To see the other types of publications on this topic, follow the link: Lutidine.

Journal articles on the topic 'Lutidine'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Lutidine.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Maringgele, Walter, Anton Meller, Sven Dielkus, and Regine Herbst-Irmer. "Reaktionen von Pyridin-Basen mit Na/K-Legierung und Diorganylaminodifluorboranen / Reactions of Pyridine-Bases with Na/K-Alloy and Diorganylaminodifluoroboranes." Zeitschrift für Naturforschung B 48, no. 5 (1993): 561–70. http://dx.doi.org/10.1515/znb-1993-0504.

Full text
Abstract:
Lutidines react with Na/K alloy and diorganylaminodifluoroboranes in n-hexane. The products formed depend upon the position of the methyl groups. While from 3,4-lutidine (C) the bis(lutidinyl)aminoboranes 2 - 5 are obtained, the 2,4-, 2,5-, and 3,5-lutidines (F, G, H) give the 11 a, 1 lb-dihydro-[1,3,2]-diazoborolo-[5,l-b;3,4-b']-dilutidines 11-17. 4-Picoline reacts analogously to give 10. Pyridine (A) and collidine (B) give adducts with borane. From 2,3-lutidine (D), the 1,4-dihydro-l,4-bis(fluoraminoboryl)-2,3-lutidine 8 is obtained. 1H, 11B, 13C, 19F, 29Si, 15N NMR and MS data are given. Fo
APA, Harvard, Vancouver, ISO, and other styles
2

Hensen, Karl, and Michael Dräbing. "Eine Auswertmethode für DSC-Kurven binärer Gemische sowie die Phasendiagramme einige rMethylchlorsilane mit Lutidin / A New Evaluation of DSC-curves of Binary Mixtures and the Phase Diagrams of Some Methylchlorosilanes with Lutidine." Zeitschrift für Naturforschung A 44, no. 12 (1989): 1172–76. http://dx.doi.org/10.1515/zna-1989-1207.

Full text
Abstract:
Abstract A new evaluation of DSC-curves of binary mixtures is given. By analyzing the phase diagrams of methyltrichlorosilane and dimethyldichlorosilane with some lutidines the existence of the incongruently melting addition compounds MeSiCl3 · (2.3-Lutidine)-,, MeSiCl3 · 2.3-Lutidine, (MeSiCl3)2 · 3.4-Lutidine, Me,SiCl2 · (2.3-Lutidine)2, Me2SiCl2 · (2.5-Lutidine),, Me2SiCl2 · 2.5-Lutidine, Me2SiCl2 · (2.6-Lutidine)2, Me2SiCl2 · 2.6-Lutidine, Me2SiCl2 · (3.4-Lutidine)2, Me,SiCl2 · 3.4-Lutidine, (Me2SiCl2)2 · 3.4-Lutidine, Me2SiCl2 · (3.5-Lutidine)2, Me2SiCl2 · 3.5-Lutidine, and the congruentl
APA, Harvard, Vancouver, ISO, and other styles
3

Hensen, Karl, and Peter Wagner. "Die Schmelzdiagramme für die Systeme aus (CH3)3SiBr und den sechs Lutidinen / The Phase Diagrams of the Systems of (CH3)3SiBr and the Six Lutidines." Zeitschrift für Naturforschung B 47, no. 3 (1992): 329–32. http://dx.doi.org/10.1515/znb-1992-0305.

Full text
Abstract:
Abstract The phase diagrams of the systems of trimethylbromosilane and the isomeric lutidines are shown. The existence of the congruently melting addition compounds (CH3)3SiBr ∙ (3,4-lutidine), (CH3)3SiBr (3,5-lutidine) and the incongruently melting addition compounds (CH3)3SiBr • (2,3-lutidine)2, (CH3)3SiBr • (2,3-lutidine), (CH3)3SiBr (2,4-lutidine), ((CH3)3SiBr)2 • (2,4-lutidine), (CH3)3SiBr • (2,5-lutidine)2, (CH3)3SiBr • (2,5-lutidine), (CH3)3SiBr (2,6-lutidine)2 could be proved.
APA, Harvard, Vancouver, ISO, and other styles
4

Hensen, Karl, and Michael Dräbing. "Die Phasendiagramme der Systeme Dimethyldichlorsilan mit 2.4-Lutidin und 2.6-Lutidin/Phase Diagrams of Dimethyldichlorosilane with 2.4-Lutidine and 2.6-Lutidine." Zeitschrift für Naturforschung B 45, no. 1 (1990): 99–100. http://dx.doi.org/10.1515/znb-1990-0120.

Full text
Abstract:
Abstract A phase equilibrium study of the systemsdimethyldichlorosilane with 2.4-lutidine and2.6-lutidine is presented with evidence for theexistence of the incongruently melting compounds2.6-lutidine · Me2SiCl2, (2.6-lutidine)2 · Me2SiCl2and the congruently melting compound2.4-lutidine · Me2SiCl2.
APA, Harvard, Vancouver, ISO, and other styles
5

Hensen, Karl, and Michael Dräbing. "Phasendiagramme einiger Methylhalogensilane mit Pyridin und Lutidin Phase Diagrams of Methylhalogenosilanes with Pyridine and Lutidine." Zeitschrift für Naturforschung B 44, no. 1 (1989): 63–66. http://dx.doi.org/10.1515/znb-1989-0115.

Full text
Abstract:
Abstract By analyzing the phase diagrams of some trimethylhalogenosilane/pyridine- and methyl-trichlorosilane/lutidine-systems the existence of the incongruently melting addition compounds Me3SiF · (Pyridine)2, Me3SiCl · (Pyridine)2, MeSiCl3, · (2.5-Lutidine)2, MeSiCl3, · (2.6-Lutidine)2, (MeSiCl3)2 · 3.5-Lutidine, and the congruently melting compounds MeSiCl3 · 2.4-Lutidine, MeSiCl3 · (3.5-Lutidine)2 was proven.
APA, Harvard, Vancouver, ISO, and other styles
6

Bond, Andrew D., John E. Davies, and Anthony J. Kirby. "2,6-Lutidine." Acta Crystallographica Section E Structure Reports Online 57, no. 12 (2001): o1242—o1244. http://dx.doi.org/10.1107/s1600536801019869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bond, Andrew D., and John E. Davies. "3,5-Lutidine." Acta Crystallographica Section E Structure Reports Online 58, no. 1 (2001): o5—o7. http://dx.doi.org/10.1107/s1600536801020426.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Bond, Andrew D., and John E. Davies. "3,4-Lutidine." Acta Crystallographica Section E Structure Reports Online 58, no. 3 (2002): o328—o330. http://dx.doi.org/10.1107/s1600536802003379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bond, Andrew D., and John E. Davies. "2,5-Lutidine." Acta Crystallographica Section E Structure Reports Online 58, no. 3 (2002): o326—o327. http://dx.doi.org/10.1107/s1600536802003380.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bond, Andrew D., and Simon Parsons. "2,4-Lutidine." Acta Crystallographica Section E Structure Reports Online 58, no. 5 (2002): o550—o552. http://dx.doi.org/10.1107/s160053680200692x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Bond, Andrew D., and John E. Davies. "2,3-Lutidine." Acta Crystallographica Section E Structure Reports Online 58, no. 8 (2002): o961—o963. http://dx.doi.org/10.1107/s1600536802013648.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Tuncer, Yaprak Gürsoy, Hasan Nazır, Kübra Gürpınar, et al. "Synthesis, Structure, Thermal Decomposition and Computational Calculation of Heterodinuclear NiII – ZnII Complexes." Acta Chimica Slovenica 69, no. 1 (2022): 147–56. https://doi.org/10.17344/acsi.2021.7126.

Full text
Abstract:
Mononuclear NiL complex was prepared by the use of bis-N,N’-salicylidene-1,3-propanediamine and Ni(II) salts. NiL was treated with ZnBr2 and pyrazole and 3,5-lutidine coligands in a dioxane medium to prepare the following diheteronuclear complexes: [NiL · ZnBr2 · (pyrazole)2] and [NiL · ZnBr2 · (3,5-lutidine)2]. The complexes were characterized by elemental analysis, TG, IR and mass spectrometry. The effects of heterocyclic one- and two- nitrogen atoms containing co-ligands were also examined. Theoretical formation enthalpies, dipole moments and the relative levels of HOMO and LUMO energies we
APA, Harvard, Vancouver, ISO, and other styles
13

Merino García, Rosario, Francisco Javier Ríos-Merino, Sylvain Bernès, and Yasmi Reyes-Ortega. "Crystal structure of 3,5-dimethylpyridineN-oxide dihydrate." Acta Crystallographica Section E Crystallographic Communications 72, no. 12 (2016): 1687–90. http://dx.doi.org/10.1107/s205698901601687x.

Full text
Abstract:
In the title compound, also known as 3,5-lutidineN-oxide dihydrate, C7H9NO·2H2O, the N—O bond is weakened due to the involvement of the O atom as an acceptor of hydrogen bonds from the two water molecules of crystallization present in the asymmetric unit. FusedR35(10) ring motifs based on O—H...O hydrogen bonds form chains in the [010] direction, which are further connected by weak C—H...O intermolecular contacts. As a result, the lutidine molecules are stacked in an efficient manner, with π–π contacts characterized by a short separation of 3.569 (1) Å between the benzene rings.
APA, Harvard, Vancouver, ISO, and other styles
14

Hensen, Karl, Ralf Mayr-Stein, Björn Spangenberg, Michael Bolte, and Stephan Rühl. "Komplexe gemischter Siliciumhalogenide mit 3,4-Lutidin / Complexes of Mixed Silicon Halides with 3,4-Lutidine." Zeitschrift für Naturforschung B 55, no. 3-4 (2000): 248–52. http://dx.doi.org/10.1515/znb-2000-3-404.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Strey, Mark, and Cindy Döring. "Silber(I)-cyanid-Komplexe mit Aminen und Azaaromaten." Zeitschrift für Naturforschung B 73, no. 3-4 (2018): 231–41. http://dx.doi.org/10.1515/znb-2017-0210.

Full text
Abstract:
AbstractSilver cyanide can be treated with liquid amines or azaaromaticsLto give crystalline complexes of various compositions, among them complexes of the simple type cyanido(amine)silver(I):L=isobutylamine and 4-picoline. Other AgCN:Lratios obtained were: 1:2 (benzylamine and 4-benzylpiperidine), 2:1 (2,4-lutidine), 2:3 (morpholine and 3,4-lutidine) and 3:4 (3,5-lutidine). The packing diagrams were analyzed in terms of Ag–Ag and Ag–CN contacts and N–H···N hydrogen bonds. The contacts often give rise to chains, which are sometimes linked to layers by hydrogen bonds.
APA, Harvard, Vancouver, ISO, and other styles
16

Kashparova, V. P., E. N. Shubina, D. V. Tokarev, G. P. Antropov, and I, Yu Zhukova. "UNIVERSAL ELECTROCATALYTIC SYSTEM FOR CONVERSION OF ALCOHOLS INTO CARBONYL COMPOUNDS AND CARBOXY ACID FUNCTIONAL DERIVATIVES." Электрохимия 59, no. 10 (2023): 579–92. http://dx.doi.org/10.31857/s0424857023100079.

Full text
Abstract:
A universal catalytic system 4-acetamido-2,2,6,6-tetramethylpiperidine-1-oxyl/KI/pyridine base for the conversion of alcohols into carbonyl compounds and derivatives of carboxylic acids has been developed. The use of pyridine, 2,6-lutidine or collidine made it possible to obtain carbonyl compounds (yield up to 100%) after 2-2.2 F/mol. In the presence of pyridine, aliphatic alcohols are converted to esters (yield up to 35%) after 3-4 F/mol. Acid anhydrides (yield up to 80%) are formed using 2,6-lutidine or collidine after 5-6 F/mol. Nitriles were obtained in the presence of 2,6-lutidine and a s
APA, Harvard, Vancouver, ISO, and other styles
17

Kinzhybalo, Vasyl, Ryszard Kubiak, and Jan Janczak. "Reactivity of the magnesium phthalocyanine in dry 3,5-lutidine, in 3,5-lutidine/DMSO and in 3,5-lutidine/acetylacetone systems." Polyhedron 115 (September 2016): 142–54. http://dx.doi.org/10.1016/j.poly.2016.05.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Döring, Cindy, and Peter G. Jones. "Aminkomplexe des Goldes, Teil 7: Pseudosymmetrie bei Aminkomplexen des Gold(I)-cyanids [1] / Amine Complexes of Gold, Part 7: Pseudosymmetry in Amine Complexes of Gold(I) Cyanide." Zeitschrift für Naturforschung B 68, no. 5-6 (2013): 474–92. http://dx.doi.org/10.5560/znb.2013-3040.

Full text
Abstract:
The reaction between (tht)AuCl (tht = tetrahydrothiophene) and KCN leads to gold(I) cyanide. This can be treated with liquid amines or azaaromatics L to give crystalline molecular complexes LAuCN, the first complexes of the type (amine)cyanogold(I): L = cyclohexylamine, isobutylamine, isopropylamine, diethylamine, morpholine, piperidine, pyrrolidine, 2,4-lutidine, 3,5-lutidine, and 4- picoline. The cyclohexylamine complex was also obtained as the adduct LauCN L and the pyrrolidine complex in the ionic form [L2Au]+ [Au(CN)2]-. Two polymorphs of the 3,5-lutidine complex were obtained. Ethylenedi
APA, Harvard, Vancouver, ISO, and other styles
19

Xu, Xiang-Sheng, Ya-Ping Lü, Dong-Shun Deng, Mao-Lin Hu, and Zhi-Min Jin. "Tetrakis(3,5-lutidine)dichloronickel(II)." Acta Crystallographica Section E Structure Reports Online 61, no. 5 (2005): m889—m891. http://dx.doi.org/10.1107/s1600536805011141.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Jones, Peter G., and Eva-Maria Zerbe. "Bromobis(2,3-lutidine)copper(I)." Acta Crystallographica Section E Structure Reports Online 61, no. 1 (2004): m106—m107. http://dx.doi.org/10.1107/s1600536804032416.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Wang, Baoli, Xiaohui Kang, Masayoshi Nishiura, Yi Luo, and Zhaomin Hou. "Isolation, structure and reactivity of a scandium boryl oxycarbene complex." Chemical Science 7, no. 1 (2016): 803–9. http://dx.doi.org/10.1039/c5sc03138a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Devillard, M., C. Alvarez Lamsfus, V. Vreeken, L. Maron, and J. I. van der Vlugt. "Versatile coordination of a reactive P,N-ligand toward boron, aluminum and gallium and interconversion reactivity." Dalton Transactions 45, no. 27 (2016): 10989–98. http://dx.doi.org/10.1039/c6dt02087a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Sánchez, Práxedes, Martín Hernández-Juárez, Eleuterio Álvarez, Margarita Paneque, Nuria Rendón, and Andrés Suárez. "Synthesis, structure and reactivity of Pd and Ir complexes based on new lutidine-derived NHC/phosphine mixed pincer ligands." Dalton Transactions 45, no. 42 (2016): 16997–7009. http://dx.doi.org/10.1039/c6dt03652j.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Sánchez, Práxedes, Martín Hernández-Juárez, Nuria Rendón, et al. "Hydroboration of carbon dioxide with catechol- and pinacolborane using an Ir–CNP* pincer complex. Water influence on the catalytic activity." Dalton Transactions 47, no. 46 (2018): 16766–76. http://dx.doi.org/10.1039/c8dt03951h.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Samipillai, Marivel, Eustina Batisai, Luigi R. Nassimbeni, and Edwin Weber. "Separation of lutidines by enclathration." CrystEngComm 17, no. 43 (2015): 8332–38. http://dx.doi.org/10.1039/c5ce01637a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Mautner, Franz A., and Mohamed A. S. Goher. "Spectroscopic and crystal structure study of polymeric 2:3 and 1:1 complexes of 2,6-lutidine and 3,4-lutidine with copper(II) azide; Cu3(2,6-lutidine)2(N3)6 and Cu(3,4-lutidine)(N3)2." Polyhedron 13, no. 14 (1994): 2141–47. http://dx.doi.org/10.1016/s0277-5387(00)81495-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Hernández-Juárez, M., J. López-Serrano, P. González-Herrero, et al. "Hydrogenation of an iridium-coordinated imidazol-2-ylidene ligand fragment." Chemical Communications 54, no. 31 (2018): 3843–46. http://dx.doi.org/10.1039/c8cc00420j.

Full text
Abstract:
The unprecedented hydrogenation of a metal-coordinated imidazolylidene to imidazolidinylidene is observed under mild conditions in an iridium complex containing a metalated lutidine derived CNP ligand.
APA, Harvard, Vancouver, ISO, and other styles
28

Deng, Yongming, Jason Zhang, Bradley Bankhead, Jonathan P. Markham, and Matthias Zeller. "Photoinduced oxidative cyclopropanation of ene-ynamides: synthesis of 3-aza[n.1.0]bicycles via vinyl radicals." Chemical Communications 57, no. 43 (2021): 5254–57. http://dx.doi.org/10.1039/d1cc02016a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Simler, Thomas, Gilles Frison, Pierre Braunstein, and Andreas A. Danopoulos. "Direct synthesis of doubly deprotonated, dearomatised lutidine PNP Cr and Zr pincer complexes based on isolated K and Li ligand transfer reagents." Dalton Transactions 45, no. 7 (2016): 2800–2804. http://dx.doi.org/10.1039/c6dt00144k.

Full text
Abstract:
Double deprotonation of a hybrid bis(phosphino)picoline ligand yields lithium or potassium pincer salts with dearomatised lutidine backbones that afford unusual chromium and zirconium complexes by transmetallation.
APA, Harvard, Vancouver, ISO, and other styles
30

Habiyakare, Augustin, and Edwin A. C. Lücken. "The 63,65Cu NQR Spectra of Di-coordinated CuI Cations with 2-Substituted Pyridine Ligands." Zeitschrift für Naturforschung A 45, no. 3-4 (1990): 224–28. http://dx.doi.org/10.1515/zna-1990-3-406.

Full text
Abstract:
Abstract The NQR frequencies of the 63,65 Cu nuclei in di-coordinated complex cations of Cu 1 , having the general formula CuL 2X, where L is a substituted pyridine and X is a hard anion such as ClO4 , are reported and discussed in the light of the known crystal structures. A departure from a strictly linear geometry of the L 2 Cu cation has but little effect on the resonance frequency, but the donor-acceptor bond between the nitrate anion and the copper atom in bis(2,6-lutidine)cuprous nitrate, which was postulated on crystallographic grounds, is confirmed by the NQR results, which also indic
APA, Harvard, Vancouver, ISO, and other styles
31

Filippova,, N. A., A. S. Artem`eva, S. V. Bubennov, O. S. Travkina, B. I. Kutepov, and N. G. Grigoreva. "ADVANCES IN THE SYNTHESIS OF N-HETEROCYCLIC COMPOUNDS OVER NEW ZEOLITE CATALYSTS." Izvestia Ufimskogo Nauchnogo Tsentra RAN, no. 2 (June 16, 2025): 82–89. https://doi.org/10.31040/2222-8349-2025-0-2-82-89.

Full text
Abstract:
Heterogeneous catalytic methods for obtaining 2,2,4-trimethyl-2,3-dihydro-1H-1,5-benzodiazepine, 3,5-lutidine, 2-methyl-3-n-propyl-1H-indole, 3-methyl-2-ethylquinoline over new catalysts based on granulated hierarchical zeolites H-Yh and H-ZSM-5h have been developed. The dependence of the activity and selectivity of zeolites H-Yh and H-ZSM-5h on their structural type and physicochemical characteristics has been established in reactions of: 1) propanol-1 with formaldehyde and ammonia, 2) aniline with 1,2-propanediol, 3) 1,2-phenylenediamine with acetone. Zeolite H-Yh provides selective producti
APA, Harvard, Vancouver, ISO, and other styles
32

Tanwar, Deepika, Priya Jain, Deepali Ahluwalia, et al. "A novel cobalt(ii) acetate complex bearing lutidine ligand: a promising electrocatalyst for oxygen evolution reaction." RSC Advances 13, no. 35 (2023): 24450–59. http://dx.doi.org/10.1039/d3ra04709a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Andrew, Rhiann E., Caroline M. Storey, and Adrian B. Chaplin. "Well-defined coinage metal transfer agents for the synthesis of NHC-based nickel, rhodium and palladium macrocycles." Dalton Transactions 45, no. 21 (2016): 8937–44. http://dx.doi.org/10.1039/c6dt01263a.

Full text
Abstract:
Silver(i) and copper(i) complexes of a macrocyclic NHC-based pincer ligand, bearing a central lutidine donor and a dodecamethylene spacer, have been prepared and evaluated under equivalent conditions in transmetallation reactions.
APA, Harvard, Vancouver, ISO, and other styles
34

Gong, Shan Shan, Guo Dong Liu, Xing Jian Li, and Qi Sun. "A Novel Synthesis of AZT-5'-Glycosyl-1″-H-Phosphonate Diesters." Advanced Materials Research 830 (October 2013): 159–62. http://dx.doi.org/10.4028/www.scientific.net/amr.830.159.

Full text
Abstract:
A novel and efficient method for the preparation ofO-AZT-5′-O-glycosyl-1-H-phosphonate diesters has been developed. TheH-phosphonate diesters were synthesized by tandem substitution reaction on PCl3with 2,6-lutidine as base.
APA, Harvard, Vancouver, ISO, and other styles
35

Soliman, Saied M. "Molecular structure, spectroscopic properties, NLO and NBO analysis of 3,4-Lutidine and [Ag(3,4-Lutidine)2NO3] complex." Journal of Molecular Structure 1048 (September 2013): 308–20. http://dx.doi.org/10.1016/j.molstruc.2013.05.064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Liu, Guo Dong, Shan Shan Gong, Si Liu, and Qi Sun. "Efficient Synthesis of O-glycosyl-5′-H-Phosphonate Diesters of d4T." Applied Mechanics and Materials 483 (December 2013): 92–95. http://dx.doi.org/10.4028/www.scientific.net/amm.483.92.

Full text
Abstract:
A novel and one-pot route for the synthesis ofO-glycosyl-5′-H-phosphonate diesters of d4T has been developed. This analogs were synthesized by controlling tandem substitution reaction on PCl3with 2,6-lutidine as suitable base.
APA, Harvard, Vancouver, ISO, and other styles
37

Dearle, Alice E., Daniel J. Cutler, Marco Coletta, et al. "An [FeIII30] molecular metal oxide." Chemical Communications 58, no. 1 (2022): 52–55. http://dx.doi.org/10.1039/d1cc06224g.

Full text
Abstract:
Dissolution of FeBr3 in a mixture of acetonitrile and 3,4-lutidine in the presence of an amine results in the formation of an [Fe30] molecular metal oxide containing alternating layers of tetrahedral and octahedral FeIII ions.
APA, Harvard, Vancouver, ISO, and other styles
38

Fernández Maestre, Roberto. "Calibration of the mobility scale in ion mobility spectrometry: the use of 2,4-lutidine as a chemical standard, the two-standard calibration method and the incorrect use of drift tube temperature for calibration." Analytical Methods 9, no. 29 (2017): 4288–92. http://dx.doi.org/10.1039/c7ay01126a.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Zhao, Quan-Sheng, Guo-Qiang Xu, Ji-Tao Xu, Zhu-Yin Wang, and Peng-Fei Xu. "A lutidine-promoted photoredox catalytic atom-transfer radical cyclization reaction for the synthesis of 4-bromo-3,3-dialkyl-octahydro-indol-2-ones." Chemical Communications 56, no. 14 (2020): 2206–9. http://dx.doi.org/10.1039/c9cc09876c.

Full text
Abstract:
We describe an atom-transfer radical cyclization strategy, with which a variety of 4-bromo-3,3-dialkyl-octahydro-indol-2-one compounds can be easily accessed via a lutidine-promoted photoredox catalytic halo-alkylation of 1,6-dienes.
APA, Harvard, Vancouver, ISO, and other styles
40

Musiol, Robert, and Tomasz Girek. "Inclusion-dependent mechanism of modification of cyclodextrins with heterocycles." Open Chemistry 3, no. 4 (2005): 742–46. http://dx.doi.org/10.2478/bf02475201.

Full text
Abstract:
AbstractMono(6-deoxy-dimethylpyridinium)-β-cyclodextrins have been synthesized in reaction of mono (p-toluenesulfonyl) derivative of β cyclodextrin with the appropriate lutidine under microwave irradiation and conventional conditions. The results indicate that the mechanism consists of inclusion complex formation.
APA, Harvard, Vancouver, ISO, and other styles
41

Lenci, Elena, Riccardo Innocenti, Gloria Menchi, Cristina Faggi, and Andrea Trabocchi. "Two-step one-pot synthesis of dihydropyrazinones as Xaa-Ser dipeptide isosteres through morpholine acetal rearrangement." Organic & Biomolecular Chemistry 13, no. 25 (2015): 7013–19. http://dx.doi.org/10.1039/c5ob00783f.

Full text
Abstract:
The synthesis of the uncommon dihydropyrazinone ring was accomplished by taking advantage of the ring rearrangement ofN-acylated morpholine acetal derived from serine under acidic treatment and in the presence of 2,6-lutidine, resulting in a constrained Xaa-Ser dipeptide isostere.
APA, Harvard, Vancouver, ISO, and other styles
42

Boudiombo, Jacky Sorrel Bouanga, Hong Su, Neil Ravenscroft, Susan A. Bourne, Edwin Weber, and Luigi Nassimbeni. "Separation of lutidine isomers by selective enclathration." Acta Crystallographica Section A Foundations and Advances 77, a2 (2021): C799. http://dx.doi.org/10.1107/s0108767321088991.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Zorina-Tikhonova, E. N., G. G. Aleksandrov, M. A. Kiskin, et al. "Polynuclear Co(II) Myrtenates with 2,4-Lutidine." Russian Journal of Coordination Chemistry 45, no. 10 (2019): 689–94. http://dx.doi.org/10.1134/s1070328419100099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Sui-Seng, Christine, Fernande D. Rochon та Davit Zargarian. "trans-Dichlorobis(3,4-lutidine-κN)palladium(II)". Acta Crystallographica Section E Structure Reports Online 59, № 11 (2003): m1065—m1066. http://dx.doi.org/10.1107/s1600536803022840.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Bouanga Boudiombo, Jacky S., Hong Su, Susan A. Bourne, Edwin Weber, and Luigi R. Nassimbeni. "Separation of Lutidine Isomers by Selective Enclathration." Crystal Growth & Design 18, no. 4 (2018): 2620–27. http://dx.doi.org/10.1021/acs.cgd.8b00251.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Oliva, Ana I., Luis Simón, Francisco M. Muñiz, Francisca Sanz, and Joaquín R. Morán. "Enantioselective Lutidine-Tetrahydrobenzoxanthene Receptors for Carboxylic Acids." European Journal of Organic Chemistry 2004, no. 8 (2004): 1698–702. http://dx.doi.org/10.1002/ejoc.200300790.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Nako, Adi E., Andrew J. P. White та Mark R. Crimmin. "Bis(σ-B–H) complexes of copper(i): precursors to a heterogeneous amine–borane dehydrogenation catalyst". Dalton Transactions 44, № 28 (2015): 12530–34. http://dx.doi.org/10.1039/c5dt02144h.

Full text
Abstract:
A series of bis(σ-B–H) complexes of copper(i) have been prepared by displacement of arene solvent from a β-diketiminate copper(i) complex by four-coordinate boranes, H<sub>3</sub>B–L (L = NMe<sub>3</sub>, lutidine).
APA, Harvard, Vancouver, ISO, and other styles
48

Kasprzycka-Guttman, Teresa, and Juan H. Vera. "Heats of mixing of binary mixtures of pyridine base with n-alkane." Canadian Journal of Chemistry 66, no. 7 (1988): 1625–27. http://dx.doi.org/10.1139/v88-263.

Full text
Abstract:
Heats of mixing of 2,4-lutidine and 2,4,6-collidine with n-alkanes were measured at 293.15 K using an isothermal dilution calorimeter. Experimental results were fitted with a Redlich–Kister polynomial. Experimental data and coefficients for the Redlich–Kister polynomials are reported.
APA, Harvard, Vancouver, ISO, and other styles
49

Zheng, Junhao, Xiaoting Fan, Benyu Zhou, Zhen Hua Li, and Huadong Wang. "Tautomerization of 2,6-lutidines in the presence of B(C6F5)3 using catecholborane as a precatalyst." Chemical Communications 52, no. 25 (2016): 4655–58. http://dx.doi.org/10.1039/c6cc00347h.

Full text
Abstract:
The Lewis pair of 2,6-lutidine and B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> can undergo tautomerization to produce enamine B(C<sub>6</sub>F<sub>5</sub>)<sub>3</sub> adducts when catecholborane is applied as a precatalyst.
APA, Harvard, Vancouver, ISO, and other styles
50

Balevicius, Vytautas, Norbert Weiden, and Alarich Weiss. "1H and 2H NMR Studies of Mixtures 2,6-Lutidine/Water Near the Lower Critical Solution Point." Zeitschrift für Naturforschung A 47, no. 4 (1992): 583–87. http://dx.doi.org/10.1515/zna-1992-0406.

Full text
Abstract:
AbstractDeuteron spin-lattice relaxation time (TJ measurements of binary mixtures 2,6-lutidine/D20 have been done near the lower critical solution point (TC, L), ε = (T - TC, L)/TC, L ≧10-5. Singularities are observed at TC, L. The changes in the slope of T1 (2H) = ƒ ( T ) can be interpreted as due to the effect of concentration changes on Ty and simultaneously strong overlaping of 2H NMR signals from coexisting phases. In the two-phase region, ca. 2°C above TC, L two D2O signals with very strong temperature evolution have been detected. Similar doubling of 2,6-lutidine 1H NMR signals has been
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!