, I.-Ling Chang, and Lien-Wen Chen. "Wideband Acoustic Luneburg Lens Based on Graded Index Phononic Crystal." In ASME 2015 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2015. http://dx.doi.org/10.1115/imece2015-52927.
Full textJinghui Qiu, Shu Lin, and Shuo Gu. "The comparison between Luneburg lens and Single Medium Spherical Lens." In 2006 IEEE Antennas and Propagation Society International Symposium. IEEE, 2006. http://dx.doi.org/10.1109/aps.2006.1711335.
Full textEvren, Aydin S., C. Babayigit, E. Bor, H. Kurt, and M. Turduev. "Directional Cloaking by Quadruple Luneburg Lens System." In 2018 20th International Conference on Transparent Optical Networks (ICTON). IEEE, 2018. http://dx.doi.org/10.1109/icton.2018.8473595.
Full text