Academic literature on the topic 'Lung deposited surface-area'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Lung deposited surface-area.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Lung deposited surface-area"

1

Todea, Ana Maria, Stefanie Beckmann, Heinz Kaminski, and Christof Asbach. "Accuracy of electrical aerosol sensors measuring lung deposited surface area concentrations." Journal of Aerosol Science 89 (November 2015): 96–109. http://dx.doi.org/10.1016/j.jaerosci.2015.07.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Reche, Cristina, Mar Viana, Mariola Brines, Noemí Pérez, David Beddows, Andrés Alastuey, and Xavier Querol. "Determinants of aerosol lung-deposited surface area variation in an urban environment." Science of The Total Environment 517 (June 2015): 38–47. http://dx.doi.org/10.1016/j.scitotenv.2015.02.049.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fissan, H., S. Neumann, A. Trampe, D. Y. H. Pui, and W. G. Shin. "Rationale and principle of an instrument measuring lung deposited nanoparticle surface area." Journal of Nanoparticle Research 9, no. 1 (October 10, 2006): 53–59. http://dx.doi.org/10.1007/s11051-006-9156-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Asbach, C., H. Fissan, B. Stahlmecke, T. A. J. Kuhlbusch, and D. Y. H. Pui. "Conceptual limitations and extensions of lung-deposited Nanoparticle Surface Area Monitor (NSAM)." Journal of Nanoparticle Research 11, no. 1 (September 16, 2008): 101–9. http://dx.doi.org/10.1007/s11051-008-9479-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Geiss, Otmar, Ivana Bianchi, and Josefa Barrero-Moreno. "Lung-deposited surface area concentration measurements in selected occupational and non-occupational environments." Journal of Aerosol Science 96 (June 2016): 24–37. http://dx.doi.org/10.1016/j.jaerosci.2016.02.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Kuuluvainen, Heino, Topi Rönkkö, Anssi Järvinen, Sampo Saari, Panu Karjalainen, Tero Lähde, Liisa Pirjola, Jarkko V. Niemi, Risto Hillamo, and Jorma Keskinen. "Lung deposited surface area size distributions of particulate matter in different urban areas." Atmospheric Environment 136 (July 2016): 105–13. http://dx.doi.org/10.1016/j.atmosenv.2016.04.019.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Kurihara, Kazuki, Ayumi Iwata, Miho Kiriya, Ayako Yoshino, Akinori Takami, Atsushi Matsuki, Chiharu Nishita-Hara, et al. "Lung deposited surface area of atmospheric aerosol particles at three observatories in Japan." Atmospheric Environment 262 (October 2021): 118597. http://dx.doi.org/10.1016/j.atmosenv.2021.118597.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Salo, Laura, Topi Rönkkö, Sanna Saarikoski, Kimmo Teinilä, Joel Kuula, Jenni Alanen, Anssi Arffman, Hilkka Timonen, and Jorma Keskinen. "Concentrations and Size Distributions of Particle Lung-deposited Surface Area (LDSA) in an Underground Mine." Aerosol and Air Quality Research 21, no. 8 (2021): 200660. http://dx.doi.org/10.4209/aaqr.200660.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Timonen, H., F. Mylläri, P. Simonen, M. Aurela, M. Maasikmets, M. Bloss, H. L. Kupri, et al. "Household solid waste combustion with wood increases particulate trace metal and lung deposited surface area emissions." Journal of Environmental Management 293 (September 2021): 112793. http://dx.doi.org/10.1016/j.jenvman.2021.112793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Levin, Marcus, Olivier Witschger, Sébastien Bau, Elzbieta Jankowska, Ismo K. Koponen, Antti J. Koivisto, Per A. Clausen, et al. "Can We Trust Real Time Measurements of Lung Deposited Surface Area Concentrations in Dust from Powder Nanomaterials?" Aerosol and Air Quality Research 16, no. 5 (2016): 1105–17. http://dx.doi.org/10.4209/aaqr.2015.06.0413.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Lung deposited surface-area"

1

Bau, Sébastien. "Étude des moyens de la surface des aérosols ultrafins pour l'évaluation de l'exposition professionnelle." Thesis, Vandoeuvre-les-Nancy, INPL, 2008. http://www.theses.fr/2008INPL095N/document.

Full text
Abstract:
Ce travail s'inscrit dans le cadre de l'amélioration de la connaissance sur la mesure de la surface des aérosols ultrafins. En effet, l'essor des nanotechnologies peut être à l'origine de situations d'exposition professionnelle aux particules nanostructurées dispersées dans l'air, ce qui soulève une problématique nouvelle de prévention. Si à ce jour aucun des trois indicateurs (masse, surface, nombre) ne fait l'objet d'un consensus, il semble que le paramètre de surface des particules permet une bonne corrélation avec les effets biologiques observés lorsqu'elles sont inhalées. Un travail théorique original a donc été mené afin de positionner le paramètre de surface vis-à-vis d'autres grandeurs caractéristiques des aérosols. En vue de caractériser des méthodes de mesure de la surface des aérosols nanostructurés, le banc d'essais CAIMAN (CAractérisation des Instruments de Mesure des Aérosols Nanostructurés) a été dimensionné et réalisé. Celui-ci permet la production d'aérosols nanostructurés de propriétés variables et maîtrisées (taille, concentration, nature chimique, morphologie, état de charge), offrant une très bonne stabilité dans le temps. Les aérosols générés en laboratoire ont été utilisés en vue d'évaluer expérimentalement la réponse des instruments de mesure étudiés (NSAM & AeroTrak 9000 TSI, LQ1-DC Matter Engineering). Les fonctions de réponse expérimentales établies sur des aérosols monodispersés présentent un bon accord avec les courbes théoriques, dans une large gamme d'étude de 15 à 520 nm. Par ailleurs, des hypothèses ont été avancées en vue d'expliquer les écarts raisonnables observés lors des mesures effectuées sur des aérosols polydispersés
This work aims at improving knowledge on ultrafine aerosols surface-area measurement. Indeed, the development of nanotechnologies may lead to occupational exposure to airborne nanostructured particles, which involves a new prevention issue. There is currently no consensus concerning what parameter (mass, surface-area, number) should be measured. However, surface-area could be a relevant metric, since it leads to a satisfying correlation with biological effects when nanostructured particles are inhaled. Hence, an original theoretical work was performed to position the parameter of surface-area in relation to other aerosol characteristics. To investigate measurement techniques of nanostructured aerosols surface-area, the experimental facility CAIMAN (ChAracterization of Instruments for the Measurement of Aerosols of Nanoparticles) was designed and built. Within CAIMAN, it is possible to produce nanostructured aerosols with varying and controlled properties (size, concentration, chemical nature, morphology, state-of-charge), stable and reproducible in time. The generated aerosols were used to experimentally characterize the response of the instruments in study (NSAM & AeroTrak 9000 TSI, LQ1-DC Matter Engineering). The response functions measured with monodisperse aerosols show a good agreement with the corresponding theoretical curves in a large size range, from 15 to 520 nm. Furthermore, hypotheses have been formulated to explain the reasonable biases observed when measuring polydisperse aerosols
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Lung deposited surface-area"

1

"DECHLORINATION OF CARBON TETRACHLORIDE BY NANOSCALE IRON PARTICLES IN AQUEOUS SOLUTION HSING-LUNG LIEN WEI-XIAN ZHANG Department of Civil and Environmental Engineering, Lehigh University, Bethlehem, PA 18015 INTRODUCTION Recently, a method for the generation of very small (nanoscale) bimetallic particles has been reported [1,2]. These nanoscale metal particles typically have a diameter on the order of 1-100 nm and feature 0.06% by weight of palladium deposited on the surface of iron. Advantages of the nanoscale bimetallic system for treatment of chlorinated organic pollutants include: (1) High specific surface area. The nanoscale metal particles have a specific surface area around 35 m2/g. Tens to hundreds times higher than those of the commercial grade iron particles (used in conventional iron walls). (2) High surface reactivity. For example, values of surface-area-normalized rate coefficient (KSA) for the transformation of chlorinated ethylenes were about one to two-orders of magnitude higher than those reported in the literature for commercial grade iron particles [3]. Due to their small particle size and high reactivity, the nanoscale metal particles may be useful in a wide array of environmental applications. In the aqueous phase, the nanoscale iron particles remain suspended, almost like a homogenous solution. Theoretical calculations indicate that, for colloidal particles less than about 1 micrometer, gravity of the metal particles is insignificant to influence the particle movement. Brownian motion (thermal movement) tends to dominate the transport process in groundwater. Thus, we believe that the metal particles could be injected directly into contaminated soils, sediments and aquifers for in situ remediation of chlorinated hydrocarbons, offering a cost-effective alternative to such conventional technologies as pump-and-treat, air sparging or even conventional iron reactive walls. Design, construction and operation of such injectable systems should be reasonably straightforward." In Hazardous and Industrial Waste Proceedings, 30th Mid-Atlantic Conference, 69. CRC Press, 2014. http://dx.doi.org/10.1201/9781498709453-24.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Lung deposited surface-area"

1

Qi, Aisha, James R. Friend, and Leslie Y. Yeo. "Inhaled Pulmonary Drug Delivery Platform Using Surface Acoustic Wave Atomization." In ASME 2009 Second International Conference on Micro/Nanoscale Heat and Mass Transfer. ASMEDC, 2009. http://dx.doi.org/10.1115/mnhmt2009-18516.

Full text
Abstract:
Atomization has been widely applied in pulmonary drug delivery as a promising technology to transport drug formulations directly to the respiratory tract in the form of inhaled particles or droplets. Because of the targeted treatment, the drug can be delivered directly to the site of inflammation, thus the need for systemic exposure and the possibility of side effects are both reduced. Therefore pulmonary drug delivery has significant advantages over other methods in the treatment of respiratory diseases such as asthma. The most common atomization methods employed in pulmonary drug delivery are jet atomization and ultrasonic atomization. However, the difficulty is in producing monodispersed particles/droplets in a size range of 1–5 micron meter in diameter, necessary for deposition in the targeted lung area or lower respiratory airways, within a controllable fashion. In this paper, we demonstrate surface acoustic wave (SAW) atomization as an efficient technique to generate monodispersed aerosol to produce the required size distribution. The SAW atomizer is made of a 127.86 Y-X rotated single-crystal lithium niobate piezoelectric substrate, which is patterned with chromium-aluminum interdigital transducer (IDT) electrodes via UV lithography. When an alternating electric field is applied onto lithium niobate substrate through the IDT, a SAW, propagating across substrate surface with ten nanometer order amplitudes, is generated. When the SAW meets the liquid which is placed upon substrate, the acoustic energy carried by the wave induces atomization of the working fluid, which contains salbutamol as a model drug. In order to measure the size distribution of the atomized droplets, two methods are used. One is the laser diffraction based Spraytec technique and the other is an in-vitro lung modelthe one stage glass twin impinger. The former revealed that the mean diameter of the aerosol atomized was around 3 um which were confirmed by the lung model that demonstrated that nearly 80% of atomized drug aerosol was deposited in the simulated lung area. Moreover, the SAW atomizer only requires 1–3 W driving power, suggesting that it can be miniaturized for portable consumer use.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography